首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constancy of Uptake During the Cell Cycle in Escherichia coli   总被引:14,自引:1,他引:13       下载免费PDF全文
Rates of uptake of several labeled compounds were measured during the cell cycle for three strains of Escherichia coli in balanced growth. Uptake rates were constant during more than the first two-thirds of the cycle, or reasonably so, for all of these compounds: glycine, leucine, glucose, acetate, phosphate, sulfate, and thymidine. When added de novo, uptake of glycine and leucine were not constant, but appeared to be proportional to mean cell volume. These results are in agreement with the finding that cell sizes increase linearly during most of the cell cycle for E. coli. They support the hypothesis, for cultures in balanced growth, that linear growth during the cell cycle is due to constant rates of uptake of all major growth factors. They also support the interpretation that uptake is limited by the presence of a constant number of functional binding or accumulation sites for these growth factors.  相似文献   

2.
Rates of uptake of serine and of adenine were measured as a function of cell size, and therefore age, in asynchronous, exponential phase cultures of diploid Saccharomyces cerevisiae strain Y55. In both cases, uptake rates were constant during the initial third of the cell cycle and doubled during the S period in the middle part of the cycle to a constant value during the final third. Cell size and age at mid-step doubling were indistinguishable for serine and adenine uptake, and occurred during the period of DNA synthesis. The results extend an earlier hypothesis of constancy of cell growth rates (mass accumulation rates) and rates of uptake of all or almost all compounds into cells in exponential phase growth to one of piecewise constancy, with an abrupt doubling of growth and uptake rates during DNA synthesis.  相似文献   

3.
The metabolic states and the uptake and metabolism of [1-13C]glucose, [2-13C]glycine, and [15N]glycine in intact Nicotiana tabacum L. (cv Xanthi) mesophyll protoplasts were measured by 13C and 15N nuclear magnetic resonance spectroscopy. Changes in the concentration of metabolites during the first two days of culture in darkness were followed. Protoplasts isolated in 0.55 molar mannitol medium showed a drop in the concentration of all the intracellular metabolites during the first 28 hours of culture. Uptake of glucose and synthesis of glucose-derived metabolites were observed, indicating activity of glycolysis and the tricarboxylic acid cycle. Addition of glycine caused the accumulation of serine in dark cultured protoplasts, via the photorespiratory pathway. Glutamate dehydrogenase and glutamine synthetase activities in photorespiratory NH4+ assimilation were observed. Glucose uptake and metabolism and cell division were inhibited by 3 millimolar glycine, suggesting that the accumulating serine or the release of ammonia during serine synthesis had toxic effects in this system.  相似文献   

4.
Sodium concentrations affect metabolite uptake and cellular metabolism   总被引:3,自引:0,他引:3  
Rates of uptake of glucose (measured with 3H-2-deoxy-d-glucose), galactose, and leucine after exposure of chick embryo cells to increasing concentrations of Na+ over the range 100 to 200 mM. Uptake of nucleosides was unaffected by [Na+] over this range. Prior exposure of cells was required for the [Na+] effect on uptake. Changes were measureable within two hours after changing [Na+], and although the capacity for deoxyglucose uptake remained constant thereafter, the capacity for leucine uptake continued to change during the next few hours. Inhibition of protein synthesis by cycloheximide, or of RNA synthesis by Actinomycin D, failed to prevent these uptake changes. Analysis of the kinetics of uptake showed that only the Km for uptake of deoxyglucose or leucine was affected by [Na+]; the maximum V for each compound remained the same. Effects of [Na+]; could be distinguished from the increased capacity for glucose uptake induced by glucose starvation. Incorporation of both radioactive uridine into RNA, and radioactive thymidine into DNA, were affected by [Na+[, but the differences were not correlated with uptake of other metoblites. No differences in countable mitoses were apparent, although the growth of chick embryo cells in increased slightly with increasing [Na+]. Changes in uptake due to differing [Na+] also were observed in mammalian (rat NRK) cells. However, no effects of [Na+] on rates of cell growth or saturation density were observed with these cells.  相似文献   

