首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies with purified mesophyll and epidermal protoplasts and bundle sheath strands have shown that the cyanogenic glucoside dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside) is localized in the epidermis of sorghum leaves whereas the enzymes involved in its degradation (dhurrin beta-glucosidase and hydroxynitrile lyase) are localized in the mesophyll tissue (Kojima M, JE Poulton, SS Thayer, EE Conn 1979 Plant Physiol 63: 1022-1028). The subcellular localization of these enzymes has now been examined using linear 30 to 55% (w/w) sucrose gradients by fractionation of mesophyll protoplast components. The hydroxynitrile lyase is found in the supernatant fractions suggesting a cytoplasmic (soluble cytoplasm, microsomal or vacuolar location). The dhurrin beta-glucosidase (dhurrinase) is particulate and mostly chloroplast-associated. The dhurrinase activity peak has a shoulder of activity more dense than that of the intact chloroplasts. This shoulder does not coincide with markers of any other cell fraction.In studies of chloroplasts isolated from ruptured mesophyll protoplasts by differential, low-speed centrifugation, the dhurrinase partitions in the same manner as the chloroplast marker triose phosphate dehydrogenase. Chloroplast localization of the beta-glucosidase has also been shown in histochemical studies using 6-bromo-2-naphthyl-beta-d-glucoside substrate coupled with fast Blue B.  相似文献   

2.
beta-Glucosidases have been isolated from Alocasia macrorrhiza plants. The enzymes are highly specific for the hydrolysis of the cyanogenic glucoside triglochinin endogenous to this plant. Upon chromatography of protein extracts on cation exchange resins and Sephadex G-200, separation into various enzymatically active bands was observed. The main fractions possess molecular weights of approximately 310000 and 105 000, as shown by preparative ultracentrifugation in a linear saccharose gradient. The beta-glucosidases are composed of subunits (molecular weight 55 000 to 60 000), as revealed by sodium dodecylsulfate gel electrophoresis. The result of alkaline disc electrophoresis and isoelectric focusing in polyacrylamide gel suggest that the beta-glucosidase fraction with molecular weight 105 000 is a dissociation product of the 310 000 molecular-weight species. The isoelectric points of the various beta-glocusidase bands, obtained by isoelectric focusing, vary between pH 4.5 and 5.0. The beta-glucosidases show a pronounced specificity for triglochinin. The Km for this substrate (3 times 10(-5) M) is 50 to 100-fold lower than for all other substrates hydrolyzed. Of the other cyanogenic glycosides, only those with an aromatic aglycone, (S)-configuration at the asymmetric carbon atom of the aglycone and glucose as sugar moiety were hydrolyzed to a measurable extent. The pH optimum of the enzyme reaction is 5.5, the temperature optimum around 50 degrees C. Cu2 ions and glucono-1,5-lactone inhibit beta-glucosidase activity approximately 50% at a concentration of 5 times 10(-4) M, while Hg2,Ag and p-chloromercuribenzoate show the same percent inhibition at 5 times 10(-7) M. Lipophilic solvents (ethanol, ethylene glycol monomethylether) activate the beta-glucosidase activity, preferentially by influencing the V values of the enzymes.  相似文献   

