首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When incubated with intact erythrocytes, low density lipoproteins (LDL) decrease the phosphate content of erythrocyte spectrin allowing the cells to undergo morphological transformation. The phosphate content of spectrin depends on the balance between the activity of membrane-associated cyclic AMP-independent protein kinases and phosphoprotein phosphates. LDL do not influence the activity of membrane-associated cyclic AMP-independent protein kinases; these lipoproteins activate by 2-fold and greater membrane-associated phosphatases as determined by hydrolysis of p-nitrophenyl phosphate and by phosphate hydrolysis of phosphorylated erythrocyte membrane proteins. We conclude that LDL interact at the exterior surface of the erythrocyte to stimulate dephosphorylation of spectrin. The significance of this conclusion is augmented by the fact that spectrin, the target for LDL-induced dephosphorylation, specifies cell morphology and modulates the distribution of cell-surface receptors. LDL also render erythrocyte acetylcholinesterase less susceptible to inhition by F-. Lipoproteins in the high density class (HDL) do not stimulate dephosphorylation of spectrin, and they are consequently unable to alter erythrocyte morphology. HDL do prevent the LDL-induced activation of membrane phosphatase. The inhibitory capacity of HDL is observed over the range of LDL:HDL (w/w) which exists in the plasma of normolipemic humans.  相似文献   

2.
Intact erythrocytes incubated in the presence of low density lipoproteins (LDL) undergo a time-dependent morphologic transformation from biconcave discs to spherocytes within 4 h. No shape change is observed when erythrocytes are incubated with high density lipoproteins (HDL). The LDL-induced change in erythrocyte morphology occurs without concomitant leakage of hemoglobin from the cell or depletion of intracellular ATP; no change in the distribution of the major lipids of the erythrocyte membranes was detected. The alteration of morphology does require attachment of LDL to the erythrocyte surface. The LDL-induced morphologic alteration is inhibited by HDL, but not by serum albumin. HDL prevent the attachment of LDL to the cell membrane; however, the HDL subfractions, HDL2 and HDL3, are only partially effective. These data suggest that normal erythrocyte morphology and cell function may depend on the concentration and composition of the circulating lipoproteins.  相似文献   

3.
Intact erythrocytes incubated in the presence of low density lipoproteins (LDL) undergo a time-dependent morphologic transformation from biconcave discs to spherocytes within 4 h. No shape change is observed when erythrocytes are incubated with high density lipoproteins (HDL). The LDL-induced change in erythrocyte morphology occurs without concomitant leakage of hemoglobin from the cell or depletion of intracellular ATP; no change in the distribution of the major lipids of the erythrocyte membranes was detected. The alteration of morphology does require attachment of LDL to the erythrocyte surface. The LDL-induced morphologic alteration is inhibited by HDL, but not by serum albumin. HDL prevent the attachment of LDL to the cell membrane; however, the HDL subfractions, HDL2 and HDL3, are only partially effective. These data suggest that normal erythrocyte morphology and cell function may depend on the concentration and composition of the circulating lipoproteins.  相似文献   

4.
Intact erythrocytes incubated in the presence of low density lipoproteins (LDL) undergo a time-dependent morphologic transformation from biconcave discs to spherocytes within 4 h. No shape change is observed when erythrocytes are incubated with high density lipoproteins (HDL). The LDL-induced change in erythrocyte morphology occurs without concomitant leakage of hemoglobin from the cell or depletion of intracellular ATP; no change in the distribution of the major lipids of the erythrocyte membranes was detected. The alteration of morphology does require attachment of LDL to the erythrocyte surface. The LDL-induced morphologic alteration is inhibited by HDL, but not by serum albumin. HDL prevent the attachment of LDL to the cell membrane; however, the HDL subfractions, HDL2 and HDL3, are only partially effective. These data suggest that normal erythrocyte morphology and cell function may depend on the concentration and composition of the circulating lipoproteins.  相似文献   