5.
Growth factors and cytokines initiate multiple signal transduction pathways that lead to cell survival, cell cycle progression or differentiation. A common feature of these pathways is increased cellular metabolism and glucose uptake. Furthermore, the energy requirements of many cancers and transformed cell lines are met by constitutive upregulation of glucose uptake. Relationships among transforming events, glucose uptake and cell cycle progression are not well understood. Here we investigated the regulation of glucose transport during the cell cycle of growth factor-dependent 32D cells, primary T-cells, src-transformed 32D cells and Jurkat cells. Cells were enriched in the G1, S and G2/M phases of the cell cycle, and glucose transporter expression and 2-deoxyglucose uptake were measured. Glucose transporter expression increased with cell volume as cells progressed through the cell cycle. Growth factor-dependent 32D cells and T-lymphocytes were characterised by increased 2-deoxyglucose uptake from G1 to S and reduced uptake at G2/M, with the highest specific activity of transporters in the S phase. In contrast, src-transformed 32D cells and Jurkat cells showed increased 2-deoxyglucose uptake from S to G2/M, with the highest glucose transporter specific activity in G2/M. Our results show that glucose transport is regulated in a cell cycle-dependent manner and suggest that this regulation may be altered in transformed cells.  相似文献   

6.
Summary Rates of oxygen uptake and the oxygen demand during growth of Candida tropicalis on hexadecane and glucose were determined in batch experiments. Oxygen demand was 2.5 fold higher for the synthesis of one unit of cell mass from hydrocarbon than from glucose. On the other hand specific respiration is of the same order of magnitude for both substrates, e.g. 12 mmoles O2xh-1xg-1 (dry weight) and seems to be a constant of this organism. Higher rates of oxygen supply into the medium had no effect on the specific rates of respiration. Specific growth rates on hexadecane were 2.4 times lower than on glucose. It is concluded, that rates of synthesis of cell components are controlled by the overall capacity of the respiratory pathways.  相似文献   

7.
Criteria are presented for distinguishing between synchronous and synchronized cultures (natural vs. forced synchrony) on the basis of characteristics of growth and division during a single generation. These criteria were applied in an examination of the uptake of potassium during the cell growth and division cycle in synchronous cultures and in a synchronized culture of Escherichia coli. In the synchronous cultures the uptake of 42K doubled synchronously with cell number, corresponding to a constant rate of uptake per cell throughout the cell cycle. In the synchronized culture, uptake rates also remained constant during most of the cycle, but rates doubled abruptly well within the cycle. This constancy of 42K uptake per cell supports an earlier interpretation for steady-state cultures that uptake is limited in each cell by a constant number of functional sites for binding, transport, or accumulation of compounds from the growth medium, and that the average number of such sites doubles late in each cell cycle. The abrupt doubling of the rate of uptake of potassium per cell in the synchronized culture appears because of partial uncoupling of cell division from activation or synthesis of these uptake sites.  相似文献   

8.
Uptake and Release of Glycine in the Guinea Pig Cochlear Nucleus   总被引:4,自引:2,他引:2  
This study attempts to determine if the cochlear nucleus (CN) contains glycinergic synaptic endings. The uptake and release of exogenous radiolabeled glycine were measured in vitro in the three major subdivisions of the guinea pig CN: anteroventral, posteroventral, and dorsal. A kinetic analysis of [3H]glycine uptake revealed the presence in each CN subdivision of a high- and a low-affinity uptake mechanism. The high-affinity mechanism had a Km of 25.2-30.5 microM and a Vmax of 3.8-4.8 nmol/10 mg of cell water/5 min, whereas the low-affinity mechanism had a Km of 633-718 microM and a Vmax of 26.6-37.1 nmol/10 mg of cell water/5 min. At steady state, the high-affinity mechanism accumulated 10 microM [3H]glycine from the medium, achieving tissue concentrations that were 13-24 times that in the medium. The high-affinity uptake was dependent on the temperature and on the concentrations of NaCl and glucose in the incubation medium. It exhibited a high degree of substrate specificity, as determined by the effects of structural analogues of glycine on the uptake of [3H]glycine. Each CN subdivision also contained two mechanisms mediating [14C]glycine release. One was activated by depolarizing electrical stimuli, produced a rapid transient release of [14C]glycine, and was dependent on the presence of extracellular Ca2+. The other was continuous, producing a slow spontaneous efflux of [14C]glycine. Released glycine could be removed primarily by uptake, because during release measurements, the amount of [14C]glycine detected in the medium decreased when glycine uptake activity was optimized. The electrically evoked, Ca2+-dependent release and the high-affinity uptake of glycine may mediate the synaptic release and inactivation of glycine, respectively. These findings, therefore, support the presence of glycinergic synaptic endings in each CN subdivision.  相似文献   

