首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated and partially characterized three mutants of the pheochromocytoma line PC12 by using dibutyryl cyclic AMP (cAMP) as a selective agent. Each of these variants, A126-1B2, A208-4, and A208-7, was resistant to both dibutyryl cAMP and cholera toxin when cell growth was measured. In comparison to wild-type PC12 cells, each of these mutants was deficient in the ability to induce ornithine decarboxylase (ODC) in response to agents that act via a cAMP-dependent pathway. In contrast, each of these mutants induced ODC in response to nerve growth factor. To understand the nature of the mutations, the cAMP-dependent protein kinases of the wild type and of each of these mutants were studied by measuring both histone kinase activity and 8-N3-[32P]cAMP labeling. Wild-type PC12 cells contained both cAMP-dependent protein kinase type I (cAMP-PKI) and cAMP-dependent protein kinase type II (cAMP-PKII). Regulatory subunits were detected in both soluble and particulate fractions. The mutant A126-1B2 contained near wild-type PC12 levels of cAMP-PKI but greatly reduced levels of cAMP-PKII. Furthermore, when compared with wild-type PC12 cells, this cell line had an altered distribution in ion-exchange chromatography of regulatory subunits of cAMP-PKI and cAMP-PKII. The mutant A208-4 demonstrated wild-type-level binding of 8-N3-[32P]cAMP to both type I and type II regulatory subunits, but only half the wild-type level of type II catalytic activity. The mutant A208-7 had type I and type II catalytic activities equivalent to those in wild-type cells. However, the regulatory subunit of cAMP-PKI occurring in A208-7 demonstrated decreased levels of binding 8-N3-[32P]cAMP in comparison with the wild type. Furthermore, all mutants were defective in their abilities to bind 8-N3-[32P]cAMP to the type II regulatory protein in the particulate fraction. Thus, cAMP-PK was altered in each of these mutants. We conclude that both cAMP-PKI and cAMP-PKII are apparently required to induce ODC in response to increases in cAMP. Finally, since all three mutants induced ODC in response to nerve growth factor, the nerve growth factor-dependent induction of OCD was not mediated by an increase in cAMP that led to an activation of cAMP-PK. These mutants will be useful in the elucidation of the many functions controlled by cAMP and nerve growth factor.  相似文献   

2.
By using ethidium bromide fluorescence to measure cellular permeability and the photoaffinity probe, 8-azido-[32P] cyclic adenosine monophosphate (cAMP), to label cAMP-dependent protein kinases, washed bovine epididymal spermatozoa were examined for the presence of "ectokinases" on the sperm surface. In washed, intact spermatozoa, three proteins of Mr 49,000, 54,000, and 56,000 specifically bound 8-azido-[32P] cAMP. The Mr 49,000 protein corresponded to the type I regulatory subunit while the Mr 56,000 and 54,000 proteins comigrated with phosphorylated and dephosphorylated forms, respectively, of type IIA regulatory subunit of bovine heart. The addition of Nonidet P-40 (0.1%) increased the radioactive labeling of all three proteins and caused the appearance of a cAMP binding protein of Mr 40,000, which was likely a proteolytic fragment of the regulatory subunit. Although these data could support the concept of a surface location for regulatory subunits in spermatozoa, it was necessary to determine if the appearance of cAMP binding sites was correlated with the loss of membrane integrity. A population of washed epididymal spermatozoa appeared to contain 10-20% damaged cells based on ethidium bromide fluorescence. The same population of cells also had 10-20% of the regulatory subunits of the cAMP-dependent protein kinase accessible to labeling with the cyclic AMP photoaffinity probe. When spermatozoa were sonicated for increasing lengths of time, ethidium bromide fluorescence was found to be related directly to the relative amount of regulatory subunit labeling by the probe. It is suggested that the major apparent cAMP-dependent "ectokinases" in sperm represent artifacts resulting from cellular damage.  相似文献   

