首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Microbial oils are proposed as a suitable alternative to petroleum-based chemistry in terms of environmental preservation. These oils have traditionally been studied using sugar-based feedstock, which implies high costs, substrate limitation, and high contamination risks. In this sense, low-cost carbon sources such as volatile fatty acids (VFAs) are envisaged as promising building blocks for lipid biosynthesis to produce oil-based bioproducts. VFAs can be generated from a wide variety of organic wastes through anaerobic digestion and further converted into lipids by oleaginous yeasts (OYs) in a fermentation process. These microorganisms can accumulate in the form of lipid bodies, lipids of up to 60% wt/wt of their biomass. In this context, OY is a promising biotechnological tool for biofuel and bioproduct generation using low-cost VFA media as substrates. This review covers recent advances in microbial oil production from VFAs. Production of VFAs via anaerobic digestion processes and the involved metabolic pathways are reviewed. The main challenges as well as recent approaches for lipid overproduction are also discussed.  相似文献   

3.

Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.

  相似文献   

4.
SELCO-Ecopurin pig slurry treatment system   总被引:2,自引:0,他引:2  
As the practice of intensive animal production increases, there is a need for affordable treatment technologies that can help manage the large amounts of manure generated. Our approach has been to develop an efficient liquid-solid separation module using polymer technology and integrate this separation module into systems of treatment technologies for both the separated liquid and solids. We describe the progress that has been made in management techniques and new technological alternatives for manure treatment and generation of value added by-products based on the SELCO-Ecopurin separation technology and experiences during the last five years in 12 livestock farms in Spain, Italy and the USA. High recovery of solids (>90%) makes the use of advanced purification of the liquid a more economical alternative. The liquid can be further treated to reduce N and P and produce effluents virtually free of these nutrients. Production of methane and energy was affected by solids concentration; the anaerobic process was optimised with polymer application rate of 120 ppm during separation and a solids content of 13%.  相似文献   

5.
With renewed interest in microalgae due to their potential for biofuel and bioproducts production, efficient cultivation and harvesting mechanisms are needed to increase the economic competitiveness of microalgal products against traditional sources. With pore sizes ranging from microns to angstroms, membranes provide tailored functions for solid/liquid separation (cell retention, biomass concentration and dewatering), gas/liquid separation (gas delivery and removal), and solute/liquid separation (bioproduct recovery, feedstock preparation and effluent recycling) that are problematic or not possible with other technologies. Existing knowledge on membrane systems used in other disciplines, such as environmental engineering, marine science, and biomedicine, can be applied to algae production. Though membranes have great potential to facilitate cultivation and harvesting, challenges in energy reduction and fouling mitigation need to be overcome for long-term, cost-effective application.  相似文献   

6.
Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts. However, P. putida is not capable of metabolizing pentose sugars, which can constitute up to 25% of biomass hydrolysates. Related P. putida isolates that metabolize a larger fraction of biomass-derived carbon may be attractive as complementary hosts to P. putida KT2440. Here we describe genetic tool development for P. putida M2, a soil isolate that can metabolize pentose sugars. The functionality of five inducible promoter systems and 12 ribosome binding sites was assessed to regulate gene expression. The utility of these expression systems was confirmed by the production of indigoidine from C6 and C5 sugars. Chromosomal integration and expression of non-native genes was achieved by using chassis-independent recombinase-assisted genome engineering (CRAGE) for single-step gene integration of biosynthetic pathways directly into the genome of P. putida M2. These genetic tools provide a foundation to develop hosts complementary to P. putida KT2440 and expand the ability of this versatile microbial group to convert biomass to bioproducts.  相似文献   

7.
In this paper, the implications for process design for various classes of marine bioproducts are reviewed. The potential of a thermodynamic framework to structure and quantify downstream processing alternatives for a wide range of marine bioproducts is demonstrated and the application of the framework is illustrated for two process options.  相似文献   

