首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a novel PCR-based assay for individual and simultaneous detection of three major pathogens (microsporidians, nucleopolyhedrovirus (NPV) and densovirus (DNV)) infecting the silkworm, Bombyx mori. Multiplex PCR, using three primer pairs, two of which were designed from the conserved regions of 16S small subunit ribosomal RNA gene of microsporidians, and polyhedrin gene of NPVs respectively, and a third primer pair designed from the internal sequences of B. mori DNVs (BmDNV), showed discrete and pathogen specific PCR products. The assay showed high specificity and sensitivity for the pathogenic DNA. Under optimized PCR conditions, the assay yielded a 794 bp DNA fragment from Nosema bombycis, 471 bp fragment from B. mori NPV (BmNPV) and 391 bp fragment from BmDNV. Further, this detection method was successfully applied to other silkworm species such as Antheraea mylitta and Samia cynthia ricini, in detecting same or similar pathogens infecting them. This method is a valuable supplement to the conventional microscopic diagnostic methods and can be used for the early detection of pathogens infecting silkworms. Furthermore it can assist research and extension centers for the safe supply of disease-free silkworms to farmers.  相似文献   

2.
3.
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55°C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 × 106 genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.  相似文献   

4.
The voltammetric assay of Helicobacter pylori DNA was investigated using a bismuth-immobilized carbon nanotube electrode (BCNE). The analytical cyclic voltammetry (CV) peak potential was obtained at a 0.4 V reduction scan, where the diagnostic optimum square-wave (SW) stripping working range was achieved at 0.72-7.92 μg/mL H. pylori DNA (11 points). A relative standard deviation of 1.68% (RSD, n = 5) was obtained with 3.2 mg/mL H. pylori DNA using a 240 s accumulation time. Under optimum conditions, detection limit was 0.06 μg/mL. The developed sensors can be used for clinical application in the 15th doubted human gastric tissues, since the patient's peak current increased a hundred times more than the negative healthy tissue did. The sensing time obtained was only two minutes, and the process was simpler compared to common PCR amplification and electrophoresis photometric detection systems.  相似文献   

5.
To clearly discriminate the results of simultaneous screening and quantification of up to 40 different targets–DNA sequences, long probes from 100 to 500 nt, rather than smaller or similar-sized synthetic ones, were adopted for multiplex ligation-dependent probe amplification (MLPA). To prepare the long probes, asymmetric polymerase chain reaction (PCR) was employed to introduce non-complementary stuffers in between the two parts of the MLPA probe with specially designed primers, then restriction enzymes were selected to digest the double-stranded DNAs, and finally polyacrylamide gel electrophoresis was used to purify the single-stranded DNAs (i.e., the long probes). By using this approach, 12 long probes were prepared and used to identify genetically modified (GM) maize. Our experimental results show that the prepared long probes were in full accordance with the designed ones and could be assembled in 4-, 7-, and 10-plex MLPA analysis without losing result specificity and accuracy, showing they were as effective and reliable in MLPA analysis as those prepared with M13-derived vectors. This novel asymmetric PCR-based approach does not need expensive equipment, special reagents, or complicated operations when compared with previous methods. Therefore, our new approach could make MLPA analysis more independent, efficient, and economical.  相似文献   

6.
Food products, such as milk and meat products including cheese, milk powder, fermented milk, sausage, etc. are susceptible to the contamination by pathogenic and deteriorative bacteria. These bacteria include Listeria monocytogens, Staphylococcus aureus, Enterobacter sakazakii, Escherichia coli O157:H7, Salmonella spp., Vibrio parahaemolyticus, Streptococcus agalactiae and Pseudomonas fluorescens, etc. Traditional methods for the detection of these microorganisms are laborious and time consuming. Therefore, rapid and accurate diagnostic methods are needed. In this study, we designed the DNA probes and PCR primers for the detection of aforementioned microorganisms. By using two sets of multiplex PCR, followed by a chromogenic macroarray system, these organisms in milk or other food products could be simultaneously detected. When the system was used for the inspection of milk or meat homogenate containing 10(0) target cells per milliliter or gram of the sample, all these bacterial species could be identified after an 8h pre-enrichment step. The system consisting of a multiplex PCR step followed by macroarray allowed us to detect multiple target bacterial species simultaneously without the use of agarose gel electrophoresis. Compared to the commonly used multiplex PCR method, this approach has the additional advantage of detecting more bacterial strains because some bacterial strains generate PCR products with the same molecular sizes which can be differentiated by macroarray but not by electrophoresis.  相似文献   

