首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In situ acetylation of homocholine by slices of rat cerebral cortex was about 34% of the in situ acetylation of choline. Acetylhomocholine synthesized by the cerebral cortical slices was distributed in the same subcellular fractions as was acetylcholine (ACh), although the relative distribution of acetylhomocholine and ACh between nerve-ending-free and nerve-ending-bound stores was different. Cerebellar slices acetylated homocholine <10% as well as did cerebral cortical slices. In vitro , choline acetyltransferase (ChAT; EC 2.3.1.1.6) either partially purified from whole rat brain, solubilized from lysed synaptosomes, or in a synaptosomal membrane-associated form, did not acetylate homocholine at an appreciable rate. Under conditions of alkaline pH, an appreciable in vitro rate of homocholine acetylation by preparations of lysed synaptosomes was detected. However, analysis of this acetylation showed it not to be the result of ChAT catalysis and unlikely to occur by the same mechanism as that responsible for acetylation of homocholine in situ : the acetylation was not inhibited by ChAT inhibitors and occurred equally in the presence of preparations of lysed cerebral cortical or cerebellar synaptosomes. It is concluded that in situ acetylation of homocholine is probably catalyzed by ChAT and that acetylhomocholine is subsequently stored in the same subcellular sites as is ACh; the inability to detect ChAT-catalyzed acetylation of homocholine in vitro might arise as an artefact of the procedures employed in isolation of the enzyme.  相似文献   

2.
Three forms of acetyl coenzyme A: choline-O-acetyltransferase (EC 2.3.1.6, ChAT) have been isolated from mouse and rat forebrain synaptosomes with a 100 mM sodium phosphate (NaP) buffer of pH 7.4, a high-salt solution (500 mM NaCl), and a 2% Triton DN-65 solution, respectively. The Triton-solubilized form of ChAT differed from the other two forms in its capacity to acetylate homocholine, its pH profile, and its sensitivity to denaturation. NaCl-solubilized ChAT could be distinguished from the other two forms with respect to pH profile, sensitivity to inhibition by 4-(1-naphthylvinyl) pyridine (in the presence of Triton), and apparent Km value for choline acetylation. The caudate and putamen of rat brain contained the highest amount of ChAT activity, based on tissue wet weight, and the cerebellum contained the least of the brain regions examined; only the cerebellum had more membrane-bound than soluble ChAT. Septal lesion reduced ChAT activity in the NaP- and Triton-solubilized fractions prepared from hippocampus by 68% and 64%, respectively, whereas it reduced the activity of the NaCl-solubilized fraction by only 21%. These results suggest that three different forms of ChAT may exist in both mouse and rat brain.  相似文献   

3.
R M Dick  J J Freeman  J W Kosh 《Life sciences》1985,36(12):1183-1188
A nitrogen phosphorus-gas chromatographic procedure was modified to determine the extent of in vivo acetylation of the choline analogs homocholine and beta-methylcholine. Infusion of homocholine (18 mumoles) for 2 hours into the lateral ventricle of the rat produced 2.3 nmoles/gram of acetylhomocholine which represented 0.035% of the detected homocholine. Infusion of the same quantity of beta-methylcholine produced 1.0 nmole/gram of acetyl-beta-methylcholine representing 0.025% of the detected beta-methylcholine. Although pretreatment with hemicholinium-3 reduced the amount of acetylated product formed from either analog, the reduction was significant only for acetyl-beta-methylcholine (p less than 0.01).  相似文献   

4.
Three fractions (one soluble and two membrane-bound) of choline acetyltransferase (ChAT) isolated from a nerve ending fraction of mouse forebrain, which have previously been reported to differ in several biochemical and physical aspects, were also found to differ in their rates of postnatal development. At 2 days of age, the activity in all three fractions was very low. Sodium phosphate buffer-soluble (cytoplasmic) ChAT activity increased significantly by 8 days of age, whereas the ChAT activity of the two membrane-bound fractions (NaCl- and Triton-soluble) did not increase until 13 days of age. These results suggested that the differences observed between the three fractions of ChAT prepared from mouse brain are not solely artifacts of the isolation procedure.  相似文献   