3.
Two cyanogenic beta-glucosidases, linustatinase and linamarase, were isolated and purified from flax seeds (Linum ussitatissimum). They catalyze the sequential hydrolysis of linustatin and neolinustatin to yield acetone and methylethyl ketone cyanohydrins, respectively. The purification procedure for linustatinase involved acetone extraction, precipitation by polyethyleneimine and ammonium sulfate (40-80% saturation), and Red A gel, concanavalin A-Sepharose, and PBE 94 column chromatography; that for linamarase was similar except that polyethyleneimine precipitation was eliminated and DE-52 and Sepharose CL-6B replaced Red A gel column chromatography. The native substrates neolinustatin and linamarin were used for the assay during purification. Both proteins were purified to electrophoretic homogeneity. Linustatinase is an alpha beta dimer (molecular weights of alpha and beta = 39,000 and 19,000, respectively) while linamarase appears to be an alpha 5 beta 5 decamer (molecular weights of alpha and beta = 62,500 and 65,000, respectively). Both enzymes contain mannose or glucose. Linustatinase exists in five different isozymic forms (isoelectric points between 7 and 8) whereas linamarase occurs in one major form (isoelectric point 4 to 5). The kinetic parameters of the two enzymes are similar: acidic pH optima, Km's in the millimolar range, and competitive inhibition by delta-gluconolactone, a transition state analog. The presence of an aglycone structure in the substrates is important for both enzyme activities. In addition, both enzymes are specific towards the beta-glycosidic linkage; linustatinase (a beta-bis-glucosidase) readily hydrolyzes beta-bis-glucosides with 1,6 and 1,3 linkages whereas linamarase (a beta-monoglucosidase) exhibits little activity towards these substrates.  相似文献   

4.
The aggregation state of two types of bovine heart cytochrome c oxidase preparations in the presence of laurylmaltoside was investigated by high performance liquid chromatography in two buffers of ionic strengths of 388 mM and 45 mM, respectively. At high ionic strength, it was found that the Fowler cytochrome c oxidase preparation was monomeric (Mr = 2 X 10(5)), while monomers and dimers (2 X aa3, Mr = 4 X 10(5)) could be isolated from the Yonetani preparation. Under these conditions there was no rapid equilibrium between the two forms. Covalent cytochrome c oxidase-cytochrome c complexes were largely dimeric, and addition of ascorbate and cytochrome c to the oxidase also promoted dimerization. At low ionic strength (I = 45 mM) in the presence of laurylmaltoside the oxidase and the covalent complex with cytochrome c were largely monomeric. In the steady-state oxidation of ferrous horse heart cytochrome c, the monomeric enzyme displayed biphasic kinetics at I = 45 mM. This suggests that the presence of high- and low-affinity reactions is an intrinsic property of the cytochrome c oxidase monomer.  相似文献   

5.
Two forms of pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase have been isolated from wheat seedlings. One of these enzymes, termed PFP-1, has been purified to homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the enzyme is composed of two different polypeptide chains of Mr = 67,000 (alpha) and 60,000 (beta). PFP-1 has been assigned a molecular structure consisting of alpha 2 beta 2 based on an estimated Mr of 234,000 for the native enzyme. PFP-2, the other form of phosphotransferase, has also been purified extensively. Preliminary data suggest that the active form of PFP-2 is probably a dimer of a polypeptide chain of Mr = 60,000. Immunological studies indicate that the two enzyme preparations share common antigenic determinants. The two forms of enzyme have very similar kinetic properties. The phosphotransferases are activated by fructose 2,6-bisphosphate (Fru-2,6-P2) which lowers the Km of the enzymes for fructose 6-phosphate but not that for PPi. Interestingly, PFP-1 is significantly more active than PFP-2 in the absence of Fru-2,6-P2. Also, PFP-1 exhibits a greater affinity (Ka = 7 nM) than PFP-2 (Ka = 26 nM) for the activator. Based on kinetic, immunological, and physicochemical parameters, it is suggested that the two enzymic forms are related in that they share the same catalytic moiety, i.e. the 60,000-dalton or beta subunit. The beta subunit when in complex formation with the alpha subunit, as in PFP-1, becomes more active in the absence of Fru-2,6-P2 as well as exhibits a greater sensitivity toward the effector.  相似文献   