3.
During the G1/S transition of the cell cycle variations in the labelling by 8-N3-[32P]cAMP of the protein kinase A regulatory subunits RI and RII, used as a probe to monitor post-translational modifications that may regulate cAMP binding, were observed in synchronized HeLa cells. A decrease in 8-N3-[32P]cAMP labelling of RI, RII and RII phosphorylated by the catalytic subunit of PKA was correlated with the increased percentage of cells in phases G1. An increase in 8-N3-[32P]cAMP incorporated into the 54-kDa RII subunit during progression from G1 to S was correlated with an increase in intracellular cAMP. A transient increase in Mn-SOD activity was detected in cells arrested at the G1/S transition using two different techniques, suggesting that oxidative modulation of regulatory subunits by free radicals may modify cAMP binding sites during the cell cycle. Decreased photoaffinity labelling by 8-N3-[32P]cAMP of RI, RII and autophosphorylated RII subunits was found to be an inherent characteristic of PKA in the G1/S transition.  相似文献   

4.
The activity of adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent protein kinase was demonstrated in the supernatant (S) fraction (100,000 × g) of mouse and human neuroblastoma (NB) cells. In cAMP-induced “differentiated” mouse NB cells, the cAMP-dependent protein kinase (cAMP-PK) activity did not significantly change. Cyclic GMP did not stimulate the PK activity in S-fraction. The cAMP-PK or cGMP-PK activity was not detected in the membrane (M) fraction. The present results in combination with previous data support the concept that the major portion of binding proteins is distinct from the regulatory subunits of cAMP-PK. For example, the level of binding proteins markedly increases in S-fraction of “differentiated” NB cell, but cAMP-PK activity does not change. cAMP binding proteins are present in the M-fraction, but cAMP-PK activity is not demonstrable. Cyclic GMP binds with the soluble proteins with about 10-fold less binding affinity than cAMP; however, cGMP does not stimulate PK activity.  相似文献   

5.
Previously, we have reported a decrease in the binding of a cAMP analog to the regulatory subunits of cAMP-dependent protein kinase (cAMP-PK), as well as a decrease in cAMP-PK activities, in psoriatic cells. Retinoic acid (RA) treatment of these cells can induce an increase in cAMP-PK toward normal levels. To better define the effect of retinoic acid on the cAMP-PK system in psoriatic fibroblasts, Western blot analysis using an RIIα specific antibody and in vivo phosphorylation experiments were carried out to determine possible changes in the RII regulatory subunit. Our results indicate a decrease in the binding of the cAMP analog 8-azido-[32P]-cAMP with no change in the level of RII protein in psoriatic fibroblasts. In addition, by two-dimensional gel electrophoresis we observed the presence of a phosphorylated form of RII unique to psoriatic cells which is suppressed by RA treatment. This study suggests an altered posttranslational modification of the cAMP-PKII in psoriatic fibrobiasts which can be reversed by exposure of these cells to RA.  相似文献   

6.
We investigated changes in the activity and subcellular distribution of cyclic-AMP-dependent protein kinases (cAMP-PKs) in response to treatment with retinoic acid in three different embryonal carcinoma cell lines derived from the same teratoma 6050. After retinoic-acid treatment, F9 and PCC4 cells gave rise to parietal-like endoderm, while PC13 cells differentiated into visceral endoderm. Retinoid treatment of F9 and PCC4 cells caused an increase in cAMP-PK activity as measured by histone phosphorylation, as well as increases in the amount of the RI and RII regulatory subunits of the cAMP-PKs, as quantitated by photoaffinity labeling with 8-azido-cyclic-32P-AMP, in both the soluble and plasma-membrane fractions. The increases in membrane cAMP-PK activity and RI and RII levels reached their maximum within 18 h of retinoid treatment, and then dropped to intermediate levels after 3 days of treatment. The cytosolic activity and the levels of the regulatory subunits exhibited a progressive increase during the 3 days of exposure to retinoic acid. The relative RI/RII ratios in the cytosol and membrane fractions of the treated cells were comparable to those found in established PYS-2 parietal-endoderm cells. PC13 stem cells had high levels of cAMP-PK activity and cAMP binding to the regulatory subunits in both the cytosol and plasma membranes, while also exhibiting very low levels of type-II cAMP-PK. Retinoid treatment induced a progressive increase in cAMP-PK activity in the cytosol, and a decrease in activity at the membrane level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

