首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of adenylate cyclase (EC 4.6.1.1) in the mouse mammary gland increases during late pregnancy and reaches its maximum value at one day pre partum. In the mouse mammary gland explant culture the adenylate cyclase activity is stimulated by a cooperative action of insulin, prolactin and hydrocortisone. The effect of these hormones can be demonstrated in intact cells, but not in a cell-free system. In the explants, RNA synthesis is stimulated by dibutyryl cyclic AMP, insulin and prolactin. The effects of both protein hormones and cyclic AMP are additive. The results obtained suggest that insulin and prolactin in cooperation with hydrocortisone are involved in the regulation of RNA synthesis in the mammary gland by activation of the adenylate cyclase system, independently of their effect on this process not mediated by cyclic AMP.  相似文献   

2.
The effects of insulin, cortisol and prolactin on amino acid uptake and protein biosynthesis were determined in mammary-gland explants from mid-pregnant mice. Insulin stimulated [3H]leucine incorporation into protein within 15 min of adding insulin to the incubation medium. Insulin also had a rapid stimulatory effect on the rate of aminoiso[14C]butyric acid uptake, but it had no effect on the intracellular accumulation of [3H]leucine. Cortisol inhibited the rate of [3H]leucine incorporation into protein during the initial 4h of incubation, but it had no effect at subsequent times. [3H]Leucine uptake was unaffected by cortisol, but amino[14C]isobutyric acid uptake was inhibited after a 4h exposure period to this hormone. Prolactin stimulated the rate of [3H]leucine incorporation into protein when tissues were exposed to this hormone for 4h or more; up to 4h, however, no effect of prolactin was detected. At all times tested, prolactin had no effect on the uptake of either amino[14C]isobutyric acid or [3H]leucine. Incubation with actinomycin D abolished the prolactin stimulation of protein biosynthesis, but this antibiotic did not affect the insulin response. A distinct difference in the mechanism of action of these hormones on protein biosynthesis in the mammary gland is thus apparent.  相似文献   

3.
4.
Addition of thyroxine or triiodothyronine to cultures of mammary gland explants in the presence of insulin, hydrocortisone and prolactin, results in a selective enhancement of the activity of the milk protein, α-lactalbumin. This effect, which is specific for the L-isomer of the thyroid hormones, is not mediated through diffusible activators of the enzyme activity.  相似文献   

5.
Mammary explants from midpregnant mice were cultured for upto 96 hr with various combinations of insulin, prolactin, andcorticosterone. Labeled glucose was added to cultures at 4 hrprior to termination, and explant morphology, glucose uptake,and lipid synthesis were studied in hormone-free and hormone-containingmedia. The results show that without hormones, explants takeup glucose and synthesize lipid at minimal rates. After 48 hrthese activities appear to be primarily those of adipose tissuesince epithelial and connective tissue degenerate without hormones. Insulin increases cell number for 24 hr and maintains survivalfor 96 hr. Its stimulatory effect on lipogenesis precedes itsenhancement of glucose uptake. The addition of prolactin toinsulin-containing cultures has little effect on glucose uptakeand lipogenesis, but stimulates minimal secretion in alveolarlumina. The absence of intracellular vacuoles indicates thatthese products probably contain little lipid. Corticosteroneenhances the effects of insulin on lipid synthesis, but haslittle apparent effect on the secretory morphology of the alveoli. The three-hormone combination has no effect on glucose uptakeabove that obtained with insulin alone; however, it inducesmarked increases in Iipid synthesis as well as maximal morphologicalsecretion by 48 hr. Thus, as for other lactogenic responsesin vitro, insulin, prolactin, and corticosterone act synergisticallyto stimulate lipid synthesis in mammary explants.  相似文献   

6.
J W Perry  T Oka 《In vitro》1984,20(1):59-65
The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and alpha-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. These results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