6.
M Ikeda-Saito 《FEBS letters》1986,202(2):245-250
The molecular structure of the spleen green heme protein was reinvestigated by gel-permeation, SDS-polyacrylamide gel electrophoresis, and amino acid analysis. The results showed that the enzyme is a tetramer (Mr 1.5 X 10(5)) with two heavy subunits (Mr 6 X 10(4) with a single prosthetic group per subunit) and two light subunits (Mr 1.5 X 10(4)), and that the tetramer structure is maintained by disulfide bond(s). The amino acid composition of the spleen green heme protein is similar to that of granulocyte myeloperoxidase. The present results contradict the data of Davis and Averill [(1981) J. Biol. Chem. 256, 5992-5996], who reported the enzyme as a monomeric peroxidase with an Mr of 57 000.  相似文献   

7.
Sorghum (Sorghum bicolor L. Moench) has two isozymes of the cyanogenic β-glucosidase dhurrinase: dhurrinase-1 (Dhr1) and dhurrinase-2 (Dhr2). A nearly full-length cDNA encoding dhurrinase was isolated from 4-d-old etiolated seedlings and sequenced. The cDNA has a 1695-nucleotide-long open reading frame, which codes for a 565-amino acid-long precursor and a 514-amino acid-long mature protein, respectively. Deduced amino acid sequence of the sorghum Dhr showed 70% identity with two maize (Zea mays) β-glucosidase isozymes. Southern-blot data suggested that β-glu-cosidase is encoded by a small multigene family in sorghum. Northern-blot data indicated that the mRNA corresponding to the cloned Dhr cDNA is present at high levels in the node and upper half of the mesocotyl in etiolated seedlings but at low levels in the root—only in the zone of elongation and the tip region. Light-grown seedling parts had lower levels of Dhr mRNA than those of etiolated seedlings. Immunoblot analysis performed using maize-anti-β-glucosidase sera detected two distinct dhurrinases (57 and 62 kD) in sorghum. The distribution of Dhr activity in different plant parts supports the mRNA and immunoreactive protein data, suggesting that the cloned cDNA corresponds to the Dhr1 (57 kD) isozyme and that the dhr1 gene shows organ-specific expression.  相似文献   

8.
alpha-(N-Acetylaminomethylene)succinic acid hydrolase (Compound A hydrolase, EC 3.5.1-) and alpha-hydroxymethyl-alpha'-(N-acetylaminomethylene)succinic acid hydrolase (Compound B hydrolase, EC 3.5.1-) were purified to homogeneity from Pseudomonas MA-1 and Arthrobacter Cr-7, respectively. The two inducible enzymes catalyze Reactions 1 and 2, respectively, which release the first generally useful anabolic intermediates during growth of these organisms with (formula; see text) pyridoxine as a sole source of carbon and nitrogen. Compound A hydrolase is a monomeric protein of Mr 32,500 with aspartic acid as its NH2-terminal residue. Compound B hydrolase (Mr congruent to 205,000) is a multimer containing probably six identical subunits with glycine as the NH2 terminus. The two enzymes have quite different amino acid analyses, although both are high in Asx and Glx, lack tryptophan, and show similar stabilities to pH and temperature. Compound A hydrolase has a pI of 4.4, a Km of 3.3 microM, and a Vmax of 3.1 mumol X min-1 X mg-1 at pH 6.5 and 25 degrees C; no analogue substrates were found. Compound B hydrolase has a pI of 4.2, a Km of 25 microM, and a Vmax of 3.8 mumol X min-1 X mg-1 at 25 degrees C and pH 7.0; it also hydrolyzes Compound A slowly. Both enzymes are inhibited competitively by di- and tricarboxylic acids, itaconic acid being among the most effective. Sulfite inhibits both enzymes by a time-dependent mechanism not yet understood. The two amidases appear to differ greatly in architecture despite the similarity in properties and in the overall reactions they catalyze.  相似文献   

9.
The possible role for cyanogenic glycosides as nitrogen storage compounds was studied in barley, Hordeum vulgare (cv. Golf), cultivated under different nitrogen regimes. Cyanogenic glycosides were absent in seeds and roots but were synthesized in seedlings where they accumulated at a level of about 150 nmol shoot−1 in control plants and 110 nmol shoot−1 in nitrogen-starved plants. An enzyme involved in the breakdown of cyanogenic glycosides, β-glucosidase (EC 3.2.1.-) exhibited high activity in seeds and was also detected in roots and shoots. The activity of β-cyanoalanine synthase (EC 4.4.1.9), which is involved in the metabolism of HCN, was low in seeds but very high in roots and shoots. There was no correlation between the activities of the two enzymes and the content of cyanogenic glycosides or nitrogen. The relative content of nitrogen in cyanogenic glycosides never exceeded 0.3% of total nitrogen, and the amount of cyanogenic glycosides decreased at a low rate even at a stage when nitrogen limitation inhibited growth.  相似文献   

10.
The electron transfer complexes, succinate: ubiquinone reductase, ubiquinone: cytochrome c reductase, and cytochrome c: O2 oxidase were isolated from the mitochondrial membranes of Neurospora crassa by the following steps. Modification of the contents of the complexes in mitochondria by growing cells on chloramphenicol; solubilisation of the complexes by Triton X-100; affinity chromatography on immobilized cytochrome c and ion exchange and gel chromatography. Ubiquinone reductase was obtained in a monomeric form (Mr approximately 130 000) consisting of a flavin subunit (Mr 72 000) an iron-sulfur subunit (Mr 28 000) and a cytochrome b subunit (Mr probably 14 000). Cytochrome c reductase was obtained in a dimeric form (Mr approximately 550 000), the monomeric unit comprising the cytochromes b (Mr each 30 000), a cytochrome c1 (Mr 31 000), the iron-sulfur subunit (Mr 25 000), and six subunits without known prosthetic groups (Mr 9000, 11 000, 14 000, 45 000, 45 000, and 52 000). Cytochrome c oxidase was also isolated in a dimeric form (Mr approximately 320 000) comprising two copies each of seven subunits (Mr 9000, 12 000, 14 000, 18 000, 21 000, 29 000, and 40 000). The complexes were essentially free of phospholipid. Each bound one micelle of Triton X-100 (Mr approximately 90 000). After isolation, the bound Triton X-100 could be replaced by other nonionic detergents such as: alkylphenyl polyoxyethylene ethers, alkyl polyoxyethylene ethers and acyl polyoxyethylene sorbitan esters.  相似文献   

11.
Three beta-glycosidases, named betaGly1, betaGly2 and betaGly3, were isolated from midgut tissues of the sugar cane borer, Diatraea saccharalis Fabricius (Lepidoptera: Pyralidae). The three enzymes have similar Mr (58,000; 61,000; 61,000), pI (7.5, 7.4, and 7.4) and optimum pH (6.7, 6.3, and 7.2) and were resolved by hydrophobic chromatography. The beta-glycosidases prefer beta-glucosides to beta-galactosides, have four subsites for glucose binding and hydrolyse glucose-glucose beta-1,3 linkages better than beta-1, 4- or beta-1,6 linkages. betaGly1 and 2 were completely purified, whereas betaGly3 was isolated with a contaminant peptide that has no activity upon beta-glycosides.By using competing substrates, it was shown that betaGly 1 and 3 have one active site, whereas betaGly2 has two, one hydrolyzing natural and the other synthetic substrates. betaGly2 is the only D. saccharalis beta-glycosidase that can efficiently hydrolyse prunasin, the glycoside remaining after glucose removal from the plant glycoside amygdalin and that liberates the cyanogenic mandelonitrile. As shown elsewhere, betaGly2 activity is reduced when D. saccharalis is reared in amygdalin containing diets. From the results, we propose that the physiological role of betaGly 1 and 3 is the digestion of oligo- and disaccharides derived from hemicelluloses and of betaGly2 is glycolipid hydrolysis.Free energy relationships showed that D. saccharalis betaGly3 and Tenebrio molitor (Coleoptera) betaGly1 have active sites that bind similarly the transition states formed with different substrates. The same is also true for the active sites of D. saccharalis betaGly1 and T. molitor betaGly2. This suggests that active sites of similar enzymes are probably homologous, displaying nearly identical bonds between active site amino acids and substrate moieties.  相似文献   

12.
Cyanogenesis (i.e. the evolution of HCN from damaged plant tissue) requires the presence of two biochemical pathways, one controlling synthesis of the cyanogenic glycoside and the other controlling the production of a specific degradative beta-glucosidase. The sole cyanogenic glycoside in Eucalyptus nobilis was identified as prunasin (D-mandelonitrile beta-D-glucoside) using HPLC and GC-MS. Seedlings from three populations of E. nobilis were grown under controlled conditions and 38% were found to be acyanogenic, a proportion far greater than reported for any other cyanogenic eucalypt. A detailed study of the acyanogenic progeny from a single open-pollinated parent found that 23% lacked a cyanogenic beta-glucosidase, 32% lacked prunasin and 9% lacked both. Of the remaining seedlings initially identified as acyanogenics, 27% contained either trace amounts of beta-glucosidase or prunasin, while 9% contained trace amounts of both. Results support the hypothesis that the two components necessary for cyanogenesis are inherited independently. Trace amounts are likely to result from the presence of non-specific beta-glucosidases or the glycosylation of the cyanohydrin intermediate by non-specific UDP glycosyl transferases.  相似文献   

13.
The inhibition mechanism of ovostatin was studied using rabbit synovial collagenase and thermolysin. When enzymes were complexed with ovostatin, only the proteolytic activity towards high molecular weight substrates was inhibited. Activity towards low molecular weight substrates was partially modified: the catalytic activity of collagenase bound to ovostatin was inhibited by only 40% towards 2,4-dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg and that of thermolysin bound to ovostatin was activated about 2.6-fold towards benzyloxycarbonyl-Gly-Leu-NH2 and benzyloxycarbonyl-Gly-Phe-NH2. Collagenase-ovostatin complexes failed to react with anti-(collagenase) antibody. Saturation of ovostatin with thermolysin prevented the subsequent binding of collagenase. Ovostatin-proteinase complexes ran faster than free ovostatin on 5% polyacrylamide gel electrophoresis. Complexing ovostatin with either collagenase or thermolysin resulted in the cleavage of the quarter-subunit of ovostatin (Mr = 165,000) into two fragments with Mr = 88,000 and 78,000. On the other hand, when the inhibitory capacity of ovostatin was tested with trypsin, chymotrypsin, and papain, only partial inhibition of their proteolytic activities was observed towards azocasein. Stronger inhibition was noted when Azocoll was a substrate, however. Analyses of ovostatin-enzyme complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the quarter-subunit of ovostatin was cleaved into several fragments by those enzymes. These results led us to propose that ovostatin inhibits metalloproteinases in preference to proteinases of other classes in a manner similar to alpha 2-macroglobulin; hydrolysis of a peptide bond by a proteinase in the susceptible region of the ovostatin polypeptide chain triggers a conformational change in the ovostatin molecule and the enzyme becomes bound to ovostatin in such a way that the proteinase is sterically hindered from access to large protein substrates and yet is accessible to small synthetic substrates. A kinetic study of collagenase binding to ovostatin gave the value of k2/Ki = 6.3 X 10(5) M-1 min-1. The results indicate that ovostatin is equally as good a substrate for collagenase as type I collagens.  相似文献   

