首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ladd J  Zhang Z  Chen S  Hower JC  Jiang S 《Biomacromolecules》2008,9(5):1357-1361
This study examined six different polymer and self-assembled monolayer (SAM) surface modifications for their interactions with human serum and plasma. It was demonstrated that zwitterionic polymer surfaces are viable alternatives to more traditional surfaces based on poly(ethylene glycol) (PEG) as nonfouling surfaces. All polymer surfaces were formed using atom transfer radical polymerization (ATRP) and they showed an increased resistance to nonspecific protein adsorption compared to SAMs. This improvement is due to an increase in the surface packing density of nonfouling groups on the surface, as well as a steric repulsion from the flexible polymer brush surfaces. The zwitterionic polymer surface based on carboxybetaine methacrylate (CBMA) also incorporates functional groups for protein immobilization in the nonfouling background, making it a strong candidate for many applications such as in diagnostics and drug delivery.  相似文献   

2.
Non‐viral gene delivery by immobilization of complexes to cell‐adhesive biomaterials, a process termed substrate‐mediated delivery, has many in vitro research applications such as transfected cell arrays or models of tissue growth. In this report, we quantitatively investigate the efficiency of gene delivery by surface immobilization, and compare this efficiency to the more typical bolus delivery. The ability to immobilize vectors while allowing cellular internalization is impacted by the biomaterial and vector properties. Thus, to compare this efficiency between vector types and delivery methods, transfection conditions were initially identified that maximized transgene expression. For surface delivery from tissue culture polystyrene, DNA complexes were immobilized to pre‐adsorbed serum proteins prior to cell seeding, while for bolus delivery, complexes were added to the media above adherent cells. Mathematical modeling of vector binding, release, and cell association using a two‐site model indicated that the kinetics of polyplex binding to cells was faster than for lipoplexes, yet both vectors have a half‐life on the surface of approximately 17 min. For bolus and surface delivery, the majority of the DNA in the system remained in solution or on the surface, respectively. For polyplexes, the efficiency of trafficking of cell‐associated polyplexes to the nucleus for surface delivery is similar or less than bolus delivery, suggesting that surface immobilization may decrease the activity of the complex. The efficiency of nuclear association for cell‐associated lipoplexes is similar or greater for surface delivery relative to bolus. These studies suggest that strategies to enhance surface delivery for polyplexes should target the vector design to enhance its potency, whereas enhancing lipoplex delivery should target the material design to increase internalization. Biotechnol. Bioeng. 2009;102: 1679–1691. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
Self-assembled monolayers (SAMs) on coinage metal provide versatile modeling systems for studies of interfacial electron transfer, biological interactions, molecular recognition, and other interfacial phenomena. The bonding of enzyme to SAMs of alkanethiols onto gold surfaces is exploited to produce an enzyme chip. In this work, the attachment of trypsin to a SAMs surface of 11-mercaptoundecanoic acid was achieved using water soluble N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide as coupling agent. A two-dimensional liquid-phase separation scheme coupled with mass spectrometry is presented for proteomic analysis of erythrocyte proteins. The application of proteomics, particularly with reference to analysis of proteins, will be described. Surface analyses have revealed that the X-ray Photoelectron Spectroscopy (XPS) C1s and N1s core levels illustrate the immobilization of trypsin. These data are also in good agreement with Fourier Transformed Infrared Reflection-Attenuated Total Reflection (FTIR-ATR) spectra for the peaks at Amide I and Amide II. Using two-dimensional nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (2D nano-HPLC-ESI-MS/MS) system observations, analytical results have demonstrated the erythrocyte proteins digestion of the immobilized trypsin on the functionalized SAMs surface. For such surfaces, it also shows the enzyme digestion ability of the immobilized trypsin. The experiment results revealed the identification of 272 proteins from erythrocyte protein sample. The terminal groups of the SAMs structure can be further functionalized with biomolecules or antibodies to develop surface-base diagnostics, biosensors, or biomaterials.  相似文献   