7.
S R Sizemore  R D Cole 《In vitro》1982,18(8):668-674
The NMuMG cell line derived from normal mouse mammary epithelial cells was tested for responsiveness to hormones. The hormones studied included insulin, glucocorticoids (cortisol and dexamethasone), and prolactin. In addition to membrane bound insulin receptors and prolactin receptors, the cells had 2 X 10(4) cytoplasmic glucocorticoid receptors per cell. Morphological changes were observed in response to hormones. Clusters of cells appeared with greatly increased diameter, and the number of cells per plate was reduced. The rate of DNA synthesis, corrected by cell number, indicates that cell division, and hence cell turnover, was increased by the combination of all three hormones. Insulin greatly enhanced protein synthesis, but glucocorticoid and prolactin did not further increase the rate. The combination of three hormones produced a change in the synthesis of histones, consistent with the increase in cell turnover. There were substantial responses of enzyme activities to hormonal treatment of the cells. Insulin by itself induced a doubling of the activity of glyceraldehyde phosphate dehydrogenase and perhaps a modest increase in NADH-cytochrome c reductase. Lactose synthetase activity showed a three- to fourfold induction of both A and B subunits of the enzyme when the cells were treated with insulin, glucocorticoid, and prolactin, and the effect of the latter two hormones was shown to be additional to that of insulin.  相似文献   

8.
These studies were carried out to characterize the early effect of prolactin (PRL) on lactose biosynthesis in cultured mammary gland explants derived from 12- to 14-day pregnant mice. The rate of lactose biosynthesis was assessed by the rate of radiolabeled glucose incorporation into lactose. For the rapid isolation of lactose, a new method which involves the use of thin-layer chromatography on cellulose-impregnated plastic sheets was employed. The onset of the PRL stimulation of [3H]glucose incorporation into lactose occurred 6-8 hr after exposing the explants to PRL. The response to PRL was essentially all or none with maximum responses occurring with PRL concentrations above 25 ng/ml. The lowest stimulatory concentration of PRL was 10 ng/ml. The action of PRL on lactose biosynthesis requires both ongoing RNA and protein synthesis since puromycin, cyclohexamide, and actinomycin D abolished the PRL effect.  相似文献   

9.
1. In organ cultures of mammary tissue from C3H mice we observed increases in the activity of glucose 6-phosphate dehydrogenase similar to that occurring at parturition. 2. In 22hr. cultures of tissue from late-pregnant mice insulin was required for the increases, but the further addition of prolactin, corticosterone and certain other hormones had no effect. The rise in activity occurred over the second half of the culture period. 3. Results from culture of adipose tissue, and mammary tissue rich in adipose tissue, strongly suggest that the rise in activity occurs in mammary parenchymal rather than adipose cells. 4. In 45hr. cultures prolactin prevented a fall in enzyme activity between 22hr. and 45hr. If the medium contained serum the activity at 22hr. was unaffected, but it continued to rise up to 45hr., and prolactin then had no effect. 5. The enzyme also increased in activity in cultures of mammary tissue from mid-pregnant mice. Insulin was again required, the activity was higher at 45hr. than at 24hr. and prolactin increased the activities at both these times. 6. Actinomycin D, cycloheximide and puromycin at low concentration in the media of 22hr. cultures all prevented increases in enzyme activity. Hydroxyurea at a concentration that inhibited the incorporation of [(3)H]thymidine into DNA by 92% had little effect. 7. Actinomycin D and cycloheximide largely failed to prevent the rise in enzyme activity if added after 3.5hr. and 12hr. respectively. Hence all essential RNA and protein synthesis appears to be finished by 3.5hr. and 12hr., although most of the increase in enzyme activity occurs gradually between 12hr. and 22hr. 8. We suggest that the increases in enzyme activity, both in culture and in the living animal at parturition, are induced by an influx of glucose that is restrained during pregnancy by the growth-hormone-like action of placental lactogen.  相似文献   

10.
J M Strum 《Tissue & cell》1978,10(3):505-514
Ultrastructural cytochemistry was used to detect an endogenous peroxidase in the rat mammary gland. The enzyme was identified only during the latter half of pregnancy and during lactation, indicating its possible dependence upon hormones. To test this hypothesis, specific hormones associated with the development and differentiation of the mammary gland were used both in vivo and in vitro in an effort to induce, or unmask, the activity of the enzyme. Estrogen injected into nonpregnant rats induced some peroxidase activity in the mammary glands of a few animals. Two hormone combinations tested in organ cultures of mouse mammary gland were able to activate the enzyme: (1) dexamethasone + insulin and (2) dexamethasone + insulin + prolactin.  相似文献   