8.
Management considerations for organic waste use in agriculture   总被引:8,自引:0,他引:8  
Organic wastes are utilized in agriculture mainly for improving the soil physical and chemical properties and for nutrient sources for growing crops. The major source of organic waste used in agriculture is animal manure, but small amounts of food processing and other industrial wastes (along with municipal wastes) are also applied to land. In the last 35 years, and especially in the last 10 years, there have been increasing environmental regulations affecting farms that have resulted in more animal manure treatment options, and thus affecting characteristics of residues that are subsequently applied to land. Farms are being assessed for nutrient balances, with the entire nutrient and manure management system evaluated for best management alternatives. Because of inadequate available land on the animal farm in some cases, organic wastes must be treated and/or transported to other farms, or utilized for horticultural or other uses. This paper discusses the various factors and challenges for utilizing organic wastes in agriculture.  相似文献   

9.
Nearly all agroindustrial wastes have appreciable sugar content including cashew apples (Anacardium occidentale, L.), which are an important sub-utilized biomass source in Northeastern Brazil. Adsorption in fixed bed, both in batch and continuous modes, is a low-cost separation technique, which has been widely used in the concentration, separation and purification of bioproducts, such as sugars. The present work is an experimental study aimed at measuring responses in fixed bed, needed for design purposes. Two commercial ion-exchange resins were studied: DOWEX Monosphere 99/Ca and DIAION UBK555. The adsorbents showed linear isotherms for both sugars with marked selectivity for fructose (2.2 for DOWEX and 1.5 for DIAION). A mathematical model was used to estimate kinetic parameters and predict breakthrough behaviour of binary solutions and complex feeds. The kinetics of mass transfer was well described by a linear driving force approximation (LDF) and estimated kinetic constants were around 1 min(-1). The results indicate that the use of independent experiments with synthetic monocomponent solutions leads to reliable parameters, and the model is capable to foresee reasonably well the breakthrough curve of the sugars present in the juice, under different purification conditions. The use of complex feeds led to overshoot behaviour, possibly due to the irreversible adsorption of oligosaccharides.  相似文献   

10.
The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed.  相似文献   

11.
Mexican distilleries produce near eight million liters of mezcal per year, and generate about 90 million liters of mezcal vinasses (MV). This acidic liquid waste is very aggressive to the environment because of its high content of toxic and recalcitrant organic matter. As a result, treatment is necessary before discharge to water bodies. It is interesting, yet disturbing; verify that there is a significant gap on the treatment of MV. However, there is an abundant body of research on treatment of other recalcitrant toxic effluents that bear some similarity to MV, for example, wine vinasse, vinasses from the sugar industry, olive oil, and industrial pulp and paper wastewaters. The objective of this review is to critically organize the treatment alternatives of MV, assess their relative advantages and disadvantages, and finally detect the trends for future research and development. Experience with treatment of this set of residuals, indicates the following trends: (i) anaerobic digestion, complemented by oxidative chemical treatments (e.g. ozonation) are usually placed as pretreatments, (ii) aerobic treatment alone and combined with ozone which have been directed to remove phenolic compounds and color have been successfully applied, (iii) physico-chemical treatments such as Fenton, electro-oxidation, oxidants and so on., which are now mostly at lab scale stage, have demonstrated a significant removal of recalcitrant organic compounds, (iv) fungal pretreatment with chemical treatment followed by oxidative (O(3)) or anaerobic digestion, this combination seems to give attractive results, (v) vinasses can be co-composted with solid organic wastes, particularly with those from agricultural activities and agro-industies; in addition to soil amenders with fertilizing value to improve soil quality in typical arid lands where agave is cultivated, it seems to be a low cost technology very well suited for rural regions in underdeveloped countries where more sophisticated technologies are difficult to adopt, due to high costs and requirements of skilled personnel.  相似文献   