5.
Abstract: Ethyl analogues of homocholine were synthesized and used to describe further the specificities of the processes involved in choline uptake and acetylation and acetylcholine storage and release. Monoethylhomocholine, diethylhomocholine, and triethylhomocholine decreased the transport of choline into rat brain synaptosomes. The mono- and diethyl compounds were taken up into synaptosomes with similar affinity for the transport system as choline (5.8, 8.5, and 5.5 μ M , respectively) but at a somewhat slower rate (11.3, 8.5, and 37.3 nmol/g original tissue/h, respectively); the triethyl analogue was not transported at the concentrations tested, which further defines the structural specificity of the transport system. l -Carnitine did not affect the transport of the analogues. The in situ acetylation of mono- and diethyl-homocholine by slices of rat cerebral cortex was measurable, but the in vitro acetylation by choline acetyl-transferase solubilized from rat forebrain was not. Acetylation of the diethyl analogue by slices of cerebellar cortex was <20% of that by slices of cerebral cortex. Subcellular fractionation of cerebral slices showed that acetyldiethylhomocholine localized preferentially to the cytosolic rather than vesicular stores, indicating specificity of the mechanism responsible for the incorporation of acetylated product into the vesicles. The release of acetyldiethylhomocholine and of acetylcholine was tested from sliced brain that had been incubated with the precursors. Both esters were released spontaneously but stimulation with increased K+ concentration enhanced the release of acetylcholine without changing the release of acetyldiethylhomocholine, suggesting that evoked transmitter release occurred from a vesicular store.  相似文献   

6.
The accumulation of [3H]homocholine (3-trimethylamino-propan-1-01) by isolated synaptosomes prepared from rat brain was resolved kinetically into a high (KT= 3.0 μM) and a low (KT= 14.5 μM) affinity system. Although homocholine was not acetylated by solubilized choline acetyltransferase, 64% of the homocholine accumulated by intact synaptosomes via the high affinity uptake process was acetylated. Homocholine was also acetylated in the superior cervical ganglion of the cat, and the amount of acetylhomocholine formed was increased (12-fold) by preganglionic nerve stimulation. In ganglia, acetylhomocholine was available for release by preganglionic nerve impulses, and its release was Ca2+-dependent, It is concluded that homocholine can form a cholinergic false transmitter, and that the substrate specificity of choline acetyltransferase in vitro might be different from that in situ.  相似文献   

7.
Molecular forms of acetylcholinesterases in Alzheimer's disease   总被引:2,自引:0,他引:2  
In this study, we examined 26 cases of Alzheimer's disease (AD) and 14 age-matched controls. In Brodmann area 21 cerebral cortex of the AD cases, there was no change in soluble G1 and G4 acetylcholinesterase (AChE) (EC 3.1.1.7), a significant 40% decrease in membrane-associated G4 AChE, significant 342 and 406% increases in A12 and A8 AChE, and a significant 71% decrease in choline acetyltransferase (ChAT) (EC 2.3.1.6). Our working hypothesis to account for these changes postulates that soluble globular forms are unchanged because they are primarily associated with intrinsic cortical neurons that are relatively unaffected by AD, that ChAT and membrane-associated G4 AChE decrease because they are primarily associated with incoming axons of cholinergic neurons that are abnormal in AD, and that asymmetric forms of AChE increase because of an acrylamide-type impairment of fast axonal transport in diseased incoming cholinergic axons. In the nucleus basalis of Meynert (nbM) of the 26 AD cases, there was a significant 61% decrease in the number of cholinergic neurons, an insignificant 23% decrease in nbM ChAT, a significant 298% increase in nbM ChAT per cholinergic neuron, and a significant 7% increase in the area of cholinergic perikarya. To account for the increased ChAT in cholinergic neurons and the enlargement of cholinergic perikarya, we propose that slow axonal transport may be impaired in nbM cholinergic neurons in AD.  相似文献   

8.
Primary cultures of fetal rat septal neurons were used to identify a membrane-associated cholinergic neurotrophic activity. Under serum-free culture conditions, approximately 98% of the septal cells are neurons, and approximately 6% of the neurons are cholinergic as determined immunocytochemically. Crude membranes prepared from rat hippocampal homogenates stimulate choline acetyltransferase (ChAT) activity in treated septal neurons. The membrane-associated trophic activity is apparent at lower protein concentrations than activity present in the soluble fraction and is unevenly distributed in various brain regions; it is highest in hippocampus and striatum and negligible in cerebellum. Membrane trophic activity is developmentally regulated, is heat and trypsin sensitive, and increases the rate of expression of ChAT in septal neurons. Upon gel filtration chromatography of a high-salt membrane extract, trophic activity elutes as a broad peak in the 500 kilodalton (kD) molecular mass range. Stimulation of septal neuronal ChAT activity by either crude membranes or partially purified preparations is not inhibited by antibodies against nerve growth factor (NGF), and its maximal activity is additive to maximally active doses of NGF. The results indicate that hippocampal membranes contain cholinergic neurotrophic activity which may be important for the development of septal cholinergic neurons.  相似文献   