7.
We sequenced mitogenomes of five skippers (family Hesperiidae, Lepidoptera) to obtain further insight into the characteristics of butterfly mitogenomes and performed phylogenetic reconstruction using all available gene sequences (PCGs, rRNAs, and tRNAs) from 85 species (20 families in eight superfamilies). The general genomic features found in the butterflies also were found in the five skippers: a high A + T composition (79.3%–80.9%), dominant usage of TAA stop codon, similar skewness pattern in both strands, consistently length intergenic spacer sequence between tRNAGln and ND2 (64–87 bp), conserved ATACTAA motif between tRNASer (UCN) and ND1, and characteristic features of the A + T-rich region (the ATAGA motif, varying length of poly-T stretch, and poly-A stretch). The start codon for COI was CGA in four skippers as typical, but Lobocla bifasciatus evidently possessed canonical ATG as start codon. All species had the ancestral arrangement tRNAAsn/tRNASer (AGN), instead of the rearrangement tRNASer (AGN)/tRNAAsn, found in another skipper species (Erynnis). Phylogenetic analyses using all available genes (PCGs, rRNAS, and tRNAs) yielded the consensus superfamilial relationships ((((((Bombycoidea + Noctuoidea + Geometroidea) + Pyraloidea) + Papilionoidea) + Tortricoidea) + Yponomeutoidea) + Hepialoidea), confirming the validity of Macroheterocera (Bombycoidea, Noctuoidea, and Geometroidea in this study) and its sister relationship to Pyraloidea. Within Rhopalocera (butterflies and skippers) the familial relationships (Papilionidae + (Hesperiidae + (Pieridae + ((Lycaenidae + Riodinidae) + Nymphalidae)))) were strongly supported in all analyses (0.98–1 by BI and 96–100 by ML methods), rendering invalid the superfamily status for Hesperioidea. On the other hand, current mitogenome-based phylogeny did not find consistent superfamilial relationships among Noctuoidea, Geometroidea, and Bombycoidea and the familial relationships within Bombycoidea between analyses, requiring further taxon sampling in future studies.  相似文献   

8.
Human platelet 12-lipoxygenase (hp-12LOX, 662 residues + iron nonheme cofactor) and its major metabolite 12S-hydroxyeicosatetraenoic acid have been implicated in cardiovascular and renal diseases, many types of cancer and inflammatory responses. However, drug development is slow due to a lack of structural information. The major hurdle in obtaining a high-resolution X-ray structure is growing crystals, a process that requires the preparation of highly homogenous, reproducible and stable protein samples. To understand the properties of hp-12LOX, we have expressed and studied the behavior, function and low-resolution structure of the hp-12LOX His-tagged recombinant enzyme and its mutants in solution. We have found that it is a dimer easily converted into bigger aggregates, which are soluble/covalent-noncovalent/reversible. The heavier oligomers show a higher activity at pH 8, in contrast to dimers with lower activity showing two maxima at pH 7 and pH 8, indicating the existence of two different conformers. In the seven-point C → S mutant, aggregation is diminished, activity has one broad peak at pH 8 and there is no change in specificity. Truncation of the Nt-β-barrel domain (PLAT, residues 1-116) reduces activity to ∼ 20% of that shown by the whole enzyme, does not affect regio- or stereospecificity and lowers membrane binding by a factor of ∼ 2. “NoPLAT” mutants show strong aggregation into oligomers containing six or more catalytic domains regardless of the status of the seven cysteine residues tested. Time-of-flight mass spectrometry suggests two arachidonic acid molecules bound to one molecule of enzyme. Small angle X-ray scattering studies (16 Å resolution, χ∼ 1) suggest that two hp-12LOX monomers are joined by the catalytic domains, with the PLAT domains floating on the flexible linkers away from the main body of the dimer.  相似文献   

9.
The oligomerization of the plasma membrane calcium pump (PMCA) in phospholipid/detergent micelles was evaluated using a combined spectroscopic and kinetic approach and related to the enzyme stability. Energy transfer between fluorescein-5′-isothiocyanate and eosin-5′-isothiocyanate attached to different PMCA molecules was used to determine the dissociation constant of dimeric PMCA (140 ± 50 nM at 25°C) and characterize the time course of dimerization. The enzyme thermal stability at different dimer/monomer ratios was evaluated, quantifying the kinetic coefficient of thermal inactivation. This coefficient decreases with PMCA concentration, becoming approximately constant beyond 300 nM. Thermal treatment leads to the formation of inactive monomers that associate only with native monomers. These mixed dimers are formed with a kinetic coefficient that is half that determined for the native dimers. We proposed a model for PMCA thermal inactivation that considers the equilibria among dimers, monomers, and mixed dimers, and the inactivation of the last two species through irreversible steps. The numerical resolution of the differential equations describing this model fitted to the experimental data allowed the determination of the model coefficients. This analysis shows that thermal inactivation occurs through the denaturation of the monomer, which lifetime is 25 min at 44°C. The obtained results suggest that PMCA dimerization constitutes a mechanism of self protection against spontaneous denaturation.  相似文献   

