首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effects of in vivo genomic DNA double-strand breaks on the efficiency and mechanisms of gene targeting in mouse embryonic stem cells, we have used a series of insertion and replacement vectors carrying two, one, or no genomic sites for the rare-cutting endonuclease I-SceI. These vectors were introduced into the hypoxanthine phosphoribosyltransferase (hprt) gene to produce substrates for gene-targeting (plasmid-to-chromosome) or intrachromosomal (direct repeat) homologous recombination. Recombination at the hprt locus is markedly increased following transfection with an I-SceI expression plasmid and a homologous donor plasmid (if needed). The frequency of gene targeting in clones with an I-SceI site attains a value of 1%, 5,000-fold higher than that in clones with no I-SceI site. The use of silent restriction site polymorphisms indicates that the frequencies with which donor plasmid sequences replace the target chromosomal sequences decrease with distance from the genomic break site. The frequency of intrachromosomal recombination reaches a value of 3.1%, 120-fold higher than background spontaneous recombination. Because palindromic insertions were used as polymorphic markers, a significant number of recombinants exhibit distinct genotypic sectoring among daughter cells from a single clone, suggesting the existence of heteroduplex DNA in the original recombination product.  相似文献   

2.
Spiroplasma citri is a plant pathogenic mollicute transmitted by the leafhopper vector Circulifer haematoceps. Successful transmission requires the spiroplasmas to cross the intestinal epithelium and salivary gland barriers through endocytosis mediated by receptor-ligand interactions. To characterize these interactions we studied the adhesion and invasion capabilities of a S. citri mutant using the Ciha-1 leafhopper cell line. S. citri GII3 wild-type contains 7 plasmids, 5 of which (pSci1 to 5) encode 8 related adhesins (ScARPs). As compared to the wild-type strain GII3, the S. citri mutant G/6 lacking pSci1 to 5 was affected in its ability to adhere and enter into the Ciha-1 cells. Proteolysis analyses, Triton X-114 partitioning and agglutination assays showed that the N-terminal part of ScARP3d, consisting of repeated sequences, was exposed to the spiroplasma surface whereas the C-terminal part was anchored into the membrane. Latex beads cytadherence assays showed the ScARP3d repeat domain (Rep3d) to be involved, and internalization of the Rep3d-coated beads to be actin-dependent. These data suggested that ScARP3d, via its Rep3d domain, was implicated in adhesion of S. citri GII3 to insect cells. Inhibition tests using anti-Rep3d antibodies and competitive assays with recombinant Rep3d both resulted in a decrease of insect cells invasion by the spiroplasmas. Unexpectedly, treatment of Ciha-1 cells with the actin polymerisation inhibitor cytochalasin D increased adhesion and consequently entry of S. citri GII3. For the ScARPs-less mutant G/6, only adhesion was enhanced though to a lesser extent following cytochalasin D treatment. All together these results strongly suggest a role of ScARPs, and particularly ScARP3d, in adhesion and invasion of the leafhopper cells by S. citri.  相似文献   

3.
Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this “fastidious” bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.  相似文献   

4.
DNA double strand breaks (DSBs) are created either by DNA damaging reagents or in a programmed manner, for example during meiosis. Homologous recombination (HR) can be used to repair DSBs, a process vital both for cell survival and for genetic rearrangement during meiosis. In order to easily quantify this mechanism, a new HR reporter gene that is suitable for the detection of rare recombination events in high-throughput screens was developed in Arabidopsis thaliana. This reporter, pPNP, is composed of two mutated Pat genes and has also one restriction site for the meganuclease I-SceI. A functional Pat gene can be reconstituted by an HR event giving plants which are resistant to the herbicide glufosinate. The basal frequency of intra-chromosomal recombination is very low (10?5) and can be strongly increased by the expression of I-SceI which creates a DSB. Expression of I-SceI under the control of the 35S CaMV promoter dramatically increases HR frequency (10,000 fold); however the measured recombinant events are in majority somatic. In contrast only germinal recombination events were measured when the meganuclease was expressed from a floral-specific promoter. Finally, the reporter was used to test a dexamethasone inducible I-SceI which could produce up to 200× more HR events after induction. This novel inducible I-SceI should be useful in fundamental studies of the mechanism of repair of DSBs and for biotechnological applications.  相似文献   