5.
Binding of plasma low density lipoproteins to erythrocytes   总被引:2,自引:0,他引:2  
Low density lipoproteins (LDL) containing apolipoprotein B bind to intact, freshly isolated erythrocytes. The LDL-erythrocyte interaction is of low affinity, with a Kd of 1.1 x 10(-6) M. Binding is noncooperative. There are about 200 binding sites per cell and, within the limits of experimental uncertainty, these sites comprise a homogeneous class. Binding of LDL is a temperature-independent process. The maximum amount of LDL blood increases following proteolytic digestion of the cells with trypsin or chymotrypsin. The specificity of the binding sites for LDL is not absolute: high density lipoproteins and lipid vesicles composed of phosphatidylcholine or phosphatidylcholine/cholesterol (equimolar) complete with LDL for occupancy of 60% of the binding sites. Modification of 5--6 of the 9 apolipoprotein B arginine residues with 1,2-cyclohexanedione/borate or of 10--15 of the 20 lysine residues by reductive methylation does not alter the ability of LDL to bind to erythrocytes. Native LDL and methylated-LDL alter erythrocyte morphology. However, LDL in which the arginine residues are derivatized with 1,2-cyclohexanedione/borate do not induce the discocyte leads to echinocyte transformation. Chemically modified and native LDL exchange cholesterol with erythrocytes at equal rates and to nearly equal extents. Taken together, the data suggest that the binding sites for LDL on the erythrocyte membrane are distinct from the LDL receptors at the surface of other cells--e.g., fibroblasts and lymphocytes--which do not bind HDL and which do not recognize LDL with derivatized arginine or lysine residues. It is proposed that the biological function of the erythrocyte binding sites is to mediate the exchange of cholesterol between the cell membrane and lipoproteins.  相似文献   

6.
The effect of adenosine on the shape, aggregate morphology and aggregability of ATP-depleted erythrocytes was studied. It is shown that the ATP-depletion of erythrocyte leads to the change in their shape: diskocytes transform to echinocytes. It is found that the aggregability of such cells in autologous plasma significantly decreased. Incubation of echinocytes with adenosine largely restored discoid shape and erythrocyte aggregability.  相似文献   

7.
Interactions between spectrin and the inner surface of the human erythrocyte membrane have been implicated in the control of lateral mobility of the integral membrane proteins. We report here that incubation of “leaky” erythrocytes with a water-soluble proteolytic fragment containing the membrane attachment site for spectrin achieves a selective and controlled dissociation of spectrin from the membrane, and increases the rate of lateral mobility of fluorescein isothiocyanate-labeled integral membrane proteins (> 70% of label in band 3 and PAS-1). Mobility of membrane proteins is measured as an increase in the percentage of uniformly fluorescent cells with time after fusion of fluorescent with nonfluorescent erythrocytes by Sendai virus. The cells are permeable to macromolecules since virus-fused erythrocytes lose most of their hemoglobin. The membrane attachment site for spectrin has been solubilized by limited proteolysis of inside-out erythrocyte vesicles and has been purified (V). Bennett, J Biol Chem 253:2292 (1978). This 72,000-dalton fragment binds to spectrin in solution, competitively inhibits association of 32P-spectrin with inside-out vesicles with a Ki of 10?7M, and causes rapid dissociation of 32P-spectrin from vesicles. Both acid-treated 72,000-dalton fragment and the 45,000 dalton-cytoplasmic portion of band 3, which also was isolated from the proteolytic digest, have no effect on spectrin binding, release, or membrane protein mobility. The enhancement of membrane protein lateral mobility by the same polypeptide that inhibits binding of spectrin to inverted vesicles and displaces spectrin from these vesicles provides direct evidence that the interaction of spectrin with protein components in the membrane restricts the lateral mobility of integral membrane proteins in the erythrocyte.  相似文献   

8.
The erythrocyte of the human neonate exhibits clustering and endocytosis of membrane receptors in response to the plant lectin concanavalin A, but erythrocytes from adults do not. Because the phosphorylation of spectrin has been postulated to influence protein mobility in human erythrocyte membranes, the phosphorylation of spectrin was compared in intact neonatal and adult human erythrocytes. No difference in spectrin phosphorylation was seen. The addition of concanavalin A under conditions which produce protein mobility resulted in no change in spectrin phosphorylation.  相似文献   

9.
The effects of serum and human lipoproteins (HDL, VLDL, LDL) were investigated on the intraerythrocytic cycle of P. falciparum using in vitro synchronized cultures. The reinvasion process of erythrocytes by merozoites and the development until the young trophozoite stage are independent of serum components. In the absence of serum, schizogony did not occur. However, addition of serum before the 24th hour of culture in basal medium restores a normal schizogony. Serum replacement by the different lipoprotein fractions showed that only the HDL fraction was able to assure a complete schizogony as well as a normal erythrocyte reinvasion. No division was observed with the apolipoproteins.  相似文献   