9.
Ten prepubertal boys performed 60-min cycle exercise at about 60% of their maximal oxygen uptake as previously measured. To measure packed cell volume, plasma glucose, free fatty acids (FFA), glycerol and catecholamines, blood samples were drawn at rest using a heparinized catheter and at the 15th, 30th and 60th min of the exercise and after 30 min of recovery. At rest, the blood glucose concentrations were at the lowest values for normal. Exercise induced a small decrease of blood glucose which was combined with an abrupt increase of the noradrenaline concentration during the first 15 min. The FFA and glycerol concentrations increased throughout the exercise linearly with that of adrenaline. Compared to adults, the FFA uptake expressed per minute and per litre of oxygen uptake was greater in children. These results suggested that it is difficult for children to maintain a constant blood glucose concentration and that prolonged exercise provided a real stimulus to hypoglycaemia. An immediate and large increase in noradrenaline concentration during exercise and a greater utilization of FFA was probably used by children to prevent hypoglycaemia.  相似文献   

10.
Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine, diaminopimelic acid, and glutamic acid. The ratio of these was relatively constant in the cell walls at each stage of growth. The teichoic acid is composed of glycerol, phosphate, glucose, and ester-linked alanine. With the exception of glucose and ester-linked alanine, the ratios of these components were relatively constant throughout the growth cycle. There was a slight increase in the glucose content of the teichoic acid as the cells aged. There was no correlation between the amount of ester-linked alanine and the stage of growth. The ratio of teichoic acid (based upon phosphate content) to peptidoglycan (based upon diaminopimelic acid content) remained at nearly a constant level throughout the growth cycle. The conclusion is presented that these two cell wall polymers are coordinately synthesized during spore outgrowth and throughout the vegetative growth cycle.  相似文献   

11.
Differences exist in the coupling of energy to transport of glycine and phenylalanine in aerobically grown cells of Escherichia coli. Energy derived from respiration, although involved in both uptake systems, is not employed identically as shown by kinetic effects of cyanide and anoxia and by temperature dependencies. Additional evidence for aerobic differences was provided by the effects of azide which greatly decreased initial rates of uptake of glycine but not phenylalanine. The effect on glycine uptake was not due to uncoupling of oxidative phosphorylation or to a decrease in respiration rate. Evidence for anaerobic differences was provided by the addition of either glucose or ferricyanide to cell suspensions containing glycerol, thereby maintaining anoxic uptake of phenylalanine, but not glycine, at the aerobic level. Ferricyanide stimulation required a functional Ca, Mg-adenosine 5'-triphosphatase and involved cell metabolism. Ferricyanide was also found to produce differential stimulation of other amino acid transport systems; tyrosine, tryptophan and leucine uptakes were stimulated whereas those for alanine, proline, threonine, and glutamine were relatively unaffected.  相似文献   

12.
The effects of temperature on rates of cellulose synthesis, respiration, and long-term glucose uptake were investigated using cultured cotton ovules (Gossypium hirsutum L. cv Acala SJ1). Ovules were cultured either at constant 34°C or under cycling temperatures (12 h at 34°C/12 h at 15-40°C). Rates of respiration and cellulose synthesis at various temperatures were determined on day 21 during the stage of secondary wall synthesis by feeding cultured ovules with [14C]glucose. Respiration increased between 18 and approximately 34°C, then remained constant up to 40°C. In contrast, the rate of cellulose synthesis increased above 18°C, reached a plateau between about 28 and 37°C, and then decreased at 40°C. Therefore, the optimum temperature for rapid and metabolically efficient cellulose synthesis in Acala SJ1 is near 28°C. In ovules cycled to 15°C, respiration recovered to the control rate immediately upon rewarming to 34°C, but the rate of cellulose synthesis did not fully recover for several hours. These data indicate that cellulose synthesis and respiration respond differently to cool temperatures. The long-term uptake of glucose, which is the carbon source in the culture medium, increased as the low temperature in the cycle increased between 15 and 28°C. However, glucose uptake did not increase in cultures grown constantly at 34°C compared to those cycled at 34/28°C. These observations are consistent with previous observations on the responses of fiber elongation and weight gain to cycling temperatures in vitro and in the field.  相似文献   

13.
1. Various ways of computing the proton stoichiometry of glycine absorption were examined in relation to the problem of distinguishing the proton flow (i) through the symport from the basal proton flow (ii) outside it. By depolarizing the plasma membrane, i will tend to inhibit ii. 2. A series of 23 yeast (Saccharomyces carlsbergensis) preparations grown with proline or glutamate were used, some of which were starved in the presence of glucose. Consequently, after ATP depletion, the rate of glycine uptake from a 0.2 mM solution varied through the series from 3 to 14 nmol.min-1.mg-1. Basal proton uptake in the absence of glycine was fairly constant at 3-4 nmol.min-1.mg-1. 3. After addition of glycine, the number of extra equivalents of protons entering the yeast with each amino acid equivalent in 30 s was 0.5 at the lowest rate of glycine absorption and 1.8 equivalents at the fastest rate. However, total proton absorption in 30 s increased in direct proportion to the amount of glycine absorbed. The proportionality factor, indicative of the carrier stoichiometry, was 2.25 +/- 0.13 (23) S.E.M. The effective basal proton uptake was negligibly small. 4. Progress of proton and glycine absorption by each yeast preparation in the period up to 180 s fitted the mathematical model described in the preceding paper by Eddy, Hopkins & Johnson [(1988) Biochem. J. 251, 111-114]. The analysis led to two estimates of the constant ratio of the inflow of protons to the inflow of glycine that would apply when the basal proton flow vanished. These further estimates of the carrier stoichiometry were also near 2, being 2.07 +/- 0.24 (6) and 2.22 +/- 0.07 (17).  相似文献   

14.
Linear Cell Growth in Escherichia coli   总被引:12,自引:0,他引:12       下载免费PDF全文
Growth was studied in synchronous cultures of Escherichia coli, using three strains and several rates of cell division. Synchrony was obtained by the Mitchison-Vincent technique. Controls gave no discernible perturbation in growth or rate of cell division. In all cases, mean cell volumes increased linearly (rather than exponentially) during the cycle except possibly for a small period near the end of the cycle. Linear volume growth occurred in synchronous cultures established from cells of different sizes, and also for the first volume doubling of cells prevented from division by a shift up to a more rapid growth rate. As a model for linear kinetics, it is suggested that linear growth represents constant uptake of all major nutrient factors during the cycle, and that constant uptake in turn is established by the presence of a constant number of functional binding or accumulation sites for each growth factor during linear growth of the cell.  相似文献   

15.
Hagfish feed by immersing themselves in the body cavities of decaying animals. This ensures a rich nutrient source for absorption via the gills, skin, and gut, but it may also subject hagfish to reduced levels of dissolved oxygen and elevated levels of the products of biological degradation. This study investigated the impacts of hypoxia and ammonia on the assimilation and metabolism of selected nutrients (glycine, l-alanine, and glucose) in Pacific hagfish (Eptatretus stoutii). Throughout exposure to hypoxia, plasma glucose levels increased. This was not accompanied by an increase in gut glucose transport, which suggests mobilization of glucose from body glycogen stores. Hypoxia preexposure enhanced glycine absorption across the gut and the gill, although l-alanine uptake was unchanged in these tissues. A 24-h period of exposure to hypoxia in hagfish concurrently exposed to waterborne radio-labeled glycine led to a large (5.7-fold) increase in brain glycine accumulation. Preexposure to high levels of waterborne ammonia (10 mM) for 24 h had no impact on gut or skin glycine uptake. These results indicate that hagfish are adapted to maintain nutrient assimilation despite environmental stressors and that tissue-specific absorption of key nutrients such as glycine can even be enhanced in order to sustain critical functions during hypoxia.  相似文献   

16.
A mouse-mouse hybridoma cell line (167.4G5.3) was cultivated in a 1.5-L stirred-tank bioreactor under constant pH and dissolved oxygen concentration. The transient kinetics of cell growth, metabolism, and antibody production were followed by biochemical and flow cytometric methods. The cell-specific kinetic parameters (growth and metabolic rates) as well as cell size were constant throughout the exponential phase. Intracellular protein and RNA content followed a similar trend. Cell growth stopped when the glutamine in the medium was depleted. Glucose could not substitute for glutamine, as glucose consumption ceased after glutamine depletion. Ammonia and lactate production followed closely glutamine and glucose consumption, respectively. Alanine, glutamate, serine, and glycine were produced but other amino acids were consumed. The cells are estimated to obtain about 45% of the total energy from glycolysis, with the balance of the metabolic energy provided by oxidative phosphorylation. The antibody was produced at a constant rate in both the exponential and decline phases of growth. The intracellular antibody content of the cells remained relatively constant during the exponential phase of growth and decreased slightly afterwards.  相似文献   

17.
Synchronous cultures obtained by isopycnic density gradient centrifugation are used to investigate amino acid metabolism during the cell division cycle of the food yeast Candida utilis. Isotopic labeling experiments demonstrate that the rates of uptake and catabolism of arginine, the sole source of nitrogen, double abruptly during the first half of the cycle, while the cells undergo bud expansion. This is accompanied by a doubling in rate of amino acid biosynthesis, and an accumulation of amino acids. The accumulation probably occurs within the storage pools of the vacuoles. Amino acids derived from protein degradation contribute little to this accumulation. For the remainder of the cell cycle, during cell separation and until the next bud initiation, the rates of uptake and catabolism of arginine and amino acid biosynthesis remain constant. Despite the abrupt doubling in the rate of formation of amino acid pools, their rate of utilization for macromolecular synthesis increases steadily throughout the cycle. The significance of this temporal organization of nitrogen source uptake and amino acid metabolism during the cell division cycle is discussed.  相似文献   

18.
J. McLaren  D. J. Barber 《Planta》1977,136(2):147-151
The uptake of leucine into isolated, intact, pea chloroplasts was investigated using the silicone oil centrifugation technique. The internal: external ratio of leucine exceeded unity at low external leucine concentrations. Uptake of leucine at different external concentrations showed passive diffusion and carrier-mediated transport components. Competition for uptake was shown between leucine and isoleucine but not between leucine and glycine. Rates of diffusion of leucine were found to be low compared with glycine, however, fast carrier-mediated transport of leucine assumed more importance at physiological concentrations.Abbreviations SIS Sucrose impermeable space - TWS Tritiated water space - SPS Sucrose permeable space - PGA 3-phosphoglyceric acid - TCA Trichloroacetic acid - TLC Thin layer chromatography  相似文献   

19.
The hepatic glucose cycle involves the production of plasma glucose from glucose 6-phosphate and the simultaneous conversion of glucose back to glucose 6-phosphate. We have evaluated the role of the glucose cycle in the regulation of plasma glucose concentration during exercise at 70% of maximal O2 uptake and during recovery in five normal volunteers. Total glucose flux was measured by use of [2-2H]glucose (Ra2), net glucose flux through the glucose cycle was determined with [6,6-2H2]glucose (Ra6), and the rate of glucose cycling was determined by Ra2 - Ra6. Gas chromatography-mass spectrometry was used for analysis of isotopic enrichment. At rest, 33% of total glucose flux was recycled. In exercise, total flux increased 300%, but so did glucose cycling, which means that there was no change in the percentage of flux recycled. In recovery, both total flux and the rate of recycling returned rapidly to the resting value. We therefore conclude that whereas total glucose production can respond extremely quickly to large changes in energy requirements caused by exercise, thereby enabling maintenance of a constant blood glucose concentration, glucose cycling does not have an important role in amplifying the control of net hepatic glucose flux through the glucose cycle.  相似文献   

20.
Tylosin-producing Streptomyces fradiae was cultured on a synthetic medium with a high glutamate-glucose ratio. Tylosin batch fermentations with this medium were characterized by a high initial specific production rate of tylosin (q(tylosin), mg/g h) that decreased as the fermentation progressed. Continuous feeding of glutamate, glucose, and methyloleate at a constant feed rate initiated during the period of high q(tylosin) had been shown to produce some increase in tylosin productivity. By using a cyclic feeding strategy, it was possible to increase tylosin productivity further. Tylosin fed-batch fermentations with glutamate and glucose being fed to the culture in cyclic square-wave profiles with methyloleate in excess showed several-fold increase in final q(tylosin) and tylosin titers. By varying cycle amplitudes and period of the substrates, it was found that maximum tylosin productivity occurred when the glutamate cycle amplitude was 600 mg/L and that of glucose was 42.5 mg/L per cycle period of 24 h. With these cycle amplitudes of glutamate and glucose, the tylosin cyclic fed-batch culture also showed high cellular uptake of methyloleate. Decreasing or increasing glucose cycle amplitude at fixed glutamate amplitude lowered tylosin production, and no further stimulation of tylosin synthesis was observed when alpha-ketoglutarate was supplemented to the cyclic substrate feeds. Under optimum cyclic conditions it was possible to maintain linear tylosin accretion and a constant value of q(tylosin) up to 240 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号