首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria that are able to utilize biphenyl as a sole source of carbon were extracted and isolated from polychlorinated biphenyl (PCB)-contaminated soil vegetated by horseradish. Isolates were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The usage of MALDI Biotyper for the classification of isolates was evaluated and compared to 16S rRNA gene sequence analysis. A wide spectrum of bacteria was isolated, with Arthrobacter, Serratia, Rhodococcus, and Rhizobium being predominant. Arthrobacter isolates also represented the most diverse group. The use of MALDI Biotyper in many cases permitted the identification at the level of species, which was not achieved by 16S rRNA gene sequence analyses. However, some isolates had to be identified by 16S rRNA gene analyses if MALDI Biotyper-based identification was at the level of probable or not reliable identification, usually due to a lack of reference spectra included in the database. Overall, this study shows the possibility of using MALDI-TOF MS and MALDI Biotyper for the fast and relatively nonlaborious identification/classification of soil isolates. At the same time, it demonstrates the dominant role of employing 16S rRNA gene analyses for the identification of recently isolated strains that can later fill the gaps in the protein-based identification databases.  相似文献   

2.
Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix‐assisted laser‐desorption‐ionization‐time‐of‐flight mass spectrometry MALDI‐TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF‐TOF instrument. MALDI‐TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI‐TOF MS fingerprinting is a rapid, reproducible, high‐throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents.  相似文献   

3.
A minisequencing method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was developed for rapid identification of single nucleotide polymorphisms at blaTEM gene codons 104, 164 and 238 associated with extended-spectrum activity on TEM-type beta-lactamases. The method was validated by testing the Escherichia coli and Klebsiella pneumoniae strains possessing the known blaTEM gene sequences.  相似文献   

4.

Worldwide emergence of Carbapenam resistance in Enterobacteriaceae (CRE) are increasing globally and becoming a severe public health issue. Infections caused by CRE have limited treatment options and have been associated with high mortality rates. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. An easy, rapid and accurate detection of 72 clinically CRE isolates using a MALDI–TOF MS was additionally developed. The CRE isolates belonging to 33 Carbapenam-resistant Klebsiella pneumoniae, 17 Carbapenam-resistant Escherichia coli, 16 Carbapenam-resistant Enterobacter cloacae and 6 Carbapenam-resistant Citrobacter freundii carrying blaNDM-1 were definitely discriminated from reference genotype strain by MALDI–TOF MS. This rapid, accurate, and reproducible peptide signature profiling technology could have new implications in laboratory-based high-throughput differentiation of extensive libraries of Carbapenam resistant Enterobacteriaceae. Antibacterial activity of 9 short novel peptides against these CRE isolates were investigated. Although neither synthetic peptides induced significant hemolysis, or showed cytotoxic on Vero cell, only BAMP-28 peptide inhibited growth of K. pneumoniae, E. coli, C. freundii and E. cloacae with MIC50 of 18–40, 20–40, 16–25 and 18–36 µM, respectively. In conclusion, MALDI–TOF MS can be used to screen for Carbapenam resistance in K. pneumoniae, E. coli, E. cloacae and C. freundii. Interestingly, BMAP-28 peptide had acceptable effect on Carbapenam resistant Enterobacteriaceae including K. pneumoniae, E. coli, C. freundii and E. Cloacae isolates with less toxicity.

  相似文献   

5.
The identification of proteins separated on two-dimensional gels is most commonly performed by trypsin digestion and subsequent matrix-assisted laser desorption ionization (MALDI) with time-of-flight (TOF). Recently, atmospheric pressure (AP) MALDI coupled to an ion trap (IT) has emerged as a convenient method to obtain tandem mass spectra (MS/MS) from samples on MALDI target plates. In the present work, we investigated the feasibility of using the two methodologies in line as a standard method for protein identification. In this setup, the high mass accuracy MALDI-TOF spectra are used to calibrate the peptide precursor masses in the lower mass accuracy AP-MALDI-IT MS/MS spectra. Several software tools were developed to automate the analysis process. Two sets of MALDI samples, consisting of 142 and 421 gel spots, respectively, were analyzed in a highly automated manner. In the first set, the protein identification rate increased from 61% for MALDI-TOF only to 85% for MALDI-TOF combined with AP-MALDI-IT. In the second data set the increase in protein identification rate was from 44% to 58%. AP-MALDI-IT MS/MS spectra were in general less effective than the MALDI-TOF spectra for protein identification, but the combination of the two methods clearly enhanced the confidence in protein identification.  相似文献   