4.
Nanotechnology, although not a new concept, has gained significant momentum in recent years. This stems partly from the realization that nanosystems have significantly different biological properties from large-sized systems (e.g. implants or microparticles) that could be used effectively to overcome problems in drug and gene therapy. In drug therapy, we face the problems of inefficacy or nonspecific effects; hence, nanosystems are being developed for targeted drug therapy. In gene therapy using non-viral systems, the main issues are relatively transient gene expression and lower efficiency than viral vectors. Research efforts have focused on understanding the barriers in gene delivery so that non-viral systems can be developed that are as effective as viral systems in gene transfection. Understanding the molecular mechanisms that underlie the interactions of nanosystems with the cell, their uptake properties and retention will be crucial for the successful development of these systems.  相似文献   

5.
To utilize aptamers as molecular recognition agents in biosensors and biodiagnostics, it is important to develop strategies for reliable immobilization of aptamers so that they retain their biophysical characteristics and binding abilities. Here we report on quartz crystal microbalance (QCM) measurements and atomic force microscope (AFM)-based force spectroscopy studies to evaluate aptasensors fabricated by different modification strategies. Gold surfaces were modified with mixed self assembled monolayers (SAMs) of aptamer and oligoethylene glycol (OEG) thiols (HS-C(11)-(EG)(n)OH, n=3 or 6) to impart resistance to nonspecific protein adsorption. By affinity analysis, we show that short OEG thiols have less impact on aptamer accessibility than longer chain thiols. Backfilling with OEG as a step subsequent to aptamer immobilization provides greater surface coverage than using aptamer and OEG thiol to form a mixed SAM in one-step. Immunoglobulin E and vascular endothelial growth factor (VEGF) were studied as target proteins in these experiments. Binding forces obtained by these strategies are similar, demonstrating that the biophysical properties of the aptamer on the sensors are independent from the immobilization strategy. The results present mixed SAMs with aptamers and co-adsorbents as a versatile strategy for aptamer sensor platforms including ultrasensitive biosensor design.  相似文献   

6.
BACKGROUND: Gene delivery by non-specific adsorption of non-viral vectors to protein-coated surfaces can reduce the amount of DNA required, and also increase transgene expression and the number of cells expressing the transgene. The protein on the surface mediates cell adhesion and vector immobilization, and functions to colocalize the two to enhance gene delivery. This report investigates the mechanism and specificity by which the protein coating enhances gene transfer, and determines if the protein coating targets the vector for internalization by a specific pathway. METHODS: Proteins (FBS, BSA, fibronectin, collagen I, and laminin) were dried onto culture dishes, followed by PEI/DNA complex adsorption for surface delivery. Reporter genes were employed to characterize transfection as a function of the protein identity and density. Vector immobilization was measured using radiolabeled plasmid, and internalization was quantified in the presence and absence of the endocytosis inhibitors chlorpromazine and genistein. RESULTS: Fibronectin coating yielded the greatest expression for PEI/DNA polyplexes, with maximal expression at intermediate protein densities. Expression in control studies with bolus delivery was independent of the protein identity. Substrate binding was independent of the protein identity; however, internalization was greatest on surfaces coated with fibronectin and collagen I. Inhibition of caveolae-mediated endocytosis reduced gene expression more than clathrin-mediated endocytosis. Similarly, inhibition of caveolae-mediated endocytosis significantly reduced the intracellular levels of DNA. CONCLUSIONS: Fibronectin at intermediate densities mediated the highest levels of transgene expression, potentially by targeting internalization through caveolae-mediated endocytosis. Substrate modifications, such as the identity and density of proteins, provide an opportunity for modification of biomaterials for enhancing gene expression.  相似文献   