5.
Spiralin is the most abundant protein at the surface of the plant pathogenic mollicute Spiroplasma citri and hence might play a role in the interactions of the spiroplasma with its host plant and/or its insect vector. To study spiralin function, mutants were produced by inactivating the spiralin gene through homologous recombination. A spiralin-green fluorescent protein (GFP) translational fusion was engineered and introduced into S. citri by using an oriC-based targeting vector. According to the strategy used, integration of the plasmid by a single-crossover recombination at the spiralin gene resulted in the expression of the spiralin-GFP fusion protein. Two distinct mutants were isolated. Western and colony immunoblot analyses showed that one mutant (GII3-9a5) did produce the spiralin-GFP fusion protein, which was found not to fluoresce, whereas the other (GII3-9a2) produced neither the fusion protein nor the wild-type spiralin. Both mutants displayed helical morphology and motility, similarly to the wild-type strain GII-3. Genomic DNA analyses revealed that GII3-9a5 was unstable and that GII3-9a2 was probably derived from GII3-9a5 by a double-crossover recombination between plasmid sequences integrated into the GII3-9a5 chromosome and free plasmid. When injected into the leafhopper vector Circulifer haematoceps, the spiralinless mutant GII3-9a2 multiplied to high titers in the insects (1.1 × 106 to 2.8 × 106 CFU/insect) but was transmitted to the host plant 100 times less efficiently than the wild-type strain. As a result, not all plants were infected, and symptom production in these plants was delayed for 2 to 4 weeks compared to that in the wild-type strain. In the infected plants however, the mutant multiplied to high titers (1.2 × 106 to 1.4 × 107 CFU/g of midribs) and produced the typical symptoms of the disease. These results indicate that spiralin is not essential for pathogenicity but is required for efficient transmission of S. citri by its insect vector.  相似文献   

6.
《Gene》1997,187(2):273-279
Electrophoretic separation of macrorestriction fragments containing a particular genomic interval has until recently depended on fortuitously placed native rare restriction sites. We present new IS10-based transposons carrying the yeast intron-encoded I-SceI restriction site which is absent from most prokaryotic and eukaryotic genomes. Construction of the plasmid vectors containing them is described. Analysis by conventional or Pulsed Field gel electrophoresis of the DNA fragments generated by the I-SceI digestion reveals the physical distance between genomic insertions of these transposons: use of the same approach to subdivide the chromosome of Escherichia coli K-12 into equivalently sized contiguous/nonoverlapping I-SceI fragments is demonstrated. Because coordinates for the loci delimited by their insertions can be readily determined in different isolates by either physical or genetic manipulations, these transposons allow sufficient flexibility for species-wide bacterial genomics.  相似文献   

7.
Spontaneous recombination between direct repeats at the adenine phosphoribosyltransferase (APRT) locus in ERCC1-deficient cells generates a high frequency of rearrangements that are dependent on the process of homologous recombination, suggesting that rearrangements are formed by misprocessing of recombination intermediates. Given the specificity of the structure-specific Ercc1/Xpf endonuclease, two potential recombination intermediates are substrates for misprocessing in ERCC1 cells: heteroduplex loops and heteroduplex intermediates with non-homologous 3′ tails. To investigate the roles of each, we constructed repeats that would yield no heteroduplex loops during spontaneous recombination or that would yield two non-homologous 3′ tails after treatment with the rare-cutting endonuclease I-SceI. Our results indicate that misprocessing of heteroduplex loops is not the major source of recombination-dependent rearrangements in ERCC1-deficient cells. Our results also suggest that the Ercc1/Xpf endonuclease is required for efficient removal of non-homologous 3′ tails, like its Rad1/Rad10 counterpart in yeast. Thus, it is likely that misprocessing of non-homologous 3′ tails is the primary source of recombination-dependent rearrangements in mammalian cells. We also find an unexpected effect of ERCC1 deficiency on I-SceI-stimulated rearrangements, which are not dependent on homologous recombination, suggesting that the ERCC1 gene product may play a role in generating the rearrangements that arise after I-SceI-induced double-strand breaks.  相似文献   

8.
We have demonstrated that targeted mutagenesis can be accomplished in maize plants by excision, activation, and subsequent elimination of an endonuclease in the progeny of genetic crosses. The yeast FLP/FRT site-specific recombination system was used to excise and transiently activate the previously integrated yeast I-SceI homing endonuclease in maize zygotes and/or developing embryos. An artificial I-SceI recognition sequence integrated into genomic DNA was analyzed for mutations to indicate the I-SceI endonuclease activity. Targeted mutagenesis of the I-SceI site occurred in about 1% of analyzed F1 plants. Short deletions centered on the I-SceI-produced double-strand break were the predominant genetic lesions observed in the F1 plants. The I-SceI expression cassette was not detected in the mutant F1 plants and their progeny. However, the original mutations were faithfully transmitted to the next generation indicating that the mutations occurred early during the F1 plant development. The procedure offers simultaneous production of double-strand breaks and delivery of DNA template combined with a large number of progeny plants for future gene targeting experiments.  相似文献   