9.
Abstract: The kinetic parameters, Km and Vmax, for the acetylation of choline and several close analogues were determined by using (a) purified choline acetyltransferase and (b) a hypotonically lysed synaptosomal extract prepared from the electric organ of Torpedo marmorata. Whereas the Km for choline was similar in both cases (0.51 and 0.42 m m ), the crude enzyme showed a three- to fivefold greater affinity for its analogues than the purified enzyme, the activity decreasing rapidly with increased N -alkyl substitution. Homocholine was a poor substrate, but was clearly acetylated by both preparations. The effect of salt on analogue acetylation by the crude enzyme was studied by increasing NaCl concentration from zero to 150 m m . There was an increase in both Km and Vmax for all substrates; choline, N,N,N -dimethylmonoethylaminoethanol, -monomethyldiethylaminoethanol and -dimethylmonobutylaminoethanol showed the greatest changes, whilst N,N,N -triethylaminoethanol and -dimethylmonopropylaminoethanol and homocholine were much less affected. However, in all cases, the kinetic parameter Vmax / Km remained unchanged. The maximal velocities of the different substrates varied more under conditions of high than of low salt. Sodium chloride up to 300 m m had no effect on the amount of enzyme which was bound to membranes in the synaptosomal extract. It is concluded that choline acetyltransferase has a high degree of substrate specificity, which is slightly altered by purification. The effects of salt cannot be explained as a consequence of nonspecific ionic association with membranes.  相似文献   

10.
The objectives of the present study were to validate the presence of cytoplasmic and membrane-associated pools of choline acetyltransferase (ChAT) in rat brain synaptosomes, and to evaluate inhibition of these different forms of the enzyme by the nitrogen mustard analogue of choline, choline mustard aziridinium ion (ChM Az). The relative distribution of ChAT and lactate dehydrogenase (LDH) was followed in subfractions of synaptosomes to establish whether ChAT activity associated with salt-washed presynaptic membranes represents membrane-bound protein rather than cytosolic enzyme trapped within undisrupted synaptosomes or revesiculated membrane fragments. The percentage of total synaptosomal ChAT activity (14%) recovered in the final membrane pellet always exceeded that of LDH (6%), lending support to the hypothesis that much of the ChAT associated with the membranes was a membrane bound form of the enzyme. Incubation of purified synaptosomes with ChM Az led to irreversible inhibition of ChAT activity; this loss of enzyme activity could not be accounted for by lysis of nerve terminals during incubation in the presence of the mustard analogue. Subfractionation of the ChM Az-treated nerve terminals revealed that the membrane-bound form of ChAT was inhibited to the greatest extent, followed by the ionically membrane-associated enzyme, with the activity of the water-solubilized enzyme not differing significantly from control. Preparation of the synaptosomal ChAT subfractions from untreated nerve terminals prior to incubation with varying concentrations of ChM Az or naphthylvinylpyridine revealed that under these conditions water-solubilized, ionically membrane-associated, and detergent-solubilized membrane-bound pools of ChAT were not differentially inhibited by either compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The relationship between soluble and membrane choline acetyltransferase (ChAT) was studied. Differential solubilization of rat and human brain yielded ChAT in the soluble and membrane fractions. The addition of 1% Triton X-100 to membrane fractions resulted in a release of ChAT. A comparable release of lactate dehydrogenase was also observed. The Triton released ChAT and soluble ChAT from rat and human brain were efficiently purified by immuno-affinity chromatography. A single molecular weight of 68,000 was observed for both forms of rat and human brain ChAT. Epitope maps produced from both forms of human brain ChAT were identical. It is concluded that Triton release ChAT is identical to soluble ChAT and simply represents occluded soluble ChAT.  相似文献   

12.
13.
Abstract: Nerve growth factor (NGF) treatment of primary cultures of embryonic day 17 rat basal forebrain differentially altered activity of choline acetyltransferase (ChAT) and high-affinity choline transport; ChAT specific activity was increased by threefold in neurons grown in the presence of NGF for between 4 and 8 days, whereas high-affinity choline transport activity was not changed relative to control. Dose-response studies revealed that enhancement of neuronal ChAT activity occurred at low concentrations of NGF with an EC50 of 7 ng/ml, with no enhancement of high-affinity choline transport observed at NGF concentrations up to 100 ng/ml. In addition, synthesis of acetylcholine (ACh) and ACh content in neurons grown in the presence of NGF for up to 6 days was increased significantly compared with controls. These results suggest that regulation of ACh synthesis in primary cultures of basal forebrain neurons is not limited by provision of choline by the high-affinity choline transport system and that increased ChAT activity in the presence of NGF without a concomitant increase in high-affinity choline transport is sufficient to increase ACh synthesis. This further suggests that intracellular pools of choline, which do not normally serve as substrate for ACh synthesis, may be made available for ACh synthesis in the presence of NGF.  相似文献   

14.
Treatment of human erythrocytes with high glucose concentrations altered the content and distributions of three tubulin isotypes, with consequent reduction of erythrocyte deformability and osmotic resistance. In erythrocytes from diabetic subjects (D erythrocytes), (i) tubulin in the membrane-associated fraction (Mem-Tub) was increased and tubulin in the sedimentable fraction (Sed-Tub) was decreased, (ii) deformability was lower than in erythrocytes from normal subjects (N erythrocytes), and (iii) detyrosinated/acetylated tubulin content was higher in the Mem-Tub fraction and tyrosinated/acetylated tubulin content was higher in the Sed-Tub fraction, in comparison with N erythrocytes. Similar properties were observed for human N erythrocytes treated with high glucose concentrations, and for erythrocytes from rats with streptozotocin-induced diabetes. In N erythrocytes, high-glucose treatment caused translocation of tubulin from the Sed-Tub to Mem-Tub fraction, thereby reducing deformability and inducing acetylation/tyrosination in the Sed-Tub fraction. The increased tubulin acetylation in these cells resulted from inhibition of deacetylase enzymes. Increased tubulin acetylation and translocation of this acetylated tubulin to the Mem-Tub fraction were both correlated with reduced osmotic resistance. Our findings suggest that (i) high glucose concentrations promote tubulin acetylation and translocation of this tubulin to the membrane, and (ii) this tubulin is involved in regulation of erythrocyte deformability and osmotic fragility.  相似文献   

15.
Cholinergic nerve terminals were affinity purified from rat caudate nucleus. These terminals possessed both high- (KT = 2.7 microM) and low- (KT = 58 microM) affinity uptake mechanisms for exogenous [3H]choline. The proportion of [3H]choline acetylated was reduced from 75 to 30% under conditions of anoxia and hypoglycaemia, whereas the phosphorylation of choline increased from 4 to 52%. Choline phosphorylation was also increased when the terminals were preloaded with choline. The affinity-purified terminals were shown to release acetylcholine in a Ca2+-dependent manner on depolarization. The relationship between choline acetylation and phosphorylation in the cholinergic nerve terminal is discussed.  相似文献   

16.
Abstract: The accumulation of choline, homocholine, and 4-hydroxybutyl-trimethylammonium by rat brain synaptosomes was measured; the choline uptake mechanism transported homocholine but not hydroxybutyltrimethylammonium, which, in addition, did not block choline accumulation. In cats'superior cervical ganglia, preganglionic nerve stimulation increased the accumulation of homocholine, but not that of hydroxybutyltrimethylammonium. It is concluded that the substrate specificity of the choline transport mechanism is such that increasing the N-O atom distance by one methylene group retains affinity, but increasing this distance by two methylene groups does not.  相似文献   

