首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
Microbes have been shown to naturally form veritable electric grids in which different species acting as electron donors and others acting as electron acceptors cooperate. The uptake of electrons from cells adjacent to them is a mechanism used by microorganisms to gain energy for cell growth and maintenance. The external discharge of electrons in lieu of a terminal electron acceptor, and the reduction of external substrates to uphold certain metabolic processes, also plays a significant role in a variety of microbial environments. These vital microbial respiration events, viz. extracellular electron transfer to and from microorganisms, have attracted widespread attention in recent decades and have led to the development of fascinating research concerning microbial electrochemical sensors and bioelectrochemical systems for environmental and bioproduction applications involving different fuels and chemicals. In such systems, microorganisms use mainly either (1) indirect routes involving use of small redox-active organic molecules referred to as redox mediators, secreted by cells or added exogenously, (2) primary metabolites or other intermediates, or (3) direct modes involving physical contact in which naturally occurring outer-membrane c-type cytochromes shuttle electrons for the reduction or oxidation of electrodes. Electron transfer mechanisms play a role in maximizing the performance of microbe?Celectrode interaction-based systems and help very much in providing an understanding of how such systems operate. This review summarizes the mechanisms of electron transfer between bacteria and electrodes, at both the anode and the cathode, in bioelectrochemical systems. The use over the years of various electrochemical approaches and techniques, cyclic voltammetry in particular, for obtaining a better understanding of the microbial electrocatalysis and the electron transfer mechanisms involved is also described and exemplified.  相似文献   

2.
Due to high global energy demands, there is a great need for development of technologies for exploiting and storing solar energy. Closed cycle systems for storage of solar energy have been suggested, based on absorption of photons in photoresponsive molecules, followed by on‐demand release of thermal energy. These materials are called solar thermal fuels (STFs) or molecular solar thermal (MOST) energy storage systems. To achieve high energy densities, ideal MOST systems are required either in solid or liquid forms. In the case of the latter, neat high performing liquid materials have not been demonstrated to date. Here is presented a set of neat liquid norbornadiene derivatives for MOST applications and their characterization in toluene solutions and neat samples. Their synthesis is in most cases based on solvent‐free Diels‐Alder reactions, which easily and efficiently afford a range of compounds. The shear viscosity of the obtained molecules is close to that of colza oil, and they can absorb up to 10% of the solar spectrum with a measured energy storage density of up to 577 kJ/kg corresponding to 152 kJ mol–1 (calculated 100 kJ mol–1). These findings pave the way towards implementation of liquid norbornadienes in closed cycle energy storage technologies.  相似文献   

3.
Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.  相似文献   

4.
Mesenchymal stem cells (MSCs) from post-natal bone marrow possess tremendous potential for cell-mediated gene therapy in several disease processes, and recent reports have broadened the spectrum for therapeutic applications to cancer therapy. The evidence that sites of active tumorigenesis favor the homing of exogenous MSCs have support the rationale for developing engineered MSCs as a tool to track malignant tissues and deliver anticancer agents within the tumor microenvironment. Several reports have proven the efficiency of MSCs as cell carrier for in vivo delivery of various clinically relevant anticancer factors, including cytokines, interferon, pro-drugs or replicative adenovirus, and tumor growth inhibition following engraftment within or in the vicinity of tumor. The enthusiasm for MSCs is further reinforced by the striking observation that unmodified MSCs can exert antitumorigenic activity, and preliminary reports in immunocompetent animals have provided encouraging results for the use of MSCs in cancer immunotherapy. This review highlights recent works and potential clinical applications of MSCs in this field.  相似文献   

5.
A simple protocol for transfecting human mesenchymal stem cells   总被引:1,自引:0,他引:1  

Objectives and results

Mesenchymal stromal cells (MSCs) are potential targets for cell and gene therapy-based approaches against a variety of different diseases. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and have significant expansion capability. These characteristics make them strong candidates for delivering genes and restoring organ systems function. However, as other primary cells, MSCs are difficult to transfect. In order to standardize a simple protocol for transfection of MSCs, we conducted a series of experiments and achieved a protocol that does not require the use of viral particles or specific expensive equipment.