6.
Streptococcus iniae causes severe mortalities among cultured marine species, especially in the olive flounder (Paralichthys olivaceus), which is economically important in Korea and Japan. Recently, there has been growing concern regarding the emergence of S. iniae as a zoonotic pathogen. Here, 89 S. iniae isolates obtained from diseased olive flounders collected from 2003 to 2008 in Jeju Island, South Korea, were characterized using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The results were aligned both with the available Bruker Daltonics data-base and with a new set of S. iniae data entries developed in our laboratory, and the results were compared. When we used the Bruker Daltonics database, the 89 isolates yielded either “no reliable identification” or were incorrectly identified as Streptococcus pyogenes at the genus level. When we used the new data entries from our laboratory, in contrast, all of the isolates were correctly identified as S. iniae at the genus (100%) and species (96.6%) levels. We performed proteomic analysis, divided the 89 isolates into cluster I (51.7%), cluster II (20.2%), and cluster III (28.1%), and then used the MALDI Biotyper software to identify specific mass peaks that enabled discrimination between clusters and between Streptococcus species. Our results suggest that the use of MALDI TOF MS could outperform the conventional methods, proving easier, faster, cheaper and more efficient in properly identifying S. iniae. This strategy could facilitate the epidemiological and taxonomical study of this important fish pathogen.  相似文献   

7.
Tryptic digestion of proteins continues to be a workhorse of proteomics. Traditional tryptic digestion requires several hours to generate an adequate protein digest. A number of enhanced accelerated digestion protocols have been developed in recent years. Nonetheless, a need still exists for new digestion strategies that meet the demands of proteomics for high-throughput and rapid detection and identification of proteins. We performed an evaluation of direct tryptic digestion of proteins on a MALDI target plate and the potential for integrating RP HPLC separation of protein with on-target tryptic digestion in order to achieve a rapid and effective identification of proteins in complex biological samples. To this end, we used a Tempo HPLC/MALDI target plate deposition hybrid instrument (ABI). The technique was evaluated using a number of soluble and membrane proteins and an MRC5 cell lysate. We demonstrated that direct deposition of proteins on a MALDI target plate after reverse-phase HPLC separation and subsequent tryptic digestion of the proteins on the target followed by MALDI TOF/TOF analysis provided substantial data (intact protein mass, peptide mass and peptide fragment mass) that allowed a rapid and unambiguous identification of proteins. The rapid protein separation and direct deposition of fractions on a MALDI target plate provided by the RP HPLC combined with off-line interfacing with the MALDI MS is a unique platform for rapid protein identification with improved sequence coverage. This simple and robust approach significantly reduces the sample handling and potential loss in large-scale proteomics experiments. This approach allows combination of peptide mass fingerprinting (PMF), MS/MS peptide fragment fingerprinting (PPF) and whole protein MS for both protein identification and structural analysis of proteins.  相似文献   

8.
Rapid, cost‐effective, efficient, and reliable helminth species identification is of considerable importance to understand host–parasite interactions, clinical disease, and drug resistance. Cyathostomins (Nematoda: Strongylidae) are considered to be the most important equine parasites, yet research on this group is hampered by the large number of 50 morphologically differentiated species, their occurrence in mixed infections with often more than 10 species and the difficulties associated with conventional identification methods. Here, MALDI‐TOF MS, previously successfully applied to identify numerous organisms, is evaluated and compared with conventional and molecular genetic approaches. A simple and robust protocol for protein extraction and subsequent DNA isolation allowing molecular confirmation of proteomic findings is developed, showing that MALDI‐TOF MS can discriminate adult stages of the two closely related cyathostomin species Cylicostephanus longibursatus and Cylicostephanus minutus. Intraspecific variability of proteomic profiles within morphospecies demonstrated an identification of morphospecies with an accuracy of close to 100%. In contrast, three genospecies within C. minutus and sex‐specific profiles within both morphospecies could not be reliably discriminated using MALDI‐TOF MS. In conclusion, MALDI‐TOF MS complemented by the molecular protocol is a reliable and efficient approach for cyathostomin species identification.  相似文献   

9.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has emerged as a promising tool to rapidly characterize Staphylococcus aureus. Different protocols have been employed, but effects of experimental factors, such as culture condition and sample preparation, on spectrum quality and reproducibility have not been rigorously examined. We applied MALDI‐TOF MS to characterize a model system consisting of five methicillin‐sensitive (MSSA) and five methicillin‐resistant S. aureus isolates (MRSA) under two culture conditions (agar and broth) and using two sample preparation methods [intact cell method and protein extraction method (PEM)]. The effects of these treatments on spectrum quality and reproducibility were quantified. PEM facilitated increases in the number of peaks and mass range width. Broth cultures further improved spectrum quality in terms of increasing the number of peaks. In addition, PEM increased reproducibility in samples prepared using identical culture conditions. MALDI imaging data suggested that the improvement in reproducibility may result from a more homogeneous distribution of sample associated with the broth/PEM treatment. Broth/PEM treatment also yielded the highest rate (96%) of correct classification for MRSA. Taken together, these results suggest that broth/PEM maximizes the performance of MALDI‐TOF MS to characterize S. aureus.