10.
The cholesterol transfer between human erythrocytes and main classes of serum lipoproteins (LP) from healthy donors and artery-coronary disease patients was studied (artery-coronary disease is the main manifestation of atherosclerosis). It is shown that low-density lipoproteins (LDL) are capable of transporting cholesterol to erythrocytes, which lack the specific receptors for LDL. The cell cholesterol content in comparison with erythrocytes incubated without LDL was increased by 11.4%. The effect was even higher in case of LDL, isolated from serum of artery-coronary subjects (the cell cholesterol content was increased by 33.8%). High-density lipoproteins (HDL) accept cholesterol from cell membranes. However, cholesterol-accepting properties of HDL from artery-coronary disease patients were suppressed as compared with normal HDL. Both discovered events must promote the cholesterol accumulation in cell membranes in atherosclerosis. As it is shown by the spin probe method, lipid peroxidation (LPO) causes the disturbance of the structural organization of LP and as the consequence of that--the increase of LDL cholesterol-donating ability and the decrease of HDL cholesterol-accepting ability. The greater LDL are oxidized, the more cholesterol they transport to erythrocytes during incubation. The greater is the level of HDL peroxidation, the stronger their cholesterol-accepting function is suppressed. These results suggest that LPO can play an important role in LP modification, the disturbance of their interaction with cell surface and the cholesterol accumulation in cells in atherosclerosis.  相似文献   

11.
Membrane protein modification can change cell surface properties which canbe correlated with altered macrophage-erythrocyte interactions. Mouseerythrocytes were incubated in phosphate buffer for different times toinduce protein modification. Mouse erythrocyte membrane changes wereanalyzed by infrared analyses and gel electrophoresis. Proteolyticdigestion of membrane proteins was observed. After 22 hours preliminaryincubation, the number of erythrocytes adhering to a monolayer ofmacrophages reached a maximum, the majority of which had not beenphagocytosed. Most of the erythrocytes incubated for 40 hours underwentphagocytosis after adhesion to the macrophages.  相似文献   

12.
Based primarily on studies of human erythrocytes, current theories of the structure and organization of erythrocyte membrane localize spectrin to the membrane cytoplasmic surface. Affinity purified anti-sheep spectrin antibodies were used in indirect immunofluorescence studies of intact erythrocytes from various vertebrate species and inside-out and right-side-out impermeable sheep erythrocyte vesicles. This investigation detected immunologically reactive external and potentially transmembranal determinant(s) of the sheep erythrocyte spectrin "assembly." Parallel studies using anti-sheep and anti-human spectrin antibodies, as well as 125I surface-labelling studies of intact sheep and human erythrocytes, indicated that this particular membrane orientation of spectrin was evident in sheep but not in human erythrocytes. Antisera containing antibodies to the external portion of this spectrin "assembly" demonstrated external fluorescence to a variable degree on some, but not all, vertebrate erythrocytes surveyed, confirming that the sheep erythrocyte was not the only exception. It is suggested that there may be subtle species variability in the intermolecular associations of the spectrin "assembly" with(in) the erythrocyte membrane not requiring alterations of the spectrin molecule itself.  相似文献   

13.
The hydrophobic probe phenylisothiocyanate is utilized for chemical modification of human erythrocyte band 3 protein. The binding of phenylisothiocyanate to this protein is characterized in whole erythrocytes, erythrocyte ghost membranes and in isolated band 3 protein. The label, reactive with nucleophiles in their deprotonated form, is found in all three preparations to be covalently bound to band 3 protein. Under saturation conditions, 4–5 mol phenylisothiocyanate are covalently bound per mol protein (molecular weight 95 000). The described modification effects inhibition of phosphate entry into erythrocytes. 50% inhibition of phosphate transport is obtained following a preincubation of erythrocytes with 0.45 mM phenylisothiocyanate. Both phenylisothiocyanate binding and transport inhibition are saturating processes. The relationship of the two parameters is non-linear.  相似文献   

14.
We have previously shown that plasma high density lipoproteins (HDL) stimulate release of prostacyclin, measured as its stable metabolite, 6-keto-PGF1 alpha, by cultured porcine aortic endothelial cells. The present experiments were designed to elucