首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial adhesion to surfaces and the subsequent biofilm formation may result in contamination in food industry and in healthcare-associated infections and may significantly affect postoperative care. Some plants produce substances with antioxidant and antimicrobial properties that are able to inhibit the growth of food-borne pathogens. The aim of our study was to evaluate antimicrobial and anti-biofilm effect of baicalein, resveratrol, and pterostilbene on Candida albicans, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. We determined the minimum inhibitory concentrations (MIC), the minimum adhesion inhibitory concentration (MAIC), and the minimum biofilm eradication concentration (MBEC) by crystal violet and XTT determination. Resveratrol and pterostilbene have been shown to inhibit the formation of biofilms as well as to disrupt preformed biofilms. Our results suggest that resveratrol and pterostilbene appear potentially very useful to control and inhibit biofilm contaminations by Candida albicans, Staphylococcus epidermidis, and Escherichia coli in the food industry.  相似文献   

2.
Abstract

This study evaluated adhesion and biofilm formation by Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis on surfaces of titanium (Ti) and titanium coated with F18 Bioactive Glass (BGF18). Biofilms were grown and the areas coated with biofilm were determined after 2, 4 and 8?h. Microscopy techniques were applied in order to visualize the structure of the mature biofilm and the extracellular matrix. On the BGF18 specimens, there was less biofilm formation by C. albicans and S. epidermidis after incubation for 8?h. For P. aeruginosa biofilm, a reduction was observed after incubation for 4?h, and it remained reduced after 8?h on BGF18 specimens. All biofilm matrices seemed to be thicker on BGF18 surface than on titanium surfaces. BGF18 showed significant anti-biofilm activity in comparison with Ti in the initial periods of biofilm formation; however, there was extensive biofilm after incubation for 48?h.  相似文献   

3.
This study quantifies the production of single and mixed biofilms of Candida albicans and Staphylococcus aureus to determine if such mixed biofilms have synergistic effects. Assays were performed using polystyrene microtitre plates of 96 wells, metabolic activity was measured by the enzymatic reduction of a tetrazolium salt (XTT) and colorimetric changes were measured at 490 nm. Confocal scanning laser microscopy was used to visualise the biofilms of each microorganism and its growth kinetics. The highest levels of biofilm formation were observed in mixed biofilms, followed by those of Candida albicans only, with the lowest levels of biofilm formation being detected for Staphylococcus aureus; all together these results suggest a synergistic relationship between the tested microorganisms.  相似文献   

4.
Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model.  相似文献   

5.
The compound 4-(Phenylsulfonyl) morpholine belongs to the class of sulfonamides, which are widely used in the treatment of a large number of diseases caused by microorganisms. This compound has a morpholine group, which is also known for its antimicrobial properties. The aim of the present study was to investigate the antimicrobial and modulating activity of 4-(Phenylsulfonyl) morpholine against standard and multi-resistant strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and strains of the fungi Candida albicans, C. tropicalis and C. krusei. Antimicrobial activity was assessed based on the minimum inhibitory concentration (MIC) using the microdilution method. MIC was ⩾1024 μg/mL for all microorganisms. Regarding modulating activity, the most representative effect occurred with the combination of 4-(Phenylsulfonyl) morpholine at a concentration of 128 μg/mL (MIC 1/8) and amikacin against P. aeruginosa 03, with a reduction in MIC from 312.5 to 39.06 μg/mL.  相似文献   

6.
The tetrazolium salt sodium 3′-{1-[(phenylamino)-carbonyl]-3,4-tetrazolium}-bis (4-methoxy-6-nitro)benzene-sulfonic acid hydrate (XTT) was examined for use as a colorimetric indicator of viability in respiring bacteria. XTT was reduced to an orange, water-soluble formazan product by Methylosinus trichosporium OB3b, Pseudomonas putida, Escherichia coli, and Bacillus subtilis. Formazan production was proportional to live cell biomass, and XTT was reduced by all cultures in the absence of added electron-coupling agents. XTT reduction by M. trichosporium OB3b was linear over several hours and was stimulated by the presence of an exogenous substrate (methanol). Addition of cyanide to cultures incubated under oxic conditions gave an initial 10-fold increase in XTT reduction. Viability of bacteria incubated in the absence of exogenous carbon substrates was measured as XTT reduction and compared with viability estimates from plate counts. Results obtained with the two methods were generally comparable, but the XTT assay was superior when cell recovery on plates was low. Incubation of E. coli for 7 days in the absence of exogenous carbon substrates decreased viability by 90%, whereas the corresponding decreases for cultures of M. trichosporium OB3b, P. putida, and B. subtilis were less than 40%.  相似文献   

7.
Streptococcus mutans (S. mutans) uses a quorum sensing (QS) signaling system, which is dependent on competence stimulating peptide (CSP), to regulate diverse physiological activities including bacteriocin production, genetic transformation, and biofilm formation. However, the mechanism of the QS system-induced biofilm formation remains unclear. Here, we demonstrated that the late-stage biofilm formation was increased by the addition of exogenous CSP in S. mutans. The numbers of dead cells in biofilms formed in presence of CSP was 64.5% higher than that without CSP after 12 h (p < 0.05) and 76.3% higher after 24 h (p < 0.05), the numbers of live cells in biofilms formed in presence of CSP were 89.3% higher than that without CSP after 24 h (p < 0.01). The expression of QS-associated genes was increased 3.4-5.3-fold by CSP in biofilms. Our results revealed that cell viability of S. mutans grown in biofilms is affected by the CSP-dependent QS system.  相似文献   

8.
A new generation of water soluble tetrazolium salts have recently become available and in this study we compared a colorimetric assay developed using one of these salts, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8), with a previously developed 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay to determine which agent is most suitable for use as a colorimetric indicator in susceptibility testing. The MICs of 6 antibiotics were determined for 33 staphylococci using both colorimetric assays and compared with those obtained using the British Society for Antimicrobial Chemotherapy reference broth microdilution method. Absolute categorical agreement between the reference and test methods ranged from 79% (cefuroxime) to 100% (vancomycin) for both assays. No minor or major errors occurred using either assay with very major errors ranging from zero (vancomycin) to seven (cefuroxime). Analysis of the distribution of differences in the log2 dilution MIC results revealed overall agreement, within the accuracy limits of the standard test (± 1 log2 dilution), using the XTT and WST-8 assays of 98% and 88%, respectively. Further studies on 31 ESBL-producing isolates were performed using the XTT method with absolute categorical agreement ranging from 87% (nitrofurantoin) to 100% (ofloxacin and meropenem). No errors were noted for either ofloxacin or meropenem with overall agreement of 91%. The data suggests that XTT is more reliable and accurate than WST-8 for use in a rapid antimicrobial susceptibility test.  相似文献   

9.

Background  

Fungal biofilms are more resistant to anti-fungal drugs than organisms in planktonic form. Traditionally, susceptibility of biofilms to anti-fungal agents has been measured using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide (XTT) assay, which measures the ability of metabolically active cells to convert tetrazolium dyes into colored formazan derivatives. However, this assay has limitations when applied to high C. albicans cell densities because substrate concentration and solubility are limiting factors in the reaction. Because mature biofilms are composed of high cell density populations we sought to develop a quantitative real-time RT-PCR assay (qRT-PCR) that could accurately assess mature biofilm changes in response to a wide variety of anti-fungal agents, including host immune cells.  相似文献   

10.
A series of substituted benzylsulfanyl-phenylamines was synthesized, of which four substituted benzylsulfanyl-phenylguanidines (665, 666, 667 and 684) showed potent fungicidal activity (minimal fungicidal concentration, MFC ? 10 μM for Candida albicans and Candida glabrata). A benzylsulfanyl-phenyl scaffold with an unsubstituted guanidine resulted in less active compounds (MFC = 50-100 μM), whereas substitution with an unsubstituted amine group resulted in compounds without fungicidal activity. Compounds 665, 666, 667 and 684 also showed activity against single C. albicans biofilms and biofilms consisting of C. albicans and Staphylococcus epidermidis (minimal concentration resulting in 50% eradication of the biofilm, BEC50 ? 121 μM for both biofilm setups). Compounds 665 and 666 combined potent fungicidal (MFC = 5 μM) and bactericidal activity (minimal bactericidal concentration, MBC for S. epidermidis ? 4 μM). In an in vivo Caenorhabditis elegans model, compounds 665 and 667 exhibited less toxicity than 666 and 684. Moreover, addition of those compounds to Candida-infected C. elegans cultures resulted in increased survival of Candida-infected worms, demonstrating their in vivo efficacy in a mini-host model.  相似文献   

11.
Aminotransferase enzymes catalyse the reversible substitution of a keto group for an amino group. While this reaction is highly stereoselective with respect to the amino group, each enzyme can usually catalyse the turnover of a number of different substrates. As the substrate range cannot be inferred from the sequence, it remains an early bottleneck when selecting an enzyme for a biocatalysis application. We have developed a simple first round characterisation method applicable to the broad range of aminotransferases that accept l-glutamate, the central junction of cellular transamination, as one of the amino donors. The assay is based on l-glutamate detection by its highly specific dehydrogenase enzyme in a coupled assay, ending in the reduction of the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-tetrazolium-5-carboxanilide (XTT). While products of most tetrazolium salts are water-insoluble, XTT is reduced to a water soluble colored formazan, allowing direct spectrophotometric detection. The reaction is carried out in microplate format using a single endpoint measurement and is thus suitable for automation.The setup was tested with 7 aminotransferase enzymes: Escherichia coli branched chain amino acid aminotransferase, Pseudomonas aeruginosa and Klebsiella pneumoniae aromatic amino acid AT, Bacillus subtilis histidinol-phosphate AT, and Thermus aquaticus aspartate, serine and histidinol-phosphate AT. In addition to 17 of the 20 proteinogenic amino acids, 32 alternative substrates were tested.  相似文献   

12.

Aims

The purpose of this work was to study the initial steps of formation of a biofilm using the BioFilm Ring Test® and the Crystal violet staining technique.

Methods and results

Eight strains of Pseudomonas aeruginosa were studied. The two methods revealed that four strains formed a rapid biofilm. The biofilm formed by these strains was detected after only 45 min with the BioFilm Ring Test® and after 6 h with the Crystal violet method. The enumeration of bacteria of the PA01 strain confirmed that, after 30 min, a significant amount of bacteria had attached on the bottom of the culture wells. After 48 h the Crystal violet method detected a biofilm with all strains. The four strains which rapidly formed a biofilm did not differ from the slow-forming strains by their mucoid character or their swarming motility or their synthesis of rhamnose. They showed higher swimming mobility.

Conclusions

Our results show that the BioFilm Ring Test® is a method specially suited for the study of the initial phase of the formation of a biofilm.

Significance and impact of study

The BioFilm Ring Test® is an easy and rapid alternative to the Crystal violet staining and the enumeration methods.  相似文献   

13.
A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z′ factors were > 0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli.  相似文献   

14.
Several molecules have been discovered that interfere with formation of bacterial biofilms, opening a new strategy for the development of more efficient treatments in case of antibiotic resistant bacteria. Amongst the most active compounds are some natural brominated furanones from marine algae Delisea pulchra that have proven to be able to control pathogenic biofilms. We have recently reported that some rubrolide analogues are able to inhibit biofilm formation of Enterococcus faecalis. In the present Letter we describe results of the biological evaluation of a small library of 28 compounds including brominated furanones and the corresponding lactams against biofilm formation of Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis and Streptococcus mutans. Our results showed that in general these compounds were more active against biofilms of S. epidermidis and P. aeruginosa, with little or no inhibition of planktonic bacterial growth. In some cases they were able to prevent biofilm formation of P. aeruginosa at concentrations as low as 0.6 μg/mL (1.3 μM, compound 3d) and 0.7 μg/mL (1.3 μM, 3f). Results also indicate that, in general, lactams are more active against biofilms than their precursors, thus designating this class of molecules as good candidates for the development of a new generation of antimicrobial drugs targeted to biofilm inhibition.  相似文献   

15.
In bacterial biofilms, high molecular weight, secreted exopolysaccharides can serve as a scaffold to which additional carbohydrates, proteins, lipids, and nucleic acids adhere, forming the matrix of the developing biofilm. Here we report methods to extract and purify high molecular weight (>15 kDa) exopolysaccharides from biofilms of eight human pathogens, including species of Staphylcococcus, Klebsiella, Acinetobacter, Pseudomonas, and a toxigenic strain of Escherichia coli O157:H7. Glycosyl composition analysis indicated a high total mannose content across all strains with P. aeruginosa and A. baumannii exopolysaccharides comprised of 80–90% mannose, K. pneumoniae and S. epidermidis strains containing 40–50% mannose, and E. coli with ∼10% mannose. Galactose and glucose were also present in all eight strains, usually as the second and third most abundant carbohydrates. N-acetyl-glucosamine and galacturonic acid were found in 6 of 8 strains, while arabinose, fucose, rhamnose, and xylose were found in 5 of 8 strains. For linkage analysis, 33 distinct residue-linkage combinations were detected with the most abundant being mannose-linked moieties, in line with the composition analysis. The exopolysaccharides of two P. aeruginosa strains analyzed were consistent with the Psl carbohydrate, but not Pel or alginate. The S. epidermidis strain had a composition rich in mannose and glucose, which is consistent with the previously described slime associated antigen (SAA) and the extracellular slime substance (ESS), respectively, but no polysaccharide intracellular adhesion (PIA) was detected. The high molecular weight exopolysaccharides from E. coli, K. pneumoniae, and A. baumannii appear to be novel, based on composition and/or ratio analysis of carbohydrates.  相似文献   

16.
The host specificity of the gram-negative exoparasitic predatory bacterium Micavibrio aeruginosavorus was examined. M. aeruginosavorus preyed on Pseudomonas aeruginosa, as previously reported, as well as Burkholderia cepacia, Klebsiella pneumoniae, and numerous clinical isolates of these species. In a static assay, a reduction in biofilm biomass was observed as early as 3 hours after exposure to M. aeruginosavorus, and an ~100-fold reduction in biofilm cell viability was detected following a 24-h exposure to the predator. We observed that an initial titer of Micavibrio as low as 10 PFU/well or a time of exposure to the predator as short as 30 min was sufficient to reduce a P. aeruginosa biofilm. The ability of Micavibrio to reduce an existing biofilm was confirmed by scanning electron microscopy. In static and flow cell experiments, M. aeruginosavorus was able to modify the overall P. aeruginosa biofilm structure and markedly decreased the viability of P. aeruginosa. The altered biofilm structure was likely caused by an increase in cell-cell interactions brought about by the presence of the predator or active predation. We also conducted a screen to identify genes important for P. aeruginosa-Micavibrio interaction, but no candidates were isolated among the ~10,000 mutants tested.  相似文献   

17.
Pseudomonas aeruginosa is a major pathogen causing chronic pulmonary infections; for example, 80% of cystic fibrosis patients get infected by this bacterium as the disease progresses. Such chronic infections are challenging because P. aeruginosa exhibits high-level tolerance to antibiotics by forming biofilms (multicellular structures attached to surfaces), by entering dormancy and forming antibiotic tolerant persister cells, and by conversion to the mucoid phenotype. Recently, we reported that a synthetic quorum sensing inhibitor, (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8), can sensitize both planktonic and biofilm-associated persister cells of P. aeruginosa PAO1 to antibiotics at the concentrations non-inhibitory to its growth. In this study, we further characterized the effects of this compound on the mucoid strain P. aeruginosa PDO300. BF8 was found to reduce persistence during the growth of PDO300 and effectively kill the persister cells isolated from PDO300 cultures. In addition to planktonic cells, BF8 was also found to inhibit biofilm formation of PDO300 and reduce associated persistence. These findings broaden the activities of this class of compounds and indicate that BF8 also has other targets in P. aeruginosa in addition to quorum sensing.  相似文献   

18.
苦参碱对表皮葡萄球菌生物被膜作用初探   总被引:2,自引:0,他引:2  
通过中药有效成分苦参碱对表皮葡萄球菌生物被膜抑制作用的研究,为表皮葡萄球菌生物被膜引起的相关感染提供新的治疗途径。利用XTT减低法评价苦参碱对表皮葡萄球菌初始粘附及生物被膜内细菌代谢的影响,镜下观察该药对表皮葡萄球菌生物被膜的形态学影响。结果表明:苦参碱对表皮葡萄球菌生物被膜菌的SMIC50和SMIC80分别为62.5 mg/L和500 mg/L;1 000 mg/L浓度的苦参碱对表皮葡萄球菌早期粘附有抑制作用;250 mg/L浓度的苦参碱对表皮葡萄球菌生物被膜的形态有显著影响。因此可见,苦参碱对表皮葡萄球菌生物被膜的形成与粘附均有抑制作用。  相似文献   

19.
We report herein the design and synthesis of novel 7-(3-alkoxyimino-5-amino/methylaminopiperidin-1-yl)fluoroquinolone derivatives based on the structures of new fluoroquinolones IMB and DZH. The antibacterial activity of these newly synthesized compounds was also evaluated and compared with gemifloxacin, ciprofloxacin, and levofloxacin. Results revealed that all of the target compounds 10-27 have good potency in inhibiting the growth of Staphylococcus aureus including MSSA (MIC: 0.125-8 μg/mL), Staphylococcus epidermidis including MRSE (MIC: 0.25-16 μg/mL), Streptococcus pneumoniae (MIC: 0.125-4 μg/mL), and Escherichia coli (MIC: 0.25-0.5 μg/mL). In particular, some compounds showed useful activity against several fluoroquinolone-resistant strains, and the most active compound 15 was found to be 16-128, 2-32, and 4-8-fold more potent than the three reference drugs against fluoroquinolone-resistant MSSA, MRSA, and MRSE.  相似文献   

20.
Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20–20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies <1,000 Hz. Biofilms vibrated without sub-MIC tobramycin showed a significantly reduced metabolism compared to untreated controls (p < 0.05). Biofilms treated with tobramycin and vibrated simultaneously (450, 530, 610, and 650 Hz), or vibrated (450 and 650 Hz) then treated with tobramycin subsequently, or vibrated (610Hz, 650Hz) after 3 h of tobramycin treatment showed significantly lower metabolism compared to P. aeruginosa biofilm treated with tobramycin alone (p < 0.05). CLSM imaging further confirmed these findings. Low frequency vibrations assisted tobramycin in killing P. aeruginosa biofilms at sub-MIC. Thus, sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.KEY WORDS: alginate, biofilm, Pseudomonas, tobramycin, vibration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号