14.
Deuterium NMR spectra for a series of selectively deuterated substrates and inhibitors in the presence of lipoxygenase-1 (EC 1.13.11.12) are presented. Extrapolation of the 2H NMR line widths yielded transverse relaxation rates for the bound inhibitors [2H21]dodecanoic acid (protonated at the 2,2-position), [2,2-2H]dodecanoic acid, and [12,12,12-2H]dodecanoic acid which are 1/T2,bd = 5.0 X 10(3), 1.12 X 10(4), and 1.16 X 10(3) s-1, respectively. The substrates [9,10,12,13-2H]linoleic acid and [11,11-2H]linoleic acid had 1/T2,bd = 8.2 X 10(3) and 7.95 X 10(3) s-1, respectively. Kinetic measurements established Ki = 1.5 X 10(-3) M for dodecanoic acid (lauric acid) inhibition of lipoxygenase when the substrate is linoleic acid (Km = 2.6 X 10(-5) M). Lipoxygenase, with Mr 102,000, is predicted to have a rotational correlation time tau c - 1.2 X 10(-7) s, yielding a 1/T2,bd = 1.56 X 10(4) s-1 for tightly bound ligand. Hence, the correlation times of the selectively deuterated inhibitors indicate internal motions are present in the bound species.  相似文献   

15.
16.
After 24 h of continuous labeling with radioactive precursors, a high molecular weight heparan sulfate proteoglycan (HS-PG) was isolated from both the medium and cell layer of human colon carcinoma cells (WiDr) in culture. The medium HS-PG eluted from a diethylaminoethyl anion exchange column with 0.45-0.50 M NaCl, had an average density of 1.46-1.49 g/ml on dissociative CsCl density-gradient ultracentrifugation, and eluted from Sepharose CL-2B with a Kav = 0.57. This proteoglycan had an estimated Mr of congruent to 8.5 X 10(5), with glycosaminoglycan chains of Mr = 3 X 10(4) which were all susceptible to HNO2 deaminative cleavage. Deglycosylation of the HS-PG with polyhydrogen fluoride resulted in a 3H-core protein with Mr congruent to 2.4 X 10(5). The cell layer contained a population of HS-PG with characteristics almost identical to that released into the medium but with a larger Mr = 9.5 X 10(5). Furthermore, an intracellular pool contained smaller heparan sulfate chains (Mr congruent to 1 X 10(4)) which were mostly devoid of protein core. In pulse chase experiments, only the large cell-associated HS-PG was released (approximately 58%) into the medium as intact proteoglycan and/or internalized and degraded (approximately 42%), with a t1/2 = 6 h. However, the small intracellular component was never released into the medium and was degraded at a much slower rate. When the cells were subjected to mild proteolytic treatment, only the large cell-associated HS-PG, but none of the small component, was displaced. Addition of exogenous heparin did not displace any HS-PG into the medium. Both light and electron microscopic immunocytochemistry revealed that the cell surface reacted with antibody against an HS-PG isolated from a basement membrane-producing tumor. Electron microscopic histochemistry using ruthenium red and/or cuprolinic blue revealed numerous 10-50-nm diam granules and 70-220-nm-long electron-dense filaments, respectively, on the surface of the tumor cells. The results indicate that colon carcinoma cells synthesize HS-PGs with distinct structural and metabolic characteristics: a large secretory pool with high turnover, which appears to be synthesized as an integral membrane component and localized primarily at the cell surface, and a small nonsecretory pool with low turnover localized predominantly within the cell interior. This culture system offers an opportunity to investigate in detail the mechanisms involved in the regulation of proteoglycan metabolism, and in the establishment of the neoplastic phenotype.  相似文献   

17.
A protein kinase from rabbit reticulocytes, able to phosphorylate the beta subunit of eukaryotic initiation factor 2 (eIF-2), has been demonstrated to phosphorylate also glycogen synthase. A glycogen synthase kinase (PC0.7) from rabbit skeletal muscle has been shown to phosphorylate the beta subunit of eIF-2. Comparison of highly purified preparations of the two protein kinases has indicated several similarities of properties. 1) Both enzymes were associated with two major polypeptide species, alpha (Mr = 43,000) and beta (Mr = 25,000), and exhibited apparent native molecular weights of 176,000-180,000 by gel filtration and 130,000-140,000 by sucrose density gradient sedimentation. 2) Both enzymes phosphorylated glycogen synthase, eIF-2 beta, phosvitin, and casein and were effective in utilizing GTP and ATP as phosphoryl donors. 3) Both enzymes displayed the same chromatographic behavior on phosvitin-Sepharose, phosphocellulose, and DEAE-cellulose. 4) Both enzymes underwent an autophosphorylation of the beta polypeptide when incubated with ATP and Mg2+. On the basis of these and other properties, we propose that the two protein kinases, if not identical, are very similar enzymes.  相似文献   

18.
A magnesium-dependent protein kinase activity was copurified with both the molybdate-stabilized 8S form of the chick oviduct progesterone receptor (PR) and its B subunit. In each case, purification was performed by hormonal affinity chromatography followed by ion-exchange chromatography. The Km(app) values of the phosphorylation reaction for [gamma-32P]ATP and calf thymus histones were approximately 1.3 X 10(-5) M and approximately 1.6 X 10(-5) M, respectively, and only phosphorylated serine residues were found in protein substrates, including PR B subunit. Physicochemical parameters of the enzyme [pI approximately 5.3, Stokes radius approximately 7.2 nm, sedimentation coefficient (S20,w) approximately 5.6 S, and Mr approximately 200,000] were compared to those of purified forms of PR (B subunit, pI approximately 5.3, Stokes radius approximately 6.1 nm, and Mr approximately 110,000; 8S form, Stokes radius approximately 7.7 nm and Mr approximately 240,000). The results suggest that most of the protein kinase activity copurified with both oligomeric and monomeric forms of PR belongs to an enzyme distinct from currently known receptor components. Its physiological significance remains unknown.  相似文献   

19.
1. Arylsulfatases A and B occurred as a major anionic and cationic isozyme, respectively, among eleven eutherian mammalian species. 2. Minor anionic arylsulfatase B isozymes were observed in rodents, dog, whale and pig, and were either monomeric (vole, Mr = 67 +/- 2 kDa), an apparent aggregate (dog, whale, pig; Mr = 192 +/- 10 kDa), or both (rat, mouse; monomeric Mr = 57 +/- 2 kDa; apparent dimeric Mr = 114 +/- 3 kDa). 3. Minor cationic arylsulfatase A isozymes were isolated from the deer, whale and pig. 4. Opossum arylsulfatases A and B were both anionic, had similar relative molecular weights, were not inhibited by silver, and were not precipitated by anti-murine arylsulfatase B nor anti-bovine arylsulfatase A IgG preparations.  相似文献   

20.
Pure L-threonine dehydrogenase from Escherichia coli is a tetrameric protein (Mr = 148,000) with 6 half-cystine residues/subunit; its catalytic activity as isolated is stimulated 5-10-fold by added Mn2+ or Cd2+. The peptide containing the 1 cysteine/subunit which reacts selectively with iodoacetate, causing complete loss of enzymatic activity, has been isolated and sequenced; this cysteine residue occupies position 38. Neutron activation and atomic absorption analyses of threonine dehydrogenase as isolated in homogeneous form now show that it contains 1 mol of Zn2+/mol of enzyme subunit. Removal of the Zn2+ with 1,10-phenanthroline demonstrates a good correlation between the remaining enzymatic activity and the zinc content. Complete removal of the Zn2+ yields an unstable protein, but the native metal ion can be exchanged by either 65Zn2+, Co2+, or Cd2+ with no change in specific catalytic activity. Mn2+ added to and incubated with the native enzyme, the 65Zn2(+)-, the Co2(+)-, or the Cd2(+)- substituted form of the enzyme stimulates dehydrogenase activity to the same extent. These studies along with previously observed structural homologies further establish threonine dehydrogenase of E. coli as a member of the zinc-containing long chain alcohol/polyol dehydrogenases; it is unique among these enzymes in that its activity is stimulated by Mn2+ or Cd2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号