Conclusion

MSCs transfection at early passages using a ratio lipid/DNA of 3.0 µL/µg with Lipofectamine 3000® yields good transfection efficiencies for human MSCs (up to 26%) and is rapid, simple, and safe.
  相似文献   

6.

Purpose

The purpose of this study was to analyze the environmental trade-offs of cascading reuse of electric vehicle (EV) lithium-ion batteries (LIBs) in stationary energy storage at automotive end-of-life.

Methods

Two systems were jointly analyzed to address the consideration of stakeholder groups corresponding to both first (EV) and second life (stationary energy storage) battery applications. The environmental feasibility criterion was defined by an equivalent-functionality lead-acid (PbA) battery. A critical methodological challenge addressed was the allocation of environmental impacts associated with producing LIBs across the EV and stationary use systems. The model also tested sensitivity to parameters such as the fraction of battery cells viable for reuse, service life of refurbished cells, and PbA battery efficiency.

Results and discussion

From the perspective of EV applications, cascading reuse of an LIB in stationary energy storage can reduce net cumulative energy demand and global warming potential by 15 % under conservative estimates and by as much as 70 % in ideal refurbishment and reuse conditions. When post-EV LIB cells were compared directly to a new PbA system for stationary energy storage, the reused cells generally had lower environmental impacts, except in scenarios where very few of the initial battery cells and modules could be reused and where reliability was low (e.g., life span of 1 year or less) in the secondary application.

Conclusions

These findings demonstrate that EV LIB reuse in stationary application has the potential for dual benefit—both from the perspective of offsetting initial manufacturing impacts by extending battery life span as well as avoiding production and use of a less-efficient PbA system. It is concluded that reuse decisions and diversion of EV LIBs toward suitable stationary applications can be based on life cycle centric studies. However, technical feasibility of these systems must still be evaluated, particularly with respect to the ability to rapidly analyze the reliability of EV LIB cells, modules, or packs for refurbishment and reuse in secondary applications.
  相似文献   

7.

Background

Bone Marrow MSCs are an appealing source for several cell-based therapies. Many bioreactors, as the Quantum Cell Expansion System, have been developed to generate a large number of MSCs under Good Manufacturing Practice conditions by using Human Platelet Lysate (HPL). Previously we isolated in the human bone marrow a novel cell population, named Mesodermal Progenitor Cells (MPCs), which we identified as precursors of MSCs. MPCs could represent an important cell source for regenerative medicine applications. As HPL gives rise to a homogeneus MSC population, limiting the harvesting of other cell types, in this study we investigated the efficacy of pooled human AB serum (ABS) to provide clinically relevant numbers of both MSCs and MPCs for regenerative medicine applications by using the Quantum System.

Methods

Bone marrow aspirates were obtained from healthy adult individuals undergoing routine total hip replacement surgery and used to generate primary cultures in the bioreactor. HPL and ABS were tested as supplements to culture medium. Morphological observations, cytofluorimetric analysis, lactate and glucose level assessment were performed.

Results

ABS gave rise to both heterogeneous MSC and MPC population. About 95% of cells cultured in HPL showed a fibroblast-like morphology and typical mesenchymal surface markers, but MPCs were scarcely represented.

Discussion

The use of ABS appeared to sustain a large scale MSC production, as well as the recovery of a subset of MPCs, and resulted a suitable alternative to HPL in the cell generation based on the Quantum System.  相似文献   

8.
Hot springs and hydrothermal systems occurring within volcanic areas are inhabited by hyperthermophilic microorganisms, some of which grow at temperatures up to 110 °C. Hyperthermophiles grow anaerobically or aerobically by diverse metabolic types. Within the high temperature ecocystems, primary production is independent from solar energy.Presented at the Session Water in the Solar System and Its Role in Exobiology during the 26th General Assembly of the European Geophysical Society, 22–26 april 1991 in Wiesbaden, Germany.  相似文献   

9.
10.
Research involving mesenchymal multipotent/stem/progenitor/stromal/marrow cells (MSCs) have translated to clinical trials at an extraordinary pace. By the time of this review, the public clinical trials database (http://clinicaltrials.gov) has 394 clinical trials listed using MSCs for a very wide range of therapeutic applications. Unexpectedly, the explanation for the increase in clinical trials using MSCs does not lie on a well-defined therapeutic mechanism – dramatic results have been demonstrated in a variety of studies involving different animal models of diseases, often describing discrete therapeutic mechanisms exerted by MSCs. This review will focus on recent data suggesting the involvement of hyaluronic acid (HA) in the beneficial effects of MSCs, evaluate the potential of MSC as modulators of HA and the implications of this modulation for disease therapy.  相似文献   