10.
11.
Liu K  Luo HL  Yue DB  Ge SY  Yuan F  Yan LY  Jia HN 《Gene》2012,494(2):225-230
The α-tocopherol transfer protein (α-TTP) is a ~ 32 kDa protein that exhibits a marked ligand specificity and selectively recognizes of α-tocopherol, which is the most active form of vitamin E. The α-TTP gene has been cloned and its physiological functions have been studied in numbers of species, however, the understanding of sheep α-TTP is still in his infancy. In this study, the full-length cDNA of sheep α-TTP gene was cloned from sheep liver by using of rapid amplification of complementary DNA ends (RACE). As a result, the sheep α-TTP gene was 1098 bp in nucleotide which contained 23 bp 5'-untranslated region (UTR), 226 bp 3'-UTR and 849 bp open reading frame (ORF) that encoded a basic protein of 282 amino acids. Further bioinformatic analysis indicated that the sheep α-TTP gene had a high homologous of both nucleotide and amino acid sequences compared with that of other species and had a Sec14p-like lipid-binding domain which called the CRAL-TRIO domain. Moreover, the expression of sheep α-TTP mRNA and protein in response to different vitamin E supplemented levels were observed according to quantitative real-time PCR (qRT-PCR) and Western blotting analysis. The results showed that dietary vitamin E levels did not affect α-TTP mRNA expression significantly while the low vitamin E supplemented level groups of sheep had significantly higher α-TTP protein compared to high-vitamin E groups.  相似文献   

12.
To clarify the divergence of the growth hormone receptor (GHR) family, we characterized a novel GHR from a teleost fish (rainbow trout). A 2357-nt cDNA was isolated and found to contain a single initiation site 71 nt from the most 5′ end, an open reading frame of 1971 nt encoding a 657-amino acid protein, and a single polyadenylation site 229 nt from the poly-A tail. Based on structural analysis, the protein was identified as a type 1 GHR (GHR1). The new GHR1 shares 42% and 43% amino acid identity, respectively, with GHR2a and GHR2b, the two type 2 GHRs isolated from trout previously. GHR1 mRNA was found in a wide array of tissues with the highest expression in the liver, red muscle, and white muscle. Fasting animals for 4 weeks reduced steady state levels of GHR1 in the liver, adipose, and red muscle. These findings help clarify the divergence and nomenclature of GHRs and provide insight into the function of duplicated GHR types.  相似文献   

13.
Hideyuki Adachi  Isao Enami  Nobuo Kamiya 《BBA》2009,1787(2):121-128
Crystal structure of photosystem II (PSII) has been reported from prokaryotic cyanobacteria but not from any eukaryotes. In the present study, we improved the purification procedure of PSII dimers from an acidophilic, thermophilic red alga Cyanidium caldarium, and crystallized them in two forms under different crystallization conditions. One had a space group of P2221 with unit cell constants of a = 146.8 Å, b = 176.9 Å, and c = 353.7 Å, and the other one had a space group of P212121 with unit cell constants of a = 209.2 Å, b = 237.5 Å, and c = 299.8 Å. The unit cell constants of both crystals and the space group of the first-type crystals are different from those of cyanobacterial crystals, which may reflect the structural differences between the red algal and cyanobacterial PSII, as the former contains a fourth extrinsic protein of 20 kDa. X-ray diffraction data were collected and processed to a 3.8 Å resolution with the first type crystal. For the second type crystal, a post-crystallization treatment of dehydration was employed to improve the resolution, resulting in a diffraction data of 3.5 Å resolution. Analysis of this type of crystal revealed that there are 2 PSII dimers in each asymmetric unit, giving rise to 16 PSII monomers in each unit cell, which contrasts to 4 dimers per unit cell in cyanobacterial crystals. The molecular packing of PSII within the unit cell was constructed with the molecular replacement method and compared with that of the cyanobacterial crystals.  相似文献   

14.
15.
In this study, a novel single universal primer multiplex ligation-dependent probe amplification (SUP-MLPA) technique that uses only one universal primer to perform multiplex polymerase chain reaction (PCR) was developed. Two reversely complementary common sequences were designed on the 5′ or 3′ end of the ligation probes (LPs), which allowed the ligation products to be amplified through only a single universal primer (SUP). SUP-MLPA products were analyzed on sequencing gel electrophoresis with extraordinary resolution. This method avoided the high expenses associated with capillary electrophoresis, which was the commonly used detection instrument. In comparison with conventional multiplex PCR, which suffers from low sensitivity, nonspecificity, and amplification disparity, SUP-MLPA had higher specificity and sensitivity and a low detection limit of 0.1 ng for detecting single crop species when screening the presence of genetically modified crops. We also studied the effect of different lengths of stuffer sequences on the probes for the first time. Through comparing the results of quantitative PCR, the LPs with different stuffer sequences did not affect the ligation efficiency, which further increased the multiplicity of this assay. The improved SUP–MLPA and sequencing gel electrophoresis method will be useful for food and animal feed identification, bacterial detection, and verification of genetic modification status of crops.  相似文献   