12.
Whey, the liquid remaining after milk fat and casein have been separated from whole milk, is one of the major disposal problems of the dairy industry, and demands simple and economical solutions. In view of the fast developments in biotechnological techniques, alternatives of treating whey by transforming lactose present in it to value added products have been actively explored. Whey can be used directly as a substrate for the growth of different microorganisms to obtain various products such as ethanol, single-cell protein, enzymes, lactic acid, citric acid, biogas and so on. In this review, a comprehensive and illustrative survey is made to elaborate the various biotechnological innovations/techniques applied for the effective utilization of whey for the production of different bioproducts.  相似文献   

13.
在烟草生产及加工过程中,通常会产生大量的烟草废弃物,如何有效利用这些废弃物以避免环境污染和资源浪费,已成为烟草行业亟需解决的问解。研究发现,烟草废弃物堆肥化处理是规模化利用废弃资源的有效途径之一,对烟草农业的绿色、低碳、循环、可持续发展具有重要意义。从有机肥堆肥制备技术、肥效研究等方面进行了系统综述,从整体上展示了烟草废弃物堆肥技术的发展现状,以期为国内烟草废弃物源堆肥未来技术的研发及产业化提供一定的参考。通过分析发现,在堆肥制备技术方面,主要有微生物菌剂添加技术、共堆肥技术和烟草材料预处理技术3种,此外还衍生出液态有机肥和厌氧发酵联产有机肥技术;在堆肥肥效研究方面,烟草废弃物堆肥可明显改善土壤的物性参数、化学参数以及生物学参数,显著钝化土壤重金属元素,进而提高作物的产量或品质,其中堆肥与化学肥料配施的效果相对较好;堆肥的多功能化是未来堆肥创新利用的重要途径。  相似文献   

14.
Anaerobic digestion is a promising option for recycling agricultural by-products and some organic wastes. While both agricultural by-products and wastes have no direct commercial value, their management is both complicated and costly. One option to simplify by-product management and reduce the costs associated with biogas plant feedstock is to substitute dedicated crops with vegetal by-products. Given that the chemical composition of some of these by-products can differ considerably from more typical biogas plant feedstock (such as maize silage), more complete knowledge of these alternatives to produce environmentally friendly energy is warranted. To this end, batch trials under mesophilic conditions were conducted to evaluate the potential biogas yield of many agricultural by-products: maize stalks, rice chaff, wheat straw, kiwi fruit, onions, and two expired organic waste products (dairy and dry bread) from the retail mass-market. Among the considered biomasses, the highest methane producer was the expired dairy product mixture, which yielded 554 lNCH4 kg−1 volatile solids (VS). Maize stalks and wheat straw produced the lowest yields of 214 and 285 lNCH4 kg−1VS, respectively. An assessment of the biogas and methane yields of each biomass was also undertaken to account for the specific chemical composition of each biomass as it can affect the anaerobic digestion operating system. Finally, the total Italian green energy production that might be derived from feeding all these biomasses to a biogas digester was estimated, in order to understand its potential impact.  相似文献   

15.
Hydrogen is one of the most important energy alternatives to conventional fossil-based fuel. Solar energy based photocatalytic hydrogen evolution (PHE) is a salient approach to produce hydrogen fuel but its efficiency is generally limited by the sluggish and energy-unfavorable oxidation reaction. Meanwhile, waste treatment has become a worldwide problem and clean treatment is highly demanded to avoid the vast greenhouse emission currently. Inspiringly, PHE can be effectively coupled with the favorable photooxidation of many wastes, which kills two birds with one stone. In this review, the recent progress in PHE coupled with waste treatment is presented, where typical solid, liquid, and gas wastes have been briefly discussed. Focusing on the understanding of complicated reaction mechanism and the revelation of oxidation products, the cutting-edge techniques for photophysics and surface chemistry characterization have been analyzed, which are imperative to facilitate the following investigation. Finally, the developing trend and existing issues in current research are also discussed in detail so that a holistic blueprint of PHE coupled with waste treatment can be portrayed to accelerate their application in a realistic world.  相似文献   