7.
X-Ray structure analysis is one of the most informative methods for investigation of enzymes. However, it does not provide quantitative estimation of the relative efficiency of formation of contacts revealed by this method, and when interpreting the data this does not allow taking into account the relative contribution of some specific and nonspecific interactions to the total affinity of nucleic acids (NA) to enzymes. This often results in unjustified overestimation of the role of specific enzyme--NA contacts in affinity and specificity of enzyme action. In recent years we have developed new approaches to analysis of the mechanisms of protein--nucleic acid interactions allowing quantitative estimation of the relative contribution of virtually every nucleotide unit (including individual structural elements) to the total affinity of enzymes to long DNA and RNA molecules. It is shown that the interaction between enzymes and NA on the molecular level can be successfully analyzed by the methods of synthesis and analysis, that is, step-by-step simplification or complication of the structure of a long NA-ligand. This approach allows the demonstration that complex formation including formation of contacts between enzymes and specific NA units can provide neither high affinity of the enzymes to NA nor the specificity of their action. Using a number of sequence-independent replication and repair enzymes specifically recognizing a modified unit in DNA and also some sequence-dependent topoisomerization and restriction enzymes as examples, it was shown that virtually all nucleotide units within the DNA binding cleft interact with the enzyme, and high affinity mainly (up to 5-7 of 7-10 orders of magnitude) is provided by many weak additive interactions between these enzymes and various structural elements of the individual NA nucleotide units. At the same time, the relative contribution of specific interactions to the total affinity of NA is rather small and does not exceed 1-2 orders of magnitude. Specificity of enzyme action is provided by the stages of the enzyme-dependent NA adaptation to the optimal conformation and directly of catalysis: kcat increases by 3-7 orders of magnitude when changing from nonspecific to specific NA. In the present work we summarized our experience in studies of enzymes by the method of step-by-step complication of the ligand structure and performed a detailed analysis of the features of this approach and its possibilities for the study of protein--nucleic acid interactions on the molecular level.  相似文献   

8.
The chemistry and topography of a surface affect biological response and are of fundamental importance, especially when living systems encounter synthetic surfaces. Most biomolecules have immense recognition power (specific binding) and simultaneously have a tendency to physically adsorb onto a solid substrate without specific receptor recognition (nonspecific adsorption). Therefore, to create useful materials for many biotechnology applications, interfaces are required that have both enhanced specific binding and reduced nonspecific binding. Thus, in applications such as sensors, the tailoring of surface chemistry and the use of micro or nanofabrication techniques becomes an important avenue for the production of surfaces with specific binding properties and minimal background interference. Both self-assembled monolayers (SAMs) and polymer brushes have attracted considerable attention as surface-active materials. In this review, we discuss both of these materials with their potential applications in biotechnology. We also summarize lithographic methods for pattern formation using combined top-down and bottom-up approaches and briefly discuss the future of these materials by describing emerging new applications.  相似文献   

9.
This protocol details how to design and conduct experiments to deliver nucleic acids to adherent and suspension cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of nucleic acids and cationic lipids or polymers (nonviral gene vectors), which are associated with magnetic (nano) particles. These magnetic complexes are sedimented onto the surface of the cells to be transfected within minutes by the application of a magnetic gradient field. As the diffusion barrier to nucleic acid delivery is overcome, the full vector dose is targeted to the cell surface and transfection is synchronized. In this manner, the transfection process is accelerated and transfection efficiencies can be improved up to several 1,000-fold compared with transfections carried out with nonmagnetic gene vectors. This protocol describes how to accomplish the following stages: synthesis of magnetic nanoparticles for magnetofection; testing the association of DNA with the magnetic components of the transfection complex; preparation of magnetic lipoplexes and polyplexes; magnetofection; and data processing. The synthesis and characterization of magnetic nanoparticles can be accomplished within 3-5 d. Cell culture and transfection is then estimated to take 3 d. Transfected gene expression analysis, cell viability assays and calibration will probably take a few hours. This protocol can be used for cells that are difficult to transfect, such as primary cells, and may also be applied to viral nucleic acid delivery. With only minor alterations, this protocol can also be useful for magnetic cell labeling for cell tracking studies and, as it is, will be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized transfection efficiency in any cell type.  相似文献   