9.
To study double-strand break (DSB)-induced mutations in mammalian chromosomes, we stably transfected thymidine kinase (tk)-deficient mouse fibroblasts with a DNA substrate containing a recognition site for yeast endonuclease I-SceI embedded within a functional tk gene. Cells were then electroporated with a plasmid expressing endonuclease I-SceI to induce a DSB, and clones that had lost tk function were selected. In a previous study of DSB-induced tk-deficient clones, we found that ~8% of recovered tk mutations involved the capture of one or more DNA fragments at the DSB site. Almost half of the DNA capture events involved the I-SceI expression plasmid, and several events involved retrotransposable elements. To learn whether only certain DNA sequences or motifs are efficiently captured, in the current work we electroporated an I-SceI expression plasmid along with HaeIII fragments of X174 genomic DNA. We report that 18 out of 132 tk-deficient clones recovered had captured DNA fragments, and 14 DNA capture events involved one or more fragments of X174 DNA. Microhomology existed at most junctions between X174 DNA and genomic sequences. Our work suggests that virtually any extrachromosomal DNA molecule may be recruited for the patching of DSBs in a mammalian genome.  相似文献   

10.
Actinomycetes are Gram-positive bacteria with a complex life cycle. They produce many pharmaceutically relevant secondary metabolites, including antibiotics and anticancer drugs. However, there is a limited number of biotechnological applications available as opposed to genetic model organisms like Bacillus subtilis or Escherichia coli. We report here a system for the functional expression of a synthetic gene encoding the I-SceI homing endonuclease in several streptomycetes. Using the synthetic sce(a) gene, we were able to create controlled genomic DNA double-strand breaks. A mutagenesis system, based on the homing endonuclease I-SceI, has been developed to construct targeted, non-polar, unmarked gene mutations in Streptomyces sp. Tü6071. In addition, we have shown that homologous recombination is a major pathway in streptomycetes to repair an I-SceI-generated DNA double-strand break. This novel I-SceI-based tool will be useful in fundamental studies on the repair mechanism of DNA double-strand breaks and for a variety of biotechnological applications.  相似文献   

11.
The notion that homologous recombination is a regulated biological process is not a familiar one. In yeasts, homologous recombination and most site-specific ones are initiated by site-specific double-stranded breaks that are introduced within cis-acting elements for the recombination. On the other hand, yeasts have a group of site-specific endonucleases (multi-site-specific endonucleases) that have a number of cleavage sites on each DNA. One of them, Endo.SceI of S. cerevisiae, was shown to introduce double-stranded breaks at a number of welldefined sites on the mitochondrial DNA in vivo. An Endo.SceI-induced double-stranded break was demonstrated to induce homologous recombination in mitochondria. Like the case of homologous recombination of nuclear chromosomes, the double-stranded break induces gene conversion of both genetic markers flanking and in the proximity of the cleavage site, and the cleaved DNA acts as a recipient of genetic information from the uncleaved partner DNA. The 70 kDa-heat-shock protein (HSP70)-subunit of Endo.SceI and a general role of the HSP70 in the regulation of protein-folding suggest the regulation of nucleolytic activity of Endo.SceI.  相似文献   

12.
Non-homologous end joining (NHEJ) and homologous recombination (HR) are two alternative/competitor pathways for the repair of DNA double-strand breaks (DSBs). To gain further insights into the regulation of DSB repair, we detail here the different HR pathways affected by (i) the inactivation of DNA-PK activity, by treatment with Wortmannin, and (ii) a mutation in the xrcc4 gene, involved in a late NHEJ step, using the XR-1 cell line. Here we have analyzed not only the impact of NHEJ inactivation on recombination induced by a single DSB targeted to the recombination substrate (using I-SceI endonuclease) but also on γ-ray- and UV-C-induced and spontaneous recombination and finally on Rad51 foci formation, i.e. on the assembly of the homologous recombination complex, at the molecular level. The results presented here show that in contrast to embryonic stem cells, the xrcc4 mutation strongly stimulates I-SceI-induced HR in adult hamster cells. More precisely, we show here that both single strand annealing and gene conversion are stimulated. In contrast, Wortmannin does not affect I-SceI-induced HR. In addition, γ-ray-induced recombination is stimulated by both xrcc4 mutation and Wortmannin treatment in an epistatic-like manner. In contrast, neither spontaneous nor UV-C-induced recombination was affected by xrcc4 mutation, showing that the channeling from NHEJ to HR is specific to DSBs. Finally, we show here that xrcc4 mutation or Wortmannin treatment results in a stimulation of Rad51 foci assembly, thus that a late NHEJ step is able to affect Rad51 recombination complex assembly. The present data suggest a model according to which NHEJ and HR do not simply compete for DSB repair but can act sequentially: a defect in a late NHEJ step is not a dead end and can make DSB available for subsequent Rad51 recombination complex assembly.  相似文献   