Significance and Impact of the Study

Two culture conditions (agar or broth) and two sample preparation methods (intact cell or protein extraction) were evaluated for their effects on profiling of Staphylococcus aureus using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). Results indicated that MALDI‐enabled profiling of S. aureus is most effective when cultures are grown in broth and processed using a protein extraction‐based approach. These findings should enhance future efforts to maximize the performance of this approach to characterize strains of S. aureus.  相似文献   

10.
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc.) However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70) and 95.5% of non-lactobacilli (21/22). Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification.  相似文献   

11.
A well-accepted method for identification of microorganisms uses matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) coupled to analysis software which identifies and classifies the organism according to its ribosomal protein spectral profile. The method, called MALDI biotyping, is widely used in clinical diagnostics and has partly replaced conventional microbiological techniques such as biochemical identification due to its shorter time to result (minutes for MALDI biotyping versus hours or days for classical phenotypic or genotypic identification). Besides its utility for identifying bacteria, MS-based identification has been shown to be applicable also to yeasts and molds. A limitation to this method, however, is that accurate identification is most reliably achieved on the species level on the basis of reference mass spectra, making further phylogenetic classification unreliable. Here, it is shown that combining tryptic digestion of the acid/organic solvent extracted (classical biotyping preparation) and resolubilized proteins, nano-liquid chromatography (nano-LC), and subsequent identification of the peptides by MALDI-tandem TOF (MALDI-TOF/TOF) mass spectrometry increases the discrimination power to the level of subspecies. As a proof of concept, using this targeted proteomics workflow, we have identified subspecies-specific biomarker peptides for three Salmonella subspecies, resulting in an extension of the mass range and type of proteins investigated compared to classical MALDI biotyping. This method therefore offers rapid and cost-effective identification and classification of microorganisms at a deeper taxonomic level.  相似文献   

12.
Sandflies (Diptera: Psychodidae) (Newstead, 1911) are blood‐feeding insects that transmit human pathogens including Leishmania (Trypanosomatida: Trypanosomatidae) parasites, causative agents of the leishmaniases. To elucidate Leishmania transmission cycles, conclusive identification of vector species is essential. Molecular approaches including matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) protein profiling have recently emerged to complement morphological identification. The aim of this study was to evaluate the effect of the trap type used to collect sandflies, specifically Centers for Disease Control (CDC) light or sticky traps, the two most commonly used in sandfly surveys, on subsequent MALDI‐TOF MS protein profiling. Specimens of five species (Phlebotomus ariasi, Phlebotomus papatasi, Phlebotomus perniciosus, Phlebotomus sergenti, Sergentomyia minuta) collected in periurban and agricultural habitats in southeast Spain were subjected to protein profiling. Acquired protein spectra were queried against an in‐house reference database and their quality assessed to evaluate the trap type effect. The results indicate that trap choice can substantially affect the quality of protein spectra in collected sandflies. Whereas specimens retrieved from light traps produced intense and reproducible spectra that allowed reliable species determination, profiles of specimens from sticky traps were compromised and often did not enable correct identification. Sticky traps should therefore not be used in surveys that deploy MALDI‐TOF MS protein profiling for species identification.  相似文献   

13.
The possible use of MALDI TOF MS for the analysis of Escherichia coli strains producing recombinant proteins was studied. It was shown that the target chimerical proteins might be rapidly detected in the strains.  相似文献   

14.
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases).  相似文献   

15.
Abstract

We compared the 2DE coupled to MALDI‐TOF‐MS and ESI‐MS/MS analysis (2DE‐MS) and the on‐line 2D nanoLC, followed by nanoESI‐MS/MS analysis (2DLC‐MS), for the separation and identification of proteins in high abundance protein‐depleted human plasma. Identification of proteins in the plasma by the two methods demonstrated that the majority of the identified protein set was unique to each method. Therefore, if a comprehensive coverage of the proteome identification is desired, it is ideal to apply both methods. The 2DE‐MS method is amenable to protein spot‐based quantitation, whereas the 2DLC‐MS method may provide an advantage of the high throughput application.  相似文献   

16.
A minisequencing method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was developed for rapid identification of single nucleotide polymorphisms at bla(TEM) gene codons 104, 164 and 238 associated with extended-spectrum activity on TEM-type beta-lactamases. The method was validated by testing the Escherichia coli and Klebsiella pneumoniae strains possessing the known bla(TEM) gene sequences.  相似文献   