8.
Two protein bands, present in cytosol fractions from each of seven rat tissues examined, specifically incorporated 32P-labeled 8-azidoadenosine 3':5'-monophosphate (8-N3-[32P]cAMP), a photoaffinity label for cAMP-binding sites. These proteins had apparent molecular weights of 47,000 and 54,000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis system. These two proteins were characterized in three of the tissues, namely, heart, uterus, and liver, by the total amount of 8-N3-[32P]cAMP incorporation, by the dissociation constant (Kd) for 8-N3-[32P]cAMP, and by the nucleotide specific inhibition of 8-N3-[32P]cAMP incorporation. Several lines of evidence were obtained that the protein with an apparent molecular weight of 47,000 represents the regulatory subunit of a type I cAMP-dependent protein kinase, while the protein with an apparent molecular weight of 54,000 represents the regulatory subunit of a type II cAMP-dependent protein kinase. Almost all of the cAMP receptor protein found in the cytosol of these tissues, as measured by 8-N3-[32P]cAMP incorporation, was associated with these two protein kinases, in agreement with the idea that most effects of cAMP are mediated through protein kinases. The photoaffinity labeling with 8-N3-[32P]cAMP can be used to estimate quantitatively the amounts of regulatory subunit of type I and type II cAMP-dependent protein kinases in various tissues.  相似文献   

9.
Previously, we have reported a defect in the cAMP-dependent protein kinases (cAMP-PK) in psoriatic cells (i.e., a decrease in 8-azido-[32P]cAMP binding to the regulatory subunits and a decrease in phosphotransferase activity) which is rapidly reversed with retinoic acid (RA) treatment of these cells. This led us to examine a possible direct interaction between retinoids and the RI and RII regulatory subunits through retinoylation. Retinoylation of RI and RII present in normal and psoriatic human fibroblasts was analysed by [3H]RA treatment of these cells, followed either by chromatographic separation of the regulatory subunits or by their specific immunoprecipitation. These studies indicated that RI and RII can be retinoylated. [3H]RA labeling of the RII subunit was significantly (P < 0.005) greater in psoriatic fibroblasts (nine subjects; mean 7.47 relative units ± 1.37 SEM) compared to normal fibroblasts (eight subjects; mean 2.46 relative units ± 0.49 SEM). [3H]RA labeling of and the increase in 8-azido-[32P]-binding to the RI and RII subunit in psoriatic fibroblasts showed a similar time course. This suggests that the rapid effect of retinoic acid treatment to enhance 8-azido-[32P]-cAMP binding to the RI and RII in psoriatic fibroblasts may be due, in part, to covalent modification of the regulatory subunits by retinoylation. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Monomeric cAMP-binding fragments of molecular mass 16,000 and 14,000 daltons were obtained by Sephadex G-75 chromatography of partially trypsin-hydrolyzed regulatory subunits of cAMP-dependent protein kinase isozymes I and II, respectively. The Stokes radii were 19.1 and 16.4 A, the frictional ratios were 1.15 and 1.03, and the sedimentation coefficients were 1.94 and 1.91 S for the 16,000- and 14,000-dalton fragments, respectively. The 16,000-dalton fragment retained specific cyclic nucleotide binding characteristics of the native protein. The specificity of cyclic nucleotide binding to the 14,000-dalton fragment (cAMP greater than cIMP = 8-bromo-cAMP = 8-oxo-cAMP greater than cUMP = cGMP) differed from that of the native subunit (cAMP = 8-oxo-cAMP greater than 8-bromo-cAMP greater than cIMP greater than cUMP = cGMP). The 14,000-dalton fragment bound nearly 1 mol of cAMP/mol of fragment. The binding exchange rate of cAMP was much faster for the 14,000-dalton fragment than for either of the native regulatory subunits or for the 16,000 dalton fragment. Although hemin inhibited cAMP binding to the native regulatory subunits and to the 16,000 dalton fragment, the molecule did not affect cAMP binding to the 14,000-dalton fragment. Both of the native regulatory subunits and the isolated 16,000- and 14,000-dalton fragments could be covalently labeled with the photoaffinity analog, 8-N3-[32P]cAMP. The 14,000-dalton fragment could not be phosphorylated and neither fragment could recombine with the catalytic subunit to inhibit its activity. The results indicate that the functional entities of the regulatory subunit other than cAMP binding are destroyed by trypsin. The properties of the 16,000-dalton fragment suggest that the intact cAMP-binding site is contained in a small trypsin-resistant "core" of the native regulatory subunit. The properties of the 14,000-dalton fragment imply that part of the binding site of the native regulatory subunit was slighlty modified or lost during preparation of this fragment.  相似文献   

11.
The cAMP cell surface receptor of Dictyostelium discoideum amoebae was identified by the use of the photoaffinity analogue 8-N3-[32P]cAMP. Labeling by intact cells of one component, identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography, could be specifically inhibited by the presence of nonradioactive cAMP. The component, P45 (apparent molecular weight of 45,000), was not identified on vegetative cells but was labeled with increasing intensity as cells differentiated and increased their levels of surface cAMP binding sites. Developmental mutants, starved under conditions where they do not express significant levels of cAMP binding sites, did not incorporate radioactivity into this protein. These mutants did label P45 when starved under differentiation-inducing conditions such that their levels of surface cAMP binding sites increased. P45 co-purified with the plasma membrane fraction isolated from cells to which 8-N3-[32p]cAMP had been covalently bound. Down-regulated amoebae, which displayed approximately 25% of the binding activity of untreated cells, did not label P45. These cells did, however, label a new component with an apparent molecular weight of 47,000 (P47).l The appearance of this component represented the only discernible difference in labeling profile under these conditions. As in the case of P45, radioactive incorporation into P47 did not occur if the photoactivation of 8-N3-[32P]cAMP was performed in the presence of nonradioactive cAMP.  相似文献   

12.
Several methods were compared for estimating the amount of regulatory subunit of an 800-fold purified Type II cAMP-dependent protein kinase from bovine heart. These methods included a reversable binding assay using either cAMP, or 8-N3-[32P]cAMP, photoaffinity labeling with 8-N3-[32P]cAMP, and autophosphorylation of the regulatory subunit of the enzyme. Although the regulatory subunit had a slightly lower affinity for 8-N3-cAMP than for cAMP, the total amount of regulatory subunit could be determined by each of the procedures examined. The results indicate that the photoaffinity analog 8-N3-[32P]cAMP is able to label quantitatively all cAMP-binding sites of the regulatory subunit of this cAMP-dependent protein kinase.  相似文献   

13.
In this paper we characterize the biochemical defect of a mutant (10248) of CHO cells, resistant to the cAMP treatment. Cells cultured on MEM were collected each three days, homogenized and centrifuged. The cell extract was assayed for protein kinases activity and the binding of 8-N3-(32P)cAMP. The same extract was also applied on to a DEAE cellulose column, eluted with a linear gradient and the fractions tested for the phosphotransferase activity and 8-N3-(32P)cAMP binding. Mutant 10248 shows a different profile of protein kinases activity as compared to 10001 control. Protein kinases II is absent whereas a normal RII binding activity is present. RI shows altered affinity for cAMP.  相似文献   

14.
Use of nucleotide photoaffinity probes to study hormone action   总被引:1,自引:0,他引:1  
It has been clearly shown that the action of several hormones is differentially mediated intracellularly by nucleotides containing either adenosine or guanosine base units. To study the protein-nucleotide interactions involved in several complex biological systems our laboratory has synthesized several 8-azido-adenosine (8-N3 A) and 8-azidoguanosine (8-N3 G) derivatives of naturally occurring nucleotides. Modification of the nucleotides in the 8-position of the purine ring was done because: a) 8-substituted derivatives of cAMP and cGMP activated their respective protein kinases at physiological concentrations and were much less susceptible to hydrolysis by specific phosphodiesterases (PDE's) and b) substitution at the 8-position was much less likely to disturb the preferential and selective binding of adenosine versus guanosine nucleotides by enzymes that are specifically regulated by such interactions. This would allow studies of guanosine nucleotide specific binding in the presence of both adenosine nucleotides and adenosine nucleotide binding proteins, and vice-versa. In general, such has been the case and [32P] 8-N3 cAMP and [32P] 8-N3 cGMP have been used effectively to study their respectively activated protein kinases in several systems. Also, [32P] 8-N3 ATP has been used to study several ATPases and kinases while [gamma 32P] 8-N3 GTP has been shown effective for studies on tubulin and the G-regulatory protein (G/N) of adenylyl cyclase (A.C.). Several observations suggest that there must be important physical and energetic tie-ins between external hormone binding and the loading and unloading of specific internal nucleotide binding sites. These binding sites may be activator signals for protein kinases (e.g., cAMP protein kinase regulatory subunit), or cyclases (e.g., G/N proteins of A.C.) or catalytic sites involved in the production or hydrolysis of cyclic nucleotides. The thrust of this article is to detail the use of 8-azidopurine photoaffinity analogs of ATP, GTP, cAMP and cGMP as they may be used to study hormone-mediated events which may or may not involve cyclic nucleotides as a second messenger.  相似文献   

15.
Protein kinases in wild-type CHO cells have been characterized. Cells cultured on MEM were collected, homogenized and the extract assayed for protein kinase activity. DEAE cellulose chromatography of 30.000xg extract yields 2 peaks of protein kinases activity, PKI and PKII. The two peaks when analyzed for the binding of 8-N3-(32P)cAMP show two subunits RI and RII and a RI not associated with the enzymatic activity, named RF. This characterization allows us to discuss the meaning of protein kinases in the modulation of the growth regulating effects of cAMP.  相似文献   

16.
Changes in the activities of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinases in response to prostaglandin (PG)E2-induced elevation of intracellular cAMP level were investigated with a murine macrophage-like cell line, P388D1. Photoaffinity labeling with 8-azido-[32P]cAMP showed that untreated P388D1 cells possess two types of cAMP-binding proteins of m.w. 49,000 and 52,000, respectively, in the cytosol fraction in a ration of 1:8. They must represent regulatory subunits (RI and RII, respectively) of cAMP-dependent protein kinases, because affinity chromatography on a column of omega-aminohexyl-agarose of the cytosol fraction clearly separated two fractions that exhibited the enzymatic activities and cAMP-binding activities. Photoaffinity labeling of these fractions with 8-azido-[32P]cAMP confirmed the separation of two types of isoenzymes, because each cAMP-dependent protein kinase active fraction was associated with only one type of regulatory subunit. The exposure of P388D1 cells to exogenously added PGE2 (1 microM) caused about 7.5-fold increase in the intracellular cAMP level within 30 sec. The cAMP level then sharply dropped to about 100 pmol/10(7) cells, remained at this level for about 20 min, and then gradually increased to 200 pmol/10(7) (about fivefold over the control). The enzyme assay of the cytosol demonstrated that the activation of cAMP-dependent protein kinases closely follows the kinetics of the intracellular cAMP level. The activation of the enzyme was specific for PGE2 and was not triggered by 1 microM PGF2 alpha or PGD2 which have been shown to be unable to activate adenylate cyclase of P388D1 cells. The PGE2-induced increase in the intracellular cAMP level appeared to activate preferentially the type I isoenzyme, inasmuch as the enzymatic activity of this type separated by the affinity chromatography of the cytosol of PGE2-exposed cells was lower in the presence than in the absence of cAMP, whereas the type II enzyme activity remained responsive to exogenously added cAMP.  相似文献   

17.
Adenylate cyclase and cAMP-dependent protein kinase activities in gametocytogenic (LE5) and nongametocytogenic (T9/96) clones of Plasmodium falciparum were compared to explore the role of cAMP in sexual differentiation of the parasite. Basal adenylate cyclase levels were equivalent in the 2 clones. However, cAMP-dependent histone II-A kinase activity was significantly higher in LE5 than in T9/96 over a range of cAMP concentrations. This difference was due to a decreased Vmax for the enzyme in the nongametocytogenic clone and not to an increased Ka for cAMP. Examination of parasite cAMP-binding proteins, likely to be kinase regulatory subunits, by both photoaffinity labeling with [32P]8-N3-cAMP and affinity chromatography of metabolically [35S]methionine-labeled cytosol of cAMP-agarose revealed a 53-kDa cAMP binding protein in both clones and a 49-kDa cAMP-binding protein in T9/96 that was absent in LE5. Our results suggest that T9/96 has lost the ability to undergo gametocytogenesis due to a substantial decrease in cAMP-dependent protein kinase activity rendering the parasite unable to respond to increased intracellular cAMP levels. Moreover, the reduction in cAMP-dependent protein kinase activity may be due to the presence of an alternative regulatory subunit of the kinase.  相似文献   

18.
Localization of adenylate cyclase activity in the outer cortical regions of the bovine lens correlates with the restriction of the Gs and Gi guanine nucleotide regulatory subunits of this enzyme to these same regions of the lens. In contrast, the major membrane substrates for cAMP-dependent protein kinase (cAMP-PK) (molecular masses of 18, 26 and 28 kDa) were identified in both the inner nuclear and the outer cortical regions of the lens. However, there were differences in the relative amounts of Pi incorporated into the 18 kDa and 28 kDa components in different lens regions. The three major membrane substrates for cAMP-PK were also phosphorylated when homogenates of lens cortex were incubated with [gamma-32P]ATP plus activators of the lens adenylate cyclase. In contrast, there was no incorporation of 32P into these substrates when homogenates of lens nucleus were used. When exogenous cAMP was added to homogenates of lens nucleus or cortex, 32P was incorporated into the membrane substrates for cAMP-PK in both regions of the lens, indicating that cAMP-PK was present in both regions. Interestingly, cAMP phosphodiesterase activity was at least 10-times greater in lens cortex than in the lens nucleus. These results indicate that while the major membrane substrates for cAMP-PK could be phosphorylated in all regions of the lens, there is a restriction of those enzymes that synthesize and degrade cAMP to the outer cortical regions of this organ.  相似文献   

19.
B E Haley 《Biochemistry》1975,14(17):3852-3857
To identify and investigate the cAMP binding sites of human red cell membranes a photoaffinity analog of cAMP, 8-azidoadenosine 3',5'-cyclic monophosphate (8-N3cAMP), has been synthesized. This analog activates cAMP-dependent protein kinase(s) in the red cell membrane. It exhibits tight, but reversible binding to the membranes which is competitive with cAMP. Photolysis of [32P]-8-N3cAMP with red cell membranes results in covalent incorporation of radioactive label onto two specific membrane proteins. This incorporation requires activating light and is reduced to background levels with addition of low levels of cAMP. Prephotolysis of 8-N3cAMP completely abolished its ability to photolabel membrane proteins. Both the reversible and photocatalyzed binding of 8-N3cAMP show saturation kinetics. The molecular weights of the two primarily labeled proteins are approximately 49,000 and 55,000. The differential effects of cAMP, ATP, and adenosine on the photocatalyzed incorporation of [32P]-8-N3cAMP onto these two proteins suggest that they have biochemically different properties. The potential usefulness of this compound for investigating various molecular aspects of cAMP action is discussed.  相似文献   

20.
8-Azidoadenosine 3',5'-monophosphate (8-N3-cAMP) containing 32P has been used as a photoaffinity label specific for the adenosine 3',5'-monophosphate (cAMP) binding site(s) present in a partially purified preparation of soluble protein kinase from bovine brain. 8-N3-cAMP and cAMP were found to compete for the same binding site(s) in this preparation, as determined by a standard filter assay. When this protein preparation was equilibrated with [32P]-8-N3-cAMP, and then irradiated at 253.7 nm, the incorporation of radioactivity was predominantly into a protein with an apparent molecular weight of 49,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. This labeled protein comigrated in the gel with the only protein which is endogenously phosphorylated by [gamma-32P]ATP, a protein which has been shown to be the regulatory subunit of the protein kinase (H. Maeno, P. L. Reyes, T. Ueda, S. A. Rudolph, and P. Greengard (1974), Arch. Biochem. Biophys. 164, 551). The incorporation of [32P]-8-N3-cAMP into this protein was half-maximal at a concentration of 7 x 10(-8) M. In accordance with a proposed mechanism involving the formation of a highly reactive nitrene intermediate upon irradiation of the azide, the incorporation of radioactivity into protein was maximal within 10 min of irradiation, and was almost eliminated by preirradiation of the photolabile ligand. Moreover, this incorporation was virtually abolished by a 50-fold excess of cAMP, but not by AMP, ADP, ATP, or adenosine. We suggest that 8-N3-cAMP may prove to be a useful molecular probe of the cAMP-binding site in receptor proteins and report its use in conjunction with sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a highly sensitive and selective radiochemical marker for cAMP-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号