13.
Homologous recombination (HR) is essential for accurate genome duplication and maintenance of genome stability. In eukaryotes, chromosomal double strand breaks (DSBs) are central to HR during specialized developmental programs of meiosis and antigen receptor gene rearrangements, and form at unusual DNA structures and stalled replication forks. DSBs also result from exposure to ionizing radiation, reactive oxygen species, some anti-cancer agents, or inhibitors of topoisomerase II. Literature predicts that repair of such breaks normally will occur by non-homologous end-joining (in G1), intrachromosomal HR (all phases), or sister chromatid HR (in S/G2). However, no in vivo model is in place to directly determine the potential for DSB repair in somatic cells of mammals to occur by HR between repeated sequences on heterologs (i.e., interchromosomal HR). To test this, we developed a mouse model with three transgenes—two nonfunctional green fluorescent protein (GFP) transgenes each containing a recognition site for the I-SceI endonuclease, and a tetracycline-inducible I-SceI endonuclease transgene. If interchromosomal HR can be utilized for DSB repair in somatic cells, then I-SceI expression and induction of DSBs within the GFP reporters may result in a functional GFP+ gene. Strikingly, GFP+ recombinant cells were observed in multiple organs with highest numbers in thymus, kidney, and lung. Additionally, bone marrow cultures demonstrated interchromosomal HR within multiple hematopoietic subpopulations including multi-lineage colony forming unit–granulocyte-erythrocyte-monocyte-megakaryocte (CFU-GEMM) colonies. This is a direct demonstration that somatic cells in vivo search genome-wide for homologous sequences suitable for DSB repair, and this type of repair can occur within early developmental populations capable of multi-lineage differentiation.  相似文献   

14.
Ends-out gene targeting allows seamless replacement of endogenous genes with engineered DNA fragments by homologous recombination, thus creating designer “genes” in the endogenous locus. Conventional gene targeting in Drosophila involves targeting with the preintegrated donor DNA in the larval primordial germ cells. Here we report gene targeting during oogenesis with lethality inhibitor and CRISPR/Cas (Golic+), which improves on all major steps in such transgene-based gene targeting systems. First, donor DNA is integrated into precharacterized attP sites for efficient flip-out. Second, FLP, I-SceI, and Cas9 are specifically expressed in cystoblasts, which arise continuously from female germline stem cells, thereby providing a continual source of independent targeting events in each offspring. Third, a repressor-based lethality selection is implemented to facilitate screening for correct targeting events. Altogether, Golic+ realizes high-efficiency ends-out gene targeting in ovarian cystoblasts, which can be readily scaled up to achieve high-throughput genome editing.  相似文献   

15.
Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1α) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1α promoter from the TK gene, or deletion of either the EF1α promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.  相似文献   

16.
Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 × 10−6) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest.  相似文献   

17.
A system was previously developed for conducting I-SceI-mediated allelic exchange in Bacillus anthracis. In this system, recombinational loss of a chromosomally-integrated allelic exchange vector is stimulated by creation of a double-stranded break within the vector by the homing endonuclease I-SceI. Although this system is reasonably efficient and represents an improvement in the tools available for allelic exchange in B. anthracis, researchers are nonetheless required to “pick and patch” colonies in order to identify candidate "exchangeants." In the present study, a number of improvements have been made to this system: 1) an improved I-SceI-producing plasmid includes oriT so that both plasmids can now be introduced by conjugation, thus avoiding the need for preparing electro-competent cells of each integration intermediate; 2) antibiotic markers have been changed to allow the use of the system in select agent strains; and 3) both plasmids have been marked with fluorescent proteins, allowing the visualization of plasmid segregation on a plate and obviating the need for “picking and patching.” These modifications have made the process easier, faster, and more efficient, allowing for parallel construction of larger numbers of mutant strains. Using this improved system, the genes encoding the tripartite anthrax toxin were deleted singly and in combination from plasmid pXO1 of Sterne strain 34F2. In the course of this study, we determined that DNA transfer to B. anthracis could be accomplished by conjugation directly from a methylation-competent E. coli strain.  相似文献   