11.
Coronavirus disease-2019 (COVID-19) has affected more than 200 countries worldwide. This disease has hugely affected healthcare systems as well as the economy to an extent never seen before. To date, COVID-19 infection has led to about 165000 deaths in 150 countries. At present, there is no specific drug or efficient treatment for this disease. In this analysis based on evidential relationships of the biological characteristics of MSCs, especially umbilical cord (UC)-derived MSCs as well as the first clinical trial using MSCs for COVID-19 treatment, we discuss the use of UC-MSCs to improve the symptoms of COVID-19 in patients.  相似文献   

12.
李锋  宋浩 《生物工程学报》2017,33(3):516-534
电活性微生物(产电微生物和亲电微生物)通过与外界环境进行双向电子和能量传递来实现多种微生物电催化过程(包括微生物燃料电池、微生物电解电池、微生物电催化等),从而实现在环境、能源领域的广泛应用,并为开发有效且可持续性生产新能源或大宗精细化学品的工艺提供了新机会。但是,电活性微生物的胞外电子传递效率比较低,这已经成为限制微生物电催化系统在工业应用中的主要瓶颈。以下综述了近年来利用合成生物学改造电活性微生物的相关研究成果,阐明了合成生物学如何用于打破电活性微生物胞外电子传递途径低效率的瓶颈,从而实现电活性微生物与环境的高效电子传递和能量交换,推动电活性微生物电催化系统的实用化进程。  相似文献   

13.
Mesenchymal stem cells (MSCs) are promising alternative agents for the treatment of inflammatory disorders due to their immunomodulatory functions, and several clinical trials on MSC-based products are currently being conducted. In this review, we discuss recent progress made on the use of MSCs as immunomodulatory agents, developmental challenges posed by MSC-based therapy, and the strategies being used to overcome these challenges. In this context, current understanding of the mechanisms responsible for MSC interactions with the immune system and the molecular responses of MSCs to inflammatory signals are discussed. The immunosuppressive activities of MSCs are initiated by cell-to-cell contact and the release of immuno-regulatory molecules. By doing so, MSCs can inhibit the proliferation and function of T cells, natural killer cells, B cells, and dendritic cells, and can also increase the proliferation of regulatory T cells. However, various problems, such as low transplanted cell viability, poor homing and engraftment into injured tissues, MSC heterogeneity, and lack of adequate information on optimum MSC doses impede clinical applications. On the other hand, it has been shown that the immunomodulatory activities and viabilities of MSCs might be enhanced by 3D-cultured systems, genetic modifications, preconditioning, and targeted-delivery.  相似文献   

14.

Purpose

Lithium-ion (Li-ion) battery packs recovered from end-of-life electric vehicles (EV) present potential technological, economic and environmental opportunities for improving energy systems and material efficiency. Battery packs can be reused in stationary applications as part of a “smart grid”, for example to provide energy storage systems (ESS) for load leveling, residential or commercial power. Previous work on EV battery reuse has demonstrated technical viability and shown energy efficiency benefits in energy storage systems modeled under commercial scenarios. The current analysis performs a life cycle assessment (LCA) study on a Li-ion battery pack used in an EV and then reused in a stationary ESS.

Methods

A complex functional unit is used to combine energy delivered by the battery pack from the mobility function and the stationary ESS. Various scenarios of cascaded “EV mobility plus reuse in stationary clean electric power scenarios” are contrasted with “conventional system mobility with internal combustion engine vehicles plus natural gas peaking power.” Eight years are assumed for first use; with 10 years for reuse in the stationary application. Operational scenarios and environmental data are based on real time-of-day and time-of-year power use. Additional data from LCA databases are utilized. Ontario, Canada, is used as the geographic baseline; analysis includes sensitivity to the electricity mix and battery degradation. Seven environmental categories are assessed using ReCiPe.