17.
Evidence for Membrane-Associated Choline Kinase Activity in Rat Striatum   总被引:3,自引:3,他引:0  
The distribution of choline kinase (EC 2.7.1.32) activity was investigated in subcellular fractions of rat striatum. Enzyme activity in the crude mitochondrial fraction, determined after dissolution in Triton X-100, was 5.90 mumol/g initial wet weight/h. When a crude mitochondrial preparation was hypoosmotically shocked and fractionated, followed by the addition of Triton X-100, choline kinase activity in the soluble and particulate fractions was 4.58 and 1.40 mumol/g initial wet weight/h, respectively. Enzyme activity in the particulate fraction was not detected in the absence of Triton X-100 or in the presence of NaCl (up to 1.5 M). Subcellular enzyme markers indicated that the membrane-associated activity was not attributable to mitochondrial or microsomal contamination. Kinetic analysis of the activity of soluble and membrane-solubilized choline kinase indicated Km values of 0.74 mM and 0.68 mM, respectively. Results indicate that choline kinase activity may be measured in both the soluble and the particulate fractions of rat striatum, the latter most likely involving enzyme associated with membrane through hydrophobic or covalent interactions. The specific function of the membrane-associated enzyme has not yet been determined.  相似文献   

18.
Abstract: The organic molecule K-252a promoted cell survival, neurite outgrowth, and increased choline acetyltransferase (ChAT) activity in rat embryonic striatal and basal forebrain cultures in a concentration-dependent manner. A two- to threefold increase in survival was observed at 75 n M K-252a in both systems. A single application of K-252a at culture initiation prevented substantial (>60%) cell death that otherwise occurred after 4 days in striatal or basal forebrain cultures. A 5-h exposure of striatal or basal forebrain cells to K-252a, followed by its removal, resulted in survival equivalent to that observed in cultures continually maintained in its presence. This is in contrast to results found with a 5-h exposure of basal forebrain cultures to nerve growth factor (NGF). Acute exposure of basal forebrain cultures to K-252a, but not to NGF, increased ChAT activity, indicating that NGF was required the entire culture period for maximum activity. Striatal cholinergic and GABAergic neurons were among the neurons rescued by K-252a. Of the protein growth factors tested in striatal cultures (ciliary neurotrophic factor, neurotrophin-3, NGF, brain-derived neurotrophic factor, interleukin-2, basic fibroblast growth factor), only brain-derived neurotrophic factor promoted survival. The enhancement of survival and ChAT activity of basal forebrain and striatal neurons by K-252a defines additional populations of neurons in which survival and/or differentiation is regulated by a K-252a-responsive mechanism. The above results expand the potential therapeutic targets for these molecules for the treatment of neurodegenerative diseases.  相似文献   

19.
Choline acetyltransferase (ChAT; EC 2.3.1.6) was separated from human caudate/putamen into three fractions by successive extractions into apotassium phosphate buffer, a high salt (NaCl) buffer and a buffer containing 0.6% Triton X-100. The Triton-X-solubilized fraction is the membrane-bound ChAT (mChAT) and represents about 40% of the total ChAT. After centrifugation, mChAT was precipitated by ammonium sulfate at 35–65% saturation. The crude enzyme preparation was fractionated in turn on a DEAE-Sepharose, a hydroxylapatite and a phosphocellulose columns. Finally, mChAT was applied to a CoA-Sepharose column equilibrated with buffer containing 100 mM choline chloride and was specifically eluted with buffer containing acetyl-CoA. The presence of both substrates greatly stabilized the enzyme and ChAT was recovered almost quantitatively. The final preparation of mChAT has a specific activity of 37.2 mol of acetylcholine synthesized per min-mg protein. The purified mChAT has a pH optimum of 8.3. It migrated as two bands on SDS-PAGE with molecular weights of 67,000 and 62,000 daltons, respectively. Immunoblot autoradiography showed that an antiserum prepared previously against soluble ChAT also cross-reacted with both bands of mChAT, indicating that both forms of this enzyme are related. Furthermore, as previously reported for soluble ChAT, Fab-Sepharose chromatography could be used for the purification of mChAT and this preparation also resolved into two bands of 10% SDS gel.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

20.
The enzymic acetylation of choline analogues   总被引:4,自引:3,他引:1  
—The rates of acetylation of choline and the mono-, di-, and tri-ethyl analogues of choline by choline acetyltransferase (acetyl-CoA: choline O-acetyltransferase; EC 2.3.1.6) were studied with a partially purified enzyme from bovine caudate nucleus. All the substrates were acetylated by ChAc. The rates of acetylation at low concentrations of substrate were choline >MEC >DEC >TEC, but at high concentrations MEC was acetylated more rapidly than choline. These results have been compared to those of previous workers. The mode of binding of choline and its analogues to ChAc is discussed, and it is suggested that replacement of methyl by ethyl groups results in a lower energy of binding of the substrate to the active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号