10.
Protein patterning was carried out using a simple procedure based on photolithography wherein the protein was not subjected to UV irradiation and high temperatures or contacted with denaturing solvents or strongly acidic or basic solutions. Self-assembled monolayers of poly(ethylene glycol) (PEG) on silicon surfaces were exposed to oxygen plasma through a patterned photoresist. The etched regions were back-filled with an initiator for surface-initiated atom transfer radical polymerization (ATRP). ATRP of sodium acrylate was readily achieved at room temperature in an aqueous medium. Protonation of the polymer resulted in patterned poly(acrylic acid) (PAA) brushes. A variety of biomolecules containing amino groups could be covalently tethered to the dense carboxyl groups of the brush, under relatively mild conditions. The PEG regions surrounding the PAA brush greatly reduced nonspecific adsorption. Avidin was covalently attached to PAA brushes, and biotin-tagged proteins could be immobilized through avidin-biotin interaction. Such an immobilization method, which is based on specific interactions, is expected to better retain protein functionality than direct covalent binding. Using biotin-tagged bovine serum albumin (BSA) as a model, a simple strategy was developed for immobilization of small biological molecules using BSA as linkages, while BSA can simultaneously block nonspecific interactions.  相似文献   

11.
A new efficient immobilization method that enables oriented immobilization of biologically active proteins was developed based on concepts of active site masking and kinetic control. Taq DNA polymerase was immobilized covalently on mixed self-assembled monolayers (SAMs) of ω-carboxylated thiol and ω-hydroxylated thiol through amide bonds between the protein and the carboxyl group in SAMs. Activity of the immobilized enzyme as large as 70% of solution-phase enzyme was achieved by masking the active site of the Taq DNA polymerase prior to the immobilization. In addition, the number of immobilization bonds was controlled by optimizing the carboxyl group concentration in the mixed monolayer. The maximum activity of immobilized Taq DNA polymerase was achieved at 5% of 12-mercaptododecanoic acid. The activity observed with protected immobilized enzyme was approximately 20 times higher than that observed with randomly immobilized enzyme. The maximum activity was acquired at a 1:1 DNA/enzyme masking ratio, immobilization pH 8.3, and within 10 min of reaction time. This concept of the active site masking and kinetic control of the number of covalent bonds between proteins and the surface can be generally applicable to a broad range of proteins to be immobilized on the solid surface with higher activity.  相似文献   

12.
目的:建立基于聚(乳酸-羟基乙酸)纳米粒(PLGA)载DNA的基因转染体系,比较用空白聚(乳酸-羟基乙酸)纳米粒(PLG-A-E)吸附质粒DNA和用分枝PEI修饰后的PLGA纳米粒(PLGA-BPEI)吸附质粒DNA优缺点。方法:用乳化蒸发法制备纳米粒,对纳米粒进行表征研究,包括包封率、Zeta电位、粒径大小、稳定性,用荧光显微镜观察它们对NIH3T3和HEK293细胞的转染效率,用MTT检测对它们细胞的毒性。结果:制备了两种基于PLGA的纳米粒,PLGA-E和PLGA-BPEI粒径大小为200-270nm,zeta电位为0-30mV,在血清和不同的pH值时两者均较稳定,转染效率PLGA-BPEI较PLGA-E高,且释放时间早,但前者较后者对细胞毒性大。结论:这两种基于PLGA纳米粒均能有效转染质粒DNA,它们存在不同的优缺点,应根据不同需要进行选择。  相似文献   