18.
This review provides an overview of new technologies for DNA manipulations in actinomycetes exploiting recombinogenic engineering (Flp-FRT, Cre-loxP, Dre-rox, Tn5, GusA and I-SceI systems). We will describe some new vectors recently developed for engineering of complex phenotypes in actinomycetes. Several site-specific recombinases, transposons, reporter genes and I-SceI endonuclease have been utilized for genome manipulation in actinomycetes. Novel molecular tools will help to overcome many technical difficulties and will encourage new efforts to address the function of actinomycete genes.  相似文献   

19.
The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.Spiroplasmas are arthropod-associated bacteria belonging to the class Mollicutes, a group of wall-less microorganisms phylogenetically related to low-G+C-content, Gram-positive bacteria (51). Spiroplasma citri is a helical plant-pathogenic mollicute responsible for the “stubborn” disease of citrus (39). It inhabits the phloem sap of infected plants to which it is transmitted by sap-sucking hemipteran insect in a circulative and propagative manner (31, 32). S. citri can infect a wide range of plant species, including crop and wild plants, as it is transmitted by polyphagous leafhoppers (13). Spiroplasmas are available in pure culture, and their study has therefore benefited from the use of molecular genetics. In particular, the relationships of spiroplasmas with their two hosts, the plant and the leafhopper vector, have been extensively studied (11, 22). In S. citri, the inactivation of genes and functional complementation of mutants have shown that (i) fructose consumption by the spiroplasma is a major cause for symptom production in plants, (ii) the solute binding protein of a putative ABC-type transporter is involved in the insect transmission process, and (iii) spiralin, the major membrane protein, is not essential for helicity, motility, and pathogenicity but is required for efficient transmission by the leafhopper vector (10, 19, 23, 24, 28). To characterize other spiroplasma genes potentially involved in insect transmission and pathogenicity, the genome of S. citri strain GII3-3X is currently being deciphered.The S. citri genome is characterized by an abundance of extrachromosomal elements, including seven plasmids, pSciA and pSci1 to pSci6, present as 10 to 14 copies per cell. These plasmids are vertically inherited, but some of them could also be horizontally transferred, as they encode proteins involved in partitioning and the cell-to-cell transfer of DNA molecules (12, 40). Plasmids pSci1 to pSci5 encode surface proteins of the S. citri adhesion-related protein (ScARP) family, and pSci6 was previously shown to confer insect transmissibility (9). Therefore, it is likely that the abundance and diversity of plasmids could provide S. citri strain GII3-3X with the ability to quickly adapt to various vector insects and, hence, to be transmitted to diverse host plants. However, chromosome-encoded determinants are also expected to play a role in spiroplasma biology. In S. citri, the chromosome sizes vary from 1.6 to 1.9 Mbp among strains (53, 54), and part of the size variation is thought to result from different amounts of prophage sequences (35). Many S. citri strains are infected by single-stranded DNA-containing filamentous phages (Plectrovirus), whose sequences also occur as partial or full-length prophages integrated into the spiroplasma chromosome (7, 35, 38). Here we report the partial chromosome sequence of S. citri strain GII3-3X and the functional assignment of the predicted coding sequences.  相似文献   

20.
Gene targeting in maize by somatic ectopic recombination   总被引:1,自引:0,他引:1  
Low transformation efficiency and high background of non‐targeted events are major constraints to gene targeting in plants. We demonstrate here applicability in maize of a system that reduces the constraint from transformation efficiency. The system requires regenerable transformants in which all of the following elements are stably integrated in the genome: (i) donor DNA with the gene of interest adjacent to sequence for repair of a defective selectable marker, (ii) sequence encoding a rare‐cutting endonuclease such as I‐SceI, (iii) a target locus (TL) comprising the defective selectable marker and I‐SceI cleavage site. Typically, this requires additional markers for the integration of the donor and target sequences, which may be assembled through cross‐pollination of separate transformants. Inducible expression of I‐SceI then cleaves the TL and facilitates homologous recombination, which is assayed by selection for the repaired marker. We used bar and gfp markers to identify assembled transformants, a dexamethasone‐inducible I‐SceI::GR protein, and selection for recombination events that restored an intact nptII. Applying this strategy to callus permitted the selection of recombination into the TL at a frequency of 0.085% per extracted immature embryo (29% of recombinants). Our results also indicate that excision of the donor locus (DL) through the use of flanking I‐SceI cleavage sites may be unnecessary, and a source of unwanted repair events at the DL. The system allows production, from each assembled transformant, of many cells that subsequently can be treated to induce gene targeting. This may facilitate gene targeting in plant species for which transformation efficiencies are otherwise limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号