16.
The 16S-23S rRNA spacer regions of Brucella abortus, B. melitensis, and B. suis were cloned and subcloned after PCR amplification. Sequence analysis of the inserts revealed a spacer of about 800 bp with very high ( > 99%) homology among the three species examined. Two genus-specific primer pairs, BRU-P5-BRU-P8 and BRU-P6-BRU-P7, that could be used in a nested PCR format and three genus-specific DNA probes, BRU-ICG2, BRU-ICG3, and BRU-ICG4, were deduced from this spacer. The specificity and sensitivity of both primer sets and probes were examined by testing them against a collection of 18 Brucella strains and 56 strains from other relevant taxa by using PCR and the Line Probe Assay (LiPA), respectively. A method for direct detection of Brucella spp. in 1 ml of raw milk was developed on the basis of enzymatic treatment of the milk components and subsequent PCR and LiPA hybridization. After a single PCR, sensitivities of 2.8 x 10(5) and 2.8 x 10(4) CFU/ml were obtained for detection by agarose gel electrophoresis and LiPA, respectively. Nested PCR yielded a sensitivity of 2.8 x 10(2) CFU/ml for both methods.  相似文献   

17.
Harmful Algal Blooms (HABs), mainly caused by dinoflagellates and diatoms, have great economic and sanitary implications. An important contribution for the comprehension of HAB phenomena and for the identification of risks related to toxic algal species is given by the monitoring programs. In the microscopy-based monitoring methods, harmful species are distinguished through their morphological characteristics. This can be time consuming and requires great taxonomic expertise due to the existence of morphologically close-related species. The high throughput, automation possibility and specificity of microarray-based detection assay, makes this technology very promising for qualitative detection of HAB species. In this study, an oligonucleotide microarray targeted to the ITS1-5.8S-ITS2 rDNA region of nine toxic dinoflagellate species/clades was designed and evaluated. Two probes (45-47 nucleotides in length) were designed for each species/clade to reduce the potential for false positives. The specificity and sensitivity of the probes were evaluated with ITS1-5.8S-ITS2 PCR amplicons obtained from 20 dinoflagellates cultured strains. Cross hybridization experiments confirmed the probe specificity; moreover, the assay showed a good sensitivity, allowing the detection of up to 2 ng of labeled PCR product. The applicability of the assay with field samples was demonstrated using net concentrated seawater samples, un-spiked or spiked with known amounts of cultured cells. Despite the general application of microarray technology for harmful algae detection is not new, a peculiar group of target species/clades has been included in this new-format assay. Moreover, novelties regarding mainly the probes and the target rDNA region have allowed sensitivity improvements in comparison to previously published studies.  相似文献   

18.
The complete mitochondrial genome (mitogenome) of Bombyx mori strain H9 (Lepidoptera: Bombycidae) is 15,670 base pairs (bp) in length, encoding 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. The nucleotide composition of the genome is highly A + T biased, accounting for 81.31%, with a slightly positive AT skewness (0.059). The arrangement of 13 PCGs is similar to that of other sequenced lepidopterans. All the PCGs are initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which is proposed by the TTAG sequence as observed in other lepidopterans. Unlike the other PCGs, the cox1 and cytochrome c oxidase subunit 2 (cox2) genes have incomplete stop codons consisting of just a T. All tRNAs have typical structures of insect mitochondrial tRNAs, which is different from other sequenced lepidopterans. The structure of A + T-rich region is similar to that of other sequenced lepidopterans, including non-repetitive sequences, the ATAGA binding domain, a 18 bp poly-T stretch and a poly-A element upstream of transfer RNA M (trnM) gene. Phylogenetic analysis shows that the domesticated silkmoth B. mori originated from the Chinese Bombyx mandarina.  相似文献   

19.
20.
Abstract The 16S-23S ribosomal RNA spacer regions of Acetobacter europaeus DSM 6160, A. xylinum NCIB 11664 and A. xyUnion CL27 were amplified by PCR. Specific PCR products were obtained from each strain and their nucleotide sequences determined. The spacer region of A. europaeus comprises 768 nucleotides (nt), that of A. xylinum 778 nt and that of A. xylinum CL27 759 nt. Genes encoding tRNAIle and tRNAAla were identified. Putative antitermination sequences were found between the tRNAAla sequence and the 5'-terminus of the 23S rRNA coding sequence. The boxA element has the nucleotide sequence TGCTCTTTGATA. Based on hybridization data of digested chromosomal DNA with spacer-specific probes, the copy number of the rrn operons on the chromosome of Acetobacter strains is estimated to be four.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号