17.
Identification of harmful algal bloom (HAB) causative agents makes use either of morphology-based techniques or genetic tools. These techniques are often time-consuming, labor intensive, and/or based on subjective judgment. Recently, matching with protein/peptide expression profiles (PEPs) obtained with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI–TOF–MS) has emerged as a new technique for species identification of various microorganisms. We were the first group to adopt this rapid and simple methodology for the identification of dinoflagellates (Lee et al., 2008). In the present study, we evaluated the use of PEPs from MALDI–TOF–MS for species identification of field samples obtained from a local red-tide caused by Karenia digitata. PEPs obtained from direct MALDI–TOF–MS analysis of field samples were compared to that of established monospecific reference culture. Several species-specific peaks of K. digitata were found in the reference monoculture and most of these observed peaks could be matched to the PEPs of the field samples. Matched species-specific peaks observed from the PEPs of field samples would allow rapid identification of the causative agents in corresponding and future HABs. Furthermore, as K. digitata is the most damaging dinoflagellate in Hong Kong's history, we were interested in obtaining its SSU, partial LSU rDNA and ITS sequences for future studies. In the present study, besides reporting on the ITS and rDNA sequences of K. digitata, phylogenetic tree analysis was also performed. The results showed that K. digitata fell within the Karlodinium clade and had a closer relationship with the Karlodinium species than the Karenia species.  相似文献   

18.
Listeria monocytogenes is a food-borne pathogen that is the causative agent of human listeriosis, an opportunistic infection that primarily infects pregnant women and immunologically compromised individuals. Rapid, accurate discrimination between Listeria strains is essential for appropriate therapeutic management and timely intervention for infection control. A rapid method involving matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) that shows promise for identification of Listeria species and typing and even allows for differentiation at the level of clonal lineages among pathogenic strains of L. monocytogenes is presented. A total of 146 strains of different Listeria species and serotypes as well as clinical isolates were analyzed. The method was compared with the pulsed-field gel electrophoresis analysis of 48 Listeria strains comprising L. monocytogenes strains isolated from food-borne epidemics and sporadic cases, isolates representing different serotypes, and a number of Listeria strains whose genomes have been completely sequenced. Following a short inactivation/extraction procedure, cell material from a bacterial colony was deposited on a sample target, dried, overlaid with a matrix necessary for the MALDI process, and analyzed by MALDI-TOF MS. This technique examines the chemistry of major proteins, yielding profile spectra consisting of a series of peaks, a characteristic “fingerprint” mainly derived from ribosomal proteins. Specimens can be prepared in a few minutes from plate or liquid cultures, and a spectrum can be obtained within 1 minute. Mass spectra derived from Listeria isolates showed characteristic peaks, conserved at both the species and lineage levels. MALDI-TOF MS fingerprinting may have potential for Listeria identification and subtyping and may improve infection control measures.  相似文献   

19.
Flea identification is a significant issue because some species are considered as important vectors of several human pathogens that have emerged or re‐emerged recently, such as Bartonella henselae (Rhizobiales: Bartonellaceae) and Rickettsia felis (Rickettsiales: Rickettsiaceae). Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has been evaluated in recent years for the identification of multicellular organisms, including arthropods. A preliminary study corroborated the usefulness of this technique for the rapid identification of fleas, creating a preliminary database containing the spectra of five species of flea. However, longterm flea preservation in ethanol did not appear to be an adequate method of storage in the context of specimen identification by MALDI‐TOF MS profiling. The goal of the present work was to assess the performance of MALDI‐TOF MS in the identification of seven flea species [Ctenocephalides felis (Siphonaptera: Pulicidae), Ctenocephalides canis, Pulex irritans (Siphonaptera: Pulicidae), Archaeopsylla erinacei (Siphonaptera: Pulicidae), Leptopsylla taschenbergi (Siphonaptera: Ceratophyllidae), Stenoponia tripectinata (Siphonaptera: Stenoponiidae) and Nosopsyllus fasciatus (Siphonaptera: Ceratophyllidae)] collected in the field and stored in ethanol for different periods of time. The results confirmed that MALDI‐TOF MS can be used for the identification of wild fleas stored in ethanol. Furthermore, this technique was able to discriminate not only different flea genera, but also the two congeneric species C. felis and C. canis.  相似文献   

20.
Campylobacter coli is an infrequently studied but important food-borne pathogen with a wide natural distribution. We investigated its molecular epidemiology by use of amplified fragment length polymorphism (AFLP)-based genotyping and Penner serotyping. Serotype reference strains and 177 Danish isolates of diverse origin identified by routine phenotyping as C. coli were examined. Molecular tools identified some 12% of field isolates as Campylobacter jejuni, emphasizing the need for improved identification methods in routine laboratories. Cluster analysis of AFLP profiles of 174 confirmed C. coli isolates revealed a difference in the distribution of isolates from pig and poultry (chicken, duck, turkey, and ostrich) species and indicated the various poultry species, but not pigs, to be likely sources of human C. coli infection. A poor correlation was observed between serotyping and AFLP profiling, suggesting that the former method has limited value in epidemiological studies of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号