首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small unilamellar liposomes composed to dioleoylphosphatidylethanolamine (DOPE) and oleic acid (OA) are stabilized by incubation with normal human serum or plasma [Liu, D., & Huang, L. (1989) Biochemistry 28, 7700-7707]. The present report describes a systematic study of interactions of purified serum proteins and lipoproteins with these liposomes. Albumin destabilized liposomes by extracting OA from the liposomes, whereas immunoglobulins and lipoproteins (HDL, LDL, and VLDL) had no effect. However, HDL and, to some extent, VLDL showed a rapid stabilization activity against the lytic effect of albumin. HDL added together with or shortly after the addition of albumin completely abolished the liposome leakage and aggregation effects induced by albumin. SDS-PAGE analysis of the HDL-stabilized liposomes revealed that apolipoprotein A1 was associated with liposomes. Purified apolipoprotein A1, but not a lipid mixture resembling the lipid composition of HDL, showed comparable liposome stabilization activity as HDL. Furthermore, synthetic peptides resembling the amphipathic helices found in apolipoprotein A1 also showed strong liposome stabilization activity. Peptides which were able to form amphipathic helixes of a wedge shape were more effective stabilizers than those which could not. These data indicate that HDL plays a major role in human serum or plasma for the liposome stabilization activity. HDL exerts its activity probably by the interactions of the amphipathic helices of apolipoprotein A1 with the hydrophobic voids found on the outer surface of the highly curved, small liposomes.  相似文献   

2.
The titratable, double-chain amphiphiles 1,2-dipalmitoyl-sn-3-succinylglycerol (1,2-DPSG), 1,2-dioleoyl-sn-3-succinylglycerol (1,2-DOSG) and 1,3-dipalmitoylsuccinylglycerol (1,3-DPSG) have been used in combination with phosphatidylethanolamine (PE) to form pH-sensitive liposomes. The effect of the compounds on dielaidoyl PE bilayer stabilization was examined by differential scanning calorimetry. Only 1,2-DPSG showed bilayer stabilization activity; whereas the other two are destabilizers at pH 7.4. All three amphiphiles became strong destabilizers at pH 5.0. The ability of the amphiphiles to stabilize DOPE liposomes was examined by light scattering and calcein entrapment. In general, 1,2-DPSG is the most potent stabilizer of PE bilayers while 1,3-DPSG is the weakest liposome stabilizer. All three compounds can be combined with DOPE to generate liposomes which are stable at neutral and basic pH. At weakly acidic pH, the liposomes are leaky and exhibit extensive lipid mixing, with protons and calcium showing synergistic effects on lipid mixing. DOPE/1,2-DPSG liposomes are stable in human plasma and remain acid-sensitive even after prolonged plasma incubation. Immunoliposomes prepared from either DOPE/1,2-DPSG or DOPE/1,2-DOSG can deliver diphtheria toxin A fragment to the cytoplasm of cultured cells in a process which involves endocytosis of the liposomes. Immunoliposomes prepared with 1,2-DPSG are more effective drug carriers than those prepared with 1,2-DOSG. These results indicate that the bilayer- and, hence the liposome-stabilization activity of the diacylsuccinylglycerol depends on the structure of the compounds. The potential drug delivery activity of the pH-sensitive liposomes composed of these lipids is discussed.  相似文献   

3.
Abstract

Avoidance of lysosomal degradation of drugs entrapped in liposomes has been one of the major efforts in liposome research. The achievement of high drug deliver}' efficiency using pH-sensitive liposomes over the pH-insensitive liposomes has greatly influenced our strategies in liposome drug delivery. The success of pH-sensitive liposomes in delivering compounds such as fluorescence dye, anti-cancer reagents, toxins and DNA to target cells with high efficiency in vitro shows a great potential to apply the same strategy to in vivo systems. Using human plasma as a simplified model for blood, we have systematically examined the interaction of pH-sensitive liposomes composed of dioleoylphosphatidyl-ethanolamine (DOPE) and oleic acid (OA) with plasma components. Our results show that the bilayer structure of liposomes in plasma depends on their sizes. Small liposomes (d<200nm) were stabilized by plasma components while the larger ones (d>600nm) were rapidly lysed upon the exposure to plasma. Such differences in their stability in plasma may derive from their differences in lipid packing which determines the surface pressure of the membrane. Using purified serum proteins, we found that albumin such as bovine serum albumin (BSA) lyse liposomes by extracting OA from the bilayer. However, BSA induced lysis could be blocked by lipoproteins including HDL, LDL and VLDL, but not by immunoglobulins. Further studies with purified components of HDL demonstrated that apoAl, not the lipids of the HDL, contains the stabilization activity. The extraction of OA from liposomes and the insertion of plasma components into the bilayer modified the bilayer properties such that plasma stabilized liposomes were no longer pH sensitive. Using dipalmitoylsuccinylglycerol (DPSG), a double-chain pH senser for DOPE liposomes, we could preserve 50% pH sensitivity after plasma treatment. The potential application of such liposomes and other essential properties of pH-sensitive liposomes for drug delivery in vivo are also discussed.  相似文献   

4.
Antisense phosphodiester oligonucleotides (ODN) are unstable in biological fluids due to nuclease-mediated degradation and therefore cannot be used in most antisense therapeutic applications. We describe here an in vitro and in vivo stabilization of a 15 mer phosphodiester sequence using anionic liposomes. Two formulations have been studied: DOPC/OA/CHOL and DOPE/OA/CHOL (pH-sensitive liposomes). Our in vitro findings reveal the same stabilization effect in mouse plasma for both anionic liposomes. In vivo investigation showed a great protective effect for both formulations after intravenous administration to mice. By contrast with in vitro results, a higher protection of ODN was observed with DOPC/OA/CHOL liposomes compared to the DOPE/OA/CHOL formulation. The latter was degraded in blood (75% of the injected dose at 5 min) probably due to interactions with blood components, and the remaining (25% at 5 min) was distributed mostly to the liver and spleen. DOPC liposomes were remarkably stable in blood and were distributed more slowly to all studied organs (liver, spleen, kidneys and lungs). Intact ODN was still observed in some organs (liver, spleen, lungs), but not in blood, 24 hours after DOPC liposome administration. These results suggest that this antisense strategy using carrier systems may be applicable to the treatment of diseases involving the reticuloendothelial system.  相似文献   

5.
Abstract

We have prepared liposomes of dioleoylphosphatidylethanolamine (DOPE) which have been stabilized by addition of 9-12 mol% N-biotinyl- phosphatidylethanolamine. Liposomes composed of DOPE/N-biotinyl-PE are quite stable and non-leaky although they exhibit strong temperature-dependent leakage following incorporation of palmitylated murine monoclonal antibodies as a targeting ligand. Addition of magnetic chromium dioxide particles coated with anti-mouse antibody to these immunoliposomes lead to their aggregation and the release of entrapped calcein. The lytic event was biphasic with an initial rapid release of 20% dye within 5 min. followed by a slower rate which reached nearly 40% release after 80 min. The rapid release phase was dependent upon the concentration of the liposomes and that of the multivalent particles. Lysis was immunospecific since no release was observed upon addition of nonspecific immunomagnetic particles to the immunoliposomes or if no antibody was incorporated into the liposome. Lysis could also be blocked by the addition of free murine antibody to the solution. The ability of these liposomes to release their contents in response to binding a multivalent antigen validates their potential for therapeutic or diagnostic applications.  相似文献   

6.
We have examined the ability of biotinylated phosphatidylethanolamine and similar lipids to stabilize the bilayer phase of polymorphic dioleoylphosphatidylethanolamine (DOPE). Sonicated lipid mixtures were characterized in terms of their aggregation state, size and ability to encapsulate and retain the fluorescent dye, calcein. Titration of DOPE with N-biotinyl-PE indicated that stable liposomes could be produced by sonication of DOPE based dispersions containing N-biotinyl-PE at concentrations greater than 8 mol%. These liposomes were relatively small, could efficiently encapsulate calcein, and showed minimal leakage upon prolonged storage at 4 degrees C. Maleimido-4-(p-phenylbutyrate)-PE (MPB-PE) was equally effective at stabilizing the bilayer phase of DOPE whereas N-dinitrophenyl-PE and N-(dinitrophenyl-caproyl)-PE were relatively poor stabilizers, requiring at least 15 mol% for stabilization at pH 7.4. Differential scanning calorimetry of dielaidoylphosphatidylethanolamine (DEPE)/N-biotinyl-PE mixtures indicated that stabilizer concentrations as low as 2 mol% could abolish the L alpha/HII phase transition of DEPE.  相似文献   

7.
Efflux of contents from small unilamellar vesicles of various compositions, containing a highly quenched fluorescent compound (calcein, 175 mM) was determined as a function of temperature in the presence and absence of human serum. Efflux of calcein from the liposomes was monitored as an increase in fluorescence as calcein became dequenched upon release from the liposomes. The presence of serum significantly increased liposome leakage in all cases. Incorporation of increasing molar ratios of cholesterol into liposomes reduced leakage of calcein from liposomes incubated with buffer and with serum. Leakage was significantly faster from liposomes with an osmotic gradient across the membrane (higher inside) than from equiosmolar liposomes. The leakage of [14C]sucrose from egg lecithin liposomes at 37°C was also dramatically increased in the presence of serum.  相似文献   

8.
Dioleoylphosphatidylethanolamine (DOPE)-containing liposomes that demonstrated pH-dependent release of their contents were stabilized in the bilayer form through the addition of a cleavable lipid derivative of polyethylene glycol (PEG) in which the PEG was attached to a lipid anchor via a disulfide linkage (mPEG-S-S-DSPE). Liposomes stabilized with either a non-cleavable PEG (mPEG-DSPE) or mPEG-S-S-DSPE retained an encapsulated dye at pH 5.5, but treatment at pH 5.5 of liposomes stabilized with mPEG-S-S-DSPE with either dithiothreitol or cell-free extracts caused contents release due to cleavage of the PEG chains and concomitant destabilization of the DOPE liposomes. While formulations loaded with doxorubicin (DXR) were stable in culture media, DXR was rapidly released in human plasma. pH-Sensitive liposomes, targeted to the CD19 epitope on B-lymphoma cells, showed enhanced DXR delivery into the nuclei of the target cells and increased cytotoxicity compared to non-pH-sensitive liposomes. Pharmacokinetic studies suggested that mPEG-S-S-DSPE was rapidly cleaved in circulation. In a murine model of B-cell lymphoma, the therapeutic efficacy of an anti-CD19-targeted pH-sensitive formulation was superior to that of a stable long-circulating formulation of targeted liposomes despite the more rapid drug release and clearance of the pH-sensitive formulation. These results suggest that targeted pH-sensitive formulations of drugs may be able to increase the therapeutic efficacy of entrapped drugs.  相似文献   

9.
In many applications, an ability of liposomes to retain drug and then rapidly release it at some later time would be of benefit. In this work, we investigate the ability of cationic large unilamellar vesicles (LUV) to promote rapid release of doxorubicin from anionic LUV. It is shown that the addition of cationic liposomes containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC) and the cationic lipid N,N-dioleyl-N,N-dimethylammonium chloride (DODAC) to doxorubicin-containing LUV composed of cholesterol, DOPE, DSPC and the anionic lipid dioleoyphosphatidylglycerol (DOPG) can result in release of more than 90% of the drug in times of 30 s or less. Further, it is shown that these release characteristics are exquisitely dependent on the presence of DOPE and cholesterol. In the absence of DOPE, much slower release rates are observed, with maximum release levels of 50% after a 2-h incubation at 20 degrees C. Remarkably, threshold levels of more than 10 mol% cholesterol are required before any appreciable release is observed. [31P]NMR spectroscopy and freeze-fracture electron microscopy studies reveal that systems giving rise to rapid release of doxorubicin exhibit limited formation of inverted hexagonal (H(II)) phase, suggesting that these lipids facilitate drug release by formation of local regions of non-bilayer structure. It is concluded that drug release triggered by mixing anionic and cationic liposomes could be of utility in drug delivery applications.  相似文献   

10.
We describe the synthesis and characterization of a pH-sensitive poly(ethylene glycol)-diortho ester-distearoyl glycerol conjugate (POD). POD was prepared by a one-step synthesis, and its acid sensitivity characterized by TLC. The conjugate was found to be stable at neutral pH for greater than 3 h but degraded completely within 1 h at pH 5. Liposomes composed of 10% of POD and 90% of a fusogenic lipid, dioleoyl phosphatidylethanolamine (DOPE) were readily prepared and remained stable for up to 12 h in neutral buffer as shown by photon correlation spectrometry and a liposome contents leakage assay. However, when POD/DOPE liposomes were incubated in acidic pH as mild as 5.5, they aggregated and released most of their contents within 30 min. The kinetics of content release from POD/DOPE liposomes consisted of two phases, a lag phase, and a burst phase. The lag phase is inversely correlated with pH and the logarithm of the length of lag phase showed a linear relationship with the buffer pH. When the POD/DOPE liposomes were incubated in 75% of fetal bovine serum at 37 degrees C, they remained as stable as traditional PEG-grafted liposomes for 12 h but released 84% of the encapsulated ANTS in the following 4 h. Upon intravenous administration into mice, liposomes composed of 10% POD and 90% DOPE were cleared from circulation by a one-compartment kinetics with a half-life of about 200 min. POD is an example for the design of a novel category of pH sensitive lipids composed of a headgroup, an acid-labile diortho ester linker and a hydrophobic tail. The uniquely fast degradation kinetics of POD at pH 5-6 and its ability to stabilize liposomes in serum make the conjugate suitable for applications for triggered drug release systems targeted to mildly acidic bio-environments such as endosomes, solid tumors, and inflammatory tissues.  相似文献   

11.
In many applications, an ability of liposomes to retain drug and then rapidly release it at some later time would be of benefit. In this work, we investigate the ability of cationic large unilamellar vesicles (LUV) to promote rapid release of doxorubicin from anionic LUV. It is shown that the addition of cationic liposomes containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC) and the cationic lipid N,N-dioleyl-N,N-dimethylammonium chloride (DODAC) to doxorubicin-containing LUV composed of cholesterol, DOPE, DSPC and the anionic lipid dioleoyphosphatidylglycerol (DOPG) can result in release of more than 90% of the drug in times of 30 s or less. Further, it is shown that these release characteristics are exquisitely dependent on the presence of DOPE and cholesterol. In the absence of DOPE, much slower release rates are observed, with maximum release levels of 50% after a 2-h incubation at 20 °C. Remarkably, threshold levels of more than 10 mol% cholesterol are required before any appreciable release is observed. [31P]NMR spectroscopy and freeze-fracture electron microscopy studies reveal that systems giving rise to rapid release of doxorubicin exhibit limited formation of inverted hexagonal (HII) phase, suggesting that these lipids facilitate drug release by formation of local regions of non-bilayer structure. It is concluded that drug release triggered by mixing anionic and cationic liposomes could be of utility in drug delivery applications.  相似文献   

12.
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (Z(HER2:342)-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as "Affisomes" were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80-100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41 degrees C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16-20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4-12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were approximately 70% at a protein-lipid ratio of 20 microg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, lambdaex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90-100%) at 41 degrees C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm approximately 0 degrees C) under similar conditions released only 5-10% calcein at 41 degrees C. Affisomes, when stored at room temperature, retained > 90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.  相似文献   

13.
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (ZHER2:342-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as “Affisomes” were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80–100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41°C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16–20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4–12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were?~70% at a protein-lipid ratio of 20 μg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, λex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90–100%) at 41°C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm?~0°C) under similar conditions released only 5–10% calcein at 41°C. Affisomes, when stored at room temperature, retained?>?90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.  相似文献   

14.
A caged, photocleavable derivative of dioleoylphosphatidylethanolamine (DOPE) called NVOC-DOPE was prepared by reaction of DOPE with 6-nitroveratryloxycarbonyl chloride. In contrast to egg phosphatidylethanolamine (EPE), NVOC-DOPE or its 1:1 mixture with EPE forms liposomes at both pH 7.4 and 5.0. Photolysis (lambda > 300 nm) of aqueous liposomal dispersions of NVOC-DOPE at pH 9.0, 7.4, or 5.0 results in complete conversion to DOPE and subsequent release of entrapped calcein dye. The temporal and spatial control associated with the photorelease technique suggests that NVOC-DOPE can be used to study a range of important dynamic membrane processes such as membrane fusion and the action of membrane-associated enzymes.  相似文献   

15.
By combining dioleoylphosphatidylethanolamine (DOPE) with oleic acid (OA), palmitoylhomocysteine (PHC) or dipalmitoylsuccinylglycerol (DPSG) we have prepared pH-sensitive liposomes with different acid sensitivities. DOPE/OA liposomes are the most acid sensitive, while DOPE/DPSG liposomes are the least acid sensitive. Incubation of DOPE/OA liposomes with mouse L929 cells reduces the pH-sensitivity of these liposomes by altering the lipid composition. Using diphtheria toxin fragment A as a marker for cytoplasmic delivery, we find that the delivery kinetics of pH-sensitive immunoliposomes closely correlates with the modified acid sensitivities of the liposomes. Immunoliposomes encounter pH 6-6.2 with a t1/2 of 5-15 min after internalization. By contrast, acidification of the endosomes to pH 5.0 takes longer (t1/2 approximately 25 min). We also used a whole cell null point technique (Yamishiro and Maxfield (1987) J. Cell Biol. 105, 2713-2721) to directly determine the average pH encountered by the endocytosed immunoliposomes. We find that acidification determined by the null point method proceeds less rapidly than that estimated from DTA delivery data. This is likely due to the fact that the measured DTA delivery is done by those liposomes which first arrive at the endosomes with sufficient acidity. Our data suggests that DOPE/PHC immunoliposomes deliver at the early endosome while DOPE/DPSG immunoliposomes deliver at the late endosomes. The DOPE/OA immunoliposomes, with the altered composition and acid sensitivity, deliver with a kinetics intermediate between the other two immunoliposomes. Thus, pH-sensitive liposomes represent useful probes for studying the kinetics of endosome acidification.  相似文献   

16.
Dioleoyl phosphatidylethanolamine (DOPE) does not form stable bilayer liposomes at room temperature and neutral pH. However, stable unilamellar liposomes could be prepared by mixing DOPE with a minimum of 12% of a haptenated lipid, N-(dinitrophenylaminocaproyl)-phosphatidylethanolamine (DNP-cap-PE). When the liposomes bound to rabbit anti-DNP IgG that had been adsorbed on a glass surface, lysis of the liposome occurred with the release of the contents into the medium as judged by the fluorescence enhancement of an entrapped self-quenching dye, calcein. On the other hand, incubation of the same liposomes with glass surfaces coated with normal rabbit IgG had little effect. In addition, free anti-DNP IgG induced aggregation of the liposomes but did not cause any dye release. Liposomes composed of dioleoyl phosphatidylcholine (DOPC) and DNP-cap-PE did not lyse when added to the glass surfaces coated with either anti-DNP IgG or normal IgG. A likely mechanism for liposome lysis is that the DNP-cap-PE laterally diffuse to the contact area between the liposome and the glass. Binding of the haptenated lipid with the immobilized and multivalent antibody trap the haptenated lipids in the contact area. As a result of lateral phase separation, lipids may undergo the bilayer to hexagonal phase transition, leading to the leakage of the entrapped dye. Because both the free hapten and the free antibody inhibited the liposome leakage, this process could be used to assay for the free hapten or antibody. We have shown that inhibition assays performed by using this principle can easily detect 10 pmol of free DNP-glycine in 40 microliter. Furthermore, by substituting human glycophorin A, a transmembrane glycoprotein, for the lipid hapten, we have demonstrated that this assay system is also applicable to detect protein antigen with a sensitivity of sub-nanogram level.  相似文献   

17.
Liposomes, capable of temperature-triggered content release at the site of interest, can be of great importance for imaging and therapy of tumors. The delivery of imaging agents or therapeutics can be improved by application of liposomes with a gel-to-liquid phase-transition temperature suitable for mild hyperthermia (41-43 °C), and by prolonging their circulation time by incorporation of lipids containing polyethyleneglycol moieties. Still, the rapid wash out of the delivered material from the tumor tissue is a major obstacle for both imaging and therapy. In this study, we developed an optimized temperature sensitive liposomal system to be used with mild hyperthermia: highly stable at physiological temperature and with a sharp transition of the bilayer at 41.5 °C, with subsequent rapid release of entrapped compounds such as calcein or tumor cell-targeting contrast agents. Intravital microscopy on calcein/rhodamine containing liposomes was applied to demonstrate the applicability of this system in vivo. The calcein loaded liposomes were injected iv into nude mice with a human BLM melanoma tumor implanted in a dorsal skin-fold window chamber. Arrival of the liposomes at the tumor site and content release after temperature increase were monitored. The results demonstrated not only accumulation of the liposomes at the tumor site, but also a massive release of calcein after increase of the temperature to 41 °C. The versatility of the thermosensitive liposomes was further demonstrated by encapsulation of a tumor cell-targeting DOTA-phenylboronate conjugate and its release at elevated temperatures. The DOTA ligand in this system is able to chelate a variety of metals suitable for both diagnostic and therapeutic applications, whereas the phenylboronate function is able to target specifically to tumor cells through a covalent binding with sialic acid moieties over-expressed on their surface upon heat-triggered release from the liposomal carrier.  相似文献   

18.
Protons and divalent cations show synergistic effects on the destabilization of liposomes composed of unsaturated phosphatidylethanolamine and oleic acid (Düzgünes et al., Biochemistry (1985) 24, 3091). We have extended these observations and investigated the effects of Ca2+ and Mg2+ on the proton-induced destabilization of dioleoyl phosphatidylethanolamine/oleic acid (DOPE/OA) (4:1 molar ratio) liposomes. Temperature-induced aggregation was measured by 90 degrees light scattering. Lipid mixing was used to monitor vesicle destabilization and freeze-fracture electron microscopy was used to examine the structures formed from DOPE/OA vesicles in the presence of Ca2+ and/or protons. Both Mg2+ and Ca2+ shift the pH required for 50% lipid mixing to higher values. Temperature-induced vesicle aggregation occurs at lower temperatures in the presence of divalent cations and/or protons, indicating that intervesicular repulsions are decreased. Freeze-fracture electron micrographs show that the structures formed from DOPE/OA in the presence of Ca2+ differ significantly from those found in the presence of protons. In general, protons induce the formation of hexagonal phase, while the presence of Ca2+ leads to the formation of extensive regions of lamellar sheets with numerous lipidic particles. The synergistic effect of divalent cations and proton may be important for the maximal biological activity of DOPE/OA liposomes.  相似文献   

19.
The cytoplasmic delivery of drugs encapsulated into pH-sensitive liposomes is under the control of a lamellar-to-hexagonal transition. In a previous study, under anhydrous conditions, oligonucleotides (ODN) encapsulated in pH-sensitive liposomes composed of dioleoylphosphatidylethanolamine (DOPE)/oleic acid (OA)/cholesterol (CHOL) were shown to modify the phase behaviour of DOPE. In the present study, the lipid/ODN interactions were evaluated in fully hydrated samples by surface tension measurements, differential scanning calorimetry, X-ray diffraction and turbidimetry. Concerning the lipids, it was shown that OA provoked a disorganisation of DOPE lamellar phases and led to the complete disappearance of hexagonal transition along with heating. The addition of CHOL further decreased the lipid packing in the bilayers. Concerning ODN, these molecules provoked an increase in the surface pressure of a DOPE/OA/CHOL monolayer, indicating the existence of molecular interactions with the lipids. At a supramolecular level, ODN induced a more ordered organisation of DOPE molecules in the lamellar and hexagonal phases, and completely abolished the disorganisational effect of OA and CHOL.  相似文献   

20.
The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG???? was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG???? was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG???? or sterol-PEG???? into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG???? in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号