11.
Summary The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and α-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. The results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

12.
Mouse mammary gland contains choline kinase activity that can be stimulated by polyamines. Developmental studies show that the activity of choline kinase in mammary gland is low in both virgin and nonpregnant primiparous animals but increases severalfold during pregnancy and reaches a maximal level during the lactation period. Similar increases in enzyme activity are observed by cultivation of tissue explants in the presence of insulin, cortisol, and prolactin, a combination of hormones which induces the ultrastructural and biochemical changes associated with the development of mammary gland during pregnancy and lactation. The increase in enzyme activity in cultured explants is dependent only on the actions of both insulin and cortisol and parallels the formation of rough endoplasmic reticulum, which is effected by the same combination of hormones. The hormonal stimulation of choline kinase activity appears to involve the action of spermidine, a polyamine which accumulates in the cells under the influence of cortisol and mimicks the effect of cortisol on milk-protein synthesis in cultured explants.  相似文献   

13.
Casein turnover in rabbit mammary explants in organ culture   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Explants of mammary gland from mid-pregnant rabbits were cultured in medium 199 containing insulin, prolactin and cortisol, and specific anti-casein immunoglobulin G was used to measure the amount, rate of synthesis and rate of degradation of casein in the explants in the presence of hormones and after removal of hormones from previously stimulated tissue. 2. The amount of casein in particle-free supernatants prepared from mammary explants was measured by ;rocket' immunoelectrophoresis. 3. The rate of incorporation of l-[4,5-(3)H]leucine into casein was measured after isolation of the casein by immunoadsorbent chromatography and polyacrylamide-gel electrophoresis in the presence of urea and sodium dodecyl sulphate. 4. Casein accumulates in mammary explants in the presence of insulin, prolactin and cortisol, but not in the absence of hormones. Removal of hormones after 24h in culture results in a decrease in the rate of accumulation of casein in the explants. 5. Casein-synthetic rate increases in mammary explants in the presence of insulin, prolactin and cortisol, but not in the absence of hormones. Removal of hormones after 24h in culture results in continued casein synthesis at approx. 30% of the rate in the presence of hormones. The synthetic rate does not decrease to values observed in explants cultured throughout in the absence of hormones. 6. Casein is not degraded in mammary explants during a phase of rapid casein accumulation (36-72h) in the presence of hormones. Furthermore casein is not degraded when hormones are removed from the tissue after between 36 and 72h in culture. 7. Casein is glycosylated in mammary explants; the extent of glycosylation parallels the rate of synthesis. The glycosylated protein is rapidly secreted from the tissue. 8. The results are consistent with the notion that after hormonal stimulation mammary explants from mid-pregnant rabbits synthesize, glycosylate and rapidly secrete casein. Removal of hormones decreases the synthetic rate of casein, but does not cause the accumulation of a pool of degradable casein in the lobuloalveolar cells.  相似文献   

14.
《The Journal of cell biology》1995,131(4):1095-1103
Milk production during lactation is a consequence of the suckling stimulus and the presence of glucocorticoids, prolactin, and insulin. After weaning the glucocorticoid hormone level drops, secretory mammary epithelial cells die by programmed cell death and the gland is prepared for a new pregnancy. We studied the role of steroid hormones and prolactin on the mammary gland structure, milk protein synthesis, and on programmed cell death. Slow-release plastic pellets containing individual hormones were implanted into a single mammary gland at lactation. At the same time the pups were removed and the consequences of the release of hormones were investigated histologically and biochemically. We found a local inhibition of involution in the vicinity of deoxycorticosterone- and progesterone-release pellets while prolactin-release pellets were ineffective. Dexamethasone, a very stable and potent glucocorticoid hormone analogue, inhibited involution and programmed cell death in all the mammary glands. It led to an accumulation of milk in the glands and was accompanied by an induction of protein kinase A, AP-1 DNA binding activity and elevated c-fos, junB, and junD mRNA levels. Several potential target genes of AP-1 such as stromelysin-1, c-jun, and SGP-2 that are induced during normal involution were strongly inhibited in dexamethasone-treated animals. Our results suggest that the cross-talk between steroid hormone receptors and AP-1 previously described in cells in culture leads to an impairment of AP-1 activity and to an inhibition of involution in the mammary gland implying that programmed cell death in the postlactational mammary gland depends on functional AP-1.  相似文献   

15.
16.
Summary The NMuMG cell line derived from normal mouse mammary epithelial cells was tested for responsiveness to hormones. The hormones studied included insulin, glucocorticoids (cortisol and dexamethasone), and prolactin. In addition to membrane bound insulin receptors and prolactin receptors, the cells had 2 × 104 cytoplasmic glucocorticoid receptors per cell. Morphological changes were observed in response to hormones. Clusters of cells appeared with greatly increased diameter, and the number of cells per plate was reduced. The rate of DNA synthesis, corrected by cell number, indicates that cell division, and hence cell turnover, was increased by the combination of all three hormones. Insulin greatly enhanced protein synthesis, but glucocorticoid and prolactin did not further increase the rate. The combination of the three hormones produced a change in the synthesis of histones, consistent with the increase in cell turnover. There were substantial responses of enzyme activities to hormonal treatment of the cells. Insulin by itself induced a doubling of the activity of glyceraldehyde phosphate dehydrogenase and perhaps a modest increase in NADH-cytochromec reductase. Lactose synthetase activity showed a three- to fourfold induction of both A and B subunits of the enzyme when the cells were treated with insulin, glucocorticoid, and prolactin, and the effect of the latter two hormones was shown to be additional to that of insulin. This work was supported by Contract N01-CB-43866 from the National Cancer Institute, by Grants GB-38658 from the National Science Foundation and GMS-20338 from the National Institutes of Health, and by the Agricultural Experimental Station at the University of California.  相似文献   

17.
The hormonal regulation of protein kinase C (PKC) induction over 3 to 14 days was investigated in the mouse mammary gland in vitro and in vivo. In intact mice, estradiol (1 microgram/mouse injected daily for 2 weeks) stimulated PKC activity 70%, while progesterone (1 mg/mouse injected daily) inhibited it by 30%. Prolactin, whose levels were elevated for 2 weeks by two pituitary isografts, had no effect. When mammary gland explants were cultured in insulin and cortisol, the further addition of estradiol (1 ng/ml), progesterone (1 microgram/ml), or prolactin (1 microgram/ml) did not alter PKC activity after 3 days. These data suggest the following conclusions: although previous studies have implicated prolactin in the transient, calcium-phospholipid activation of PKC, it does not appear to elevate total levels of this kinase over prolonged periods. In contrast, the sex steroids do appear to affect long-term levels of this kinase; furthermore, this latter effect may be indirect.  相似文献   

18.
19.
Dibutyryl cAMP and prolactin stimulated ornithine decarboxylase activity in mouse mammary gland explants which had been preincubated with insulin and cortisol for 1 day; maximally stimulatory concentrations of dibutyryl cAMP and prolactin produced a response which was greater than the sum of the responses of prolactin and dibutyryl cAMP when tested alone. 8-Bromo-cGMP inhibited ornithine decarboxylase activity whereas other derivatives of cyclic nucleotides were without effect. Cortisol concentrations were found to be important for optimizing the dibutyryl cAMP and prolactin responses. Optimal prolactin responses were obtained with cortisol concentrations greater than 10(-7) M, whereas optimal dibutyryl cAMP responses were observed with cortisol concentrations less than 10(-7) M. Despite the differing optimal cortisol concentrations for the prolactin and dibutyryl cAMP responses, it is concluded that prolactin and dibutyryl cAMP probably stimulate ornithine decarboxylase activity in the mammary gland via the same mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号