16.
Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers.  相似文献   

17.
The slurry bioreactor system is an effective means for treating highly saline food wastes, which may not be recycled as composts. The effect of aeration rate was investigated in a slurry bioreactor as a major factor affecting the slurry-phase decomposition of food wastes. The aeration rate affected significantly the decomposition performance and the composition profiles of the liquid and solid phases. The decomposed carbon was almost linear with oxygen consumption, indicating that the slurry-phase decomposition of food wastes was limited by oxygen transfer. The oxygen requirement for decomposing 1 g organic carbon in food wastes was estimated to be 61.5 g O2. Journal of Industrial Microbiology & Biotechnology (2001) 27, 67–71. Received 20 September 2000/ Accepted in revised form 29 April 2001  相似文献   

18.
Biological cyanide destruction mediated by microorganisms   总被引:6,自引:0,他引:6  
Many microorganisms have an inherent capacity to degrade the toxic organic compounds that enter the environment as a result of pollution and natural activities. Significant degradation of these compounds may take many years and it is frequently necessary to consider methods that can accelerate this process. There have been several demonstrations of enhanced biological degradation of toxic wastes, both in the laboratory and under field conditions. The prospects for enhanced biological cyanide degradation are reviewed. Compared with bench-scale processes, there are very few reports of field-scale processes for cyanide bioremediation. The implementation of such field-scale degradation requires inputs from biology, hydrology, geology, chemistry and civil engineering. A conceptual framework is emerging that can be adapted to develop new processes for bioremediation of toxic organic wastes. In terms of cyanide biodegradation, this framework incorporates identification of microbes, determination of the optimal conditions for degradation, establishment of the metabolic pathways involved in cyanide degradation, identification and localization of the genes involved, identification of suitable microbial strains for practical application and development of practical engineering processes. The present review addresses the progress that has been made in each of these aspects of cyanide biodegradation. It also examines the existing field applications of biological cyanide degradation and makes recommendations for future research.Dr S.K. Dubey is and Dr D.S. Holmes was with the Department of Biology, Clarkson University, Potsdam, NY 13699, USA. Dr D.S. Holmes is now affiliated with Centro de Estudios Cientifigos de Santiago, Av. Presedente Errazuriz 3132, Casilla 16443, Santiago 9, Chile.  相似文献   

19.
Gene expression can be modulated by epigenetic mechanisms, including chromatin modifications and small regulatory RNAs. These pathways are unevenly distributed within a cell and usually take place in specific intracellular regions. Unfortunately, the fundamental driving force and biological relevance of such spatial differentiation is largely unknown. Liquid–liquid phase separation (LLPS) is a natural propensity of demixing liquid phases and has been recently suggested to mediate the formation of biomolecular condensates that are relevant to diverse cellular processes. LLPS provides a mechanistic explanation for the self-assembly of subcellular structures by which the efficiency and specificity of certain cellular reactions are achieved. In plants, LLPS has been observed for several key factors in the chromatin and small RNA pathways. For example, the formation of facultative and obligate heterochromatin involves the LLPS of multiple relevant factors. In addition, phase separation is observed in a set of proteins acting in microRNA biogenesis and the small interfering RNA pathway. In this Focused Review, we highlight and discuss the recent findings regarding phase separation in the epigenetic mechanisms of plants.  相似文献   

20.
反义肽及其在生化分离中的应用   总被引:1,自引:0,他引:1  
反义肽是由反义RNA编码和翻译的肽.它可与其正义肽分子发生专一性相互作用.近年反义肽的这种特异性结合实例研究,已为其在生化分离领域应用奠定了基础,尤其是在色谱亲和配基的选择方面,可以预见不久以反义肽为配基的亲和色谱将是生物工程产品分离的一种有效手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号