Results and discussion

Results indicate that the manufacturing phase of the Li-ion battery will still dominate environmental impacts across the extended life cycle of the pack (first use in vehicle plus reuse in stationary application). For most impact categories, the cascaded use system appears significantly beneficial compared to the conventional system. By consuming clean energy sources for both use and reuse, global and local environmental stress reductions can be supported. Greenhouse gas advantages of vehicle electrification can be doubled by extending the life of the EV batteries, and enabling better use of off-peak low-cost clean electricity or intermittent renewable capacity. However, questions remain concerning implications of long-duration use of raw material resources employed before potential recycling.

Conclusions

Li-ion battery packs present opportunities for powering both mobility and stationary applications in the necessary transition to cleaner energy. Battery state-of-health is a considerable determinant in the life cycle performance of a Li-ion battery pack. The use of a complex functional unit was demonstrated in studying a component system with multiple uses in a cascaded application.
  相似文献   

15.
Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications.  相似文献   

16.
Mesenchymal stem cells (MSCs) are known to be an attractive cell source for tissue engineering and regenerative medicine. One of the main limiting steps for clinical use or biotechnological purposes is the expansion step. The research of compatible biomaterials for MSCs expansion is recently regarded as an attractive topic. The aim of this study was to create new functional biomaterial for MSCs expansion by evaluating the impact of chitosan derivative films modified by enzymatic approach. First, chitosan particles were enzymatically modified with ferulic acid (FA) or ethyl ferulate (EF) under an eco‐friendly procedure. Then, films of chitosan and its modified derivatives were prepared and evaluated by physicochemical and biological properties. Results showed that the enzymatic grafting of FA or EF onto chitosan significantly increased hydrophobic and antioxidant properties of chitosan films. The MSCs cell viability on chitosan derivative films also increased depending on the film thickness and the quantity of grafted phenols. Furthermore, the cytotoxicity test showed the absence of toxic effect of chitosan derivative films towards MSCs cells. Cell morphology showed a well attached and spread phenotype of MSCs cells on chitosan derivative films. On the other hand, due to the higher phenol content of FA‐chitosan films, their hydrophobic, antioxidant properties and cell adhesion were improved in comparison with those of EF‐chitosan films. Finally, this enzymatic process can be considered as a promising process to favor MSCs cell growth as well as to create useful biomaterials for biomedical applications especially for tissue engineering. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:491–500, 2016  相似文献   

17.
Microbial electrochemical systems (MESs) use microorganisms to covert the chemical energy stored in biodegradable materials to direct electric current and chemicals. Compared to traditional treatment-focused, energy-intensive environmental technologies, this emerging technology offers a new and transformative solution for integrated waste treatment and energy and resource recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. All MESs share one common principle in the anode chamber, in which biodegradable substrates, such as waste materials, are oxidized and generate electrical current. In contrast, a great variety of applications have been developed by utilizing this in situ current, such as direct power generation (microbial fuel cells, MFCs), chemical production (microbial electrolysis cells, MECs; microbial electrosynthesis, MES), or water desalination (microbial desalination cells, MDCs). Different from previous reviews that either focus on one function or a specific application aspect, this article provides a comprehensive and quantitative review of all the different functions or system constructions with different acronyms developed so far from the MES platform and summarizes nearly 50 corresponding systems to date. It also provides discussions on the future development of this promising yet early-stage technology.  相似文献   

18.

Background

Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro.

Scope of review

This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems.

Major conclusions

The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased.

General significance

Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

19.
陈盖  蓝盛芳 《生态科学》2001,20(1):65-69
一可更新能源可减少甚至消除我们对化石能和核能的依赖,其中很多虽然已为人类使用数百年,但因为石能的普遍使用,一直都为起人类的注意。人类已发明了新技术利用这些可更新能源。其利用不赖于一定的技术是既定的事实,目前有成功建立这样的能源工业还是十分昂贵的。如果人类生产经济和市场允许的话,这些新的技术经进一步改进和简化后,就可以降低成本,并且应用起来也很可靠。相对于开发应用核能,水能和化石能数以百万计的投资耗费来讲,用于可更新资源的资金可谓微乎其微。虽然传统能源和替代能源各具优点,但保护能源往往还是解决能源短缺最便宜,最容易的途径。  相似文献   

20.

Background

Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis.

Principal Findings

In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response.

Significance

Our data indicate that MSCs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号