13.
The present study reports on the retention of conformational flexibility of a model allosteric protein upon immobilization on self-assembled monolayers (SAMs) on gold. Organothiolated SAMs of different compositions were utilized for adsorptive and covalent attachment of bovine liver glutamate dehydrogenase (GDH), a well-characterized allosteric enzyme. Sensitive fluorimetric assays were developed to determine immobilization capacity, specific activity, and allosteric properties of the immobilized preparations as well as the potential for repeated use and continuous catalytic transformations. The allosteric response of the free and immobilized forms towards ADP, L-leucine and high concentrations of NAD(+), some of the well-known activators for this enzyme, were determined and compared. The enzyme immobilized by adsorption or chemical binding responded similarly to the activators with a greater degree of activation, as compared to the free form. Also loss of activity involving the two immobilization procedures were similar, suggesting that residues essential for catalytic activity or allosteric properties of GDH remained unchanged in the course of chemical modification. A recently established method was used to predict GDH orientation upon immobilization, which was found to explain some of the experimental results presented. The general significance of these observations in connection with retention of native properties of protein structures upon immobilization on SAMs is discussed.  相似文献   

14.
In this article, surface coatings derived from homo-bifunctional tri(ethylene glycol) (EG3) and hexa(ethylene glycol) (EG6) molecules which have two terminal aldehyde groups are reported. These homo-bifunctional molecules can be used to functionalize amine-terminated surfaces through crosslinking one aldehyde group to surface amine groups, while leaving the other aldehyde group available for covalent immobilization of proteins. Best of all, after reducing remaining aldehyde groups on the surface with a reducing agent, sodium borohydride, the surface becomes oligo(ethylene glycol) (OEG)-terminated. The OEG-terminated surface can resist nonspecific protein adsorption, a feature that is often required for many biosensors and biomedical devices. Although some mixed self-assembled monolayers formed from two different organothiols also permit covalent protein immobilization and resist nonspecific protein adsorption, the procedure reported herein requires only one type of homo-bifunctional molecule and can be applied to both silicon and gold surfaces.  相似文献   

15.
Zhang Z  Chen S  Jiang S 《Biomacromolecules》2006,7(12):3311-3315
We introduce a dual-functional biocompatible material based on zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), which not only highly resists protein adsorption/cell adhesion, but also has abundant functional groups convenient for the immobilization of biological ligands, such as proteins. The dual-functional properties are unique to carboxybetaine moieties and are not found in other nonfouling moieties such as ethylene glycol, phosphobetaine, and sulfobetaine. The unique properties are demonstrated in this work by grafting a polyCBMA polymer onto a surface or by preparing a polyCBMA-based hydrogel. PolyCBMA brushes with a thickness of 10-15 nm were grafted on a gold surface using the surface-initiated atom transfer radical polymerization method. Protein adsorption was analyzed using a surface plasmon resonance sensor. The surface grafted with polyCBMA very largely prevented the nonspecific adsorption of three test proteins, that is, fibrinogen, lysozyme, and human chorionic gonadotropin (hCG). The immobilization of anti-hCG on the surface resulted in the specific binding of hCG while maintaining a high resistance to nonspecific protein adsorption. Transparent polyCBMA-based hydrogel disks were decorated with immobilized fibronectin. Aortic endothelial cells did not bind to the polyCBMA controls, but appeared to adhere well and spread on the fibronectin-modified surface. With their dual functionality and biomimetic nature, polyCBMA-based materials are very promising for their applications in medical diagnostics, biomaterials/tissue engineering, and drug delivery.  相似文献   

16.
Functionalization of a gold surface is usually accomplished by covalent binding via self-assembled monolayers (SAMs) on the gold surface, followed by attachment of flexible polymeric linker layers such as dextran hydrogels. However, these techniques require multiple steps and also have nonspecific interactions and steric problems. In this study, a self-assembled carboxylated terthiophene monolayer was formed onto a gold surface to create a sensitive and stable surface plasmon resonance (SPR) biosensing system. Compared with a commercial carboxymethyl dextran chip (CM5), the terthiophene SAM surface provided more than six times more antibody-binding signals and nearly three times the SPR assay sensitivity for progesterone (P4).  相似文献   

17.
RNAi-based gene therapy has been recently considered as a promising approach against cancer. Targeted delivery of drug, gene or therapeutic RNAi-based systems to tumor cells is one of the important issues in order to reduce side effects on normal cells. Several strategies have been developed to improve the safety and selectivity of cancer treatments including antibodies, peptides and recently aptamers with various attractive characteristics including higher target specificity, affinity and reduced toxicity. Here we described a novel targeted delivery platform comprising modified PAMAM with 10-bromodecanoic acid (10C) and 10C-PEG for improvement of transfection efficiency, AS1411 aptamer for targeting nucleolin ligand on target cancer cells and shRNA plasmid for specific knockdown of Bcl-xL protein. Modified vector could significantly improve the transfection efficiency even after covalent or non-covalent aptamer binding compared to the non-targeted vector in A549 cells. The results of gene silencing and apoptosis assay indicated that our targeted shRNA delivery system could efficiently down-regulate the Bcl-xL expression up to 25% and induce 14% late apoptosis in target cancer cells with strong cell selectivity. This study proposed a novel targeted non-viral system for shRNA-mediated gene-silencing in cancer cells.  相似文献   

18.
反义寡核苷酸递送方法研究进展   总被引:2,自引:1,他引:1  
如何将反义寡核苷酸 (AS ODNs)有效递送进入细胞是反义核酸领域面临的一大难题。近年来 ,出现了多种寡核苷酸 (ODNs)的递送方法。在培养细胞中 ,使用的递送方法包括阳离子载体包裹、特异受体的配体导向、ODNs偶联修饰、细胞膜辅助穿透以及利用逆转录病毒载体转染等 ,其应用有效增强了AS ODNs的作用效果 ,大幅度降低了AS ODNs的使用浓度 ;在体内 ,由于临床使用裸露AS ODNs连续给药能达到一定的反义效果 ,而使递送方法的研究和应用尚处于初步尝试和探索之中 ,迄今报道的递送方法有脂类和非脂类两类。  相似文献   

19.
Mixed self-assembled monolayers (MSAMs) composed of diverse ligands offer a mechanism for the specific binding of biomolecules onto solid surfaces. In this study, we examined the formation of MSAMs on gold nanoparticles (AuNPs) and the immobilization of hexa-arginine-tagged esterase (Arg6-esterase) on the surfaces of the resulting particles. The functionalization of AuNPs with MSAMs was achieved by introducing a mixture of tethering and shielding ligands into an AuNP solution. The formation of self-assembled monolayers (SAMs) on the AuNP surface was characterized by UV/visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. Arg6-esterase was immobilized in a highly specific manner onto AuNPs treated with mixed SAMs (MSAM–AuNPs) by providing a shielding ligand which reduce the non-specific adsorption of enzymes caused by hydrophobic interaction compared to AuNPs treated with single-component SAMs (SSAM–AuNPs). Moreover, Arg6-esterase immobilized on MSAM–AuNPs showed substantially enhanced catalytic activity up to an original activity compared to that on SSAM–AuNPs (58%).  相似文献   

20.
Abstract

Optimal in vitro gene delivery with (poly)cationic amphiphiles requires an excess of cationic charges with respect to DNA phosphates. We have developed targeted transfection systems based on electrically neutral lipospermine/DNA particles, to which synthetic tri-antennary galactose ligands were conjugated to provide an interaction with cells, such as HepG2 cells, that express Gal/GalNAc receptors at their surface. Transfection, which was cell specific, increases ? 1000-fold with 25% neogalactolipid, i.e. approaching the value observed with optimized positively charged transfection complexes. Unexpectedly, neutral particles containing thiol-reactive phospholipids, were also efficient gene delivery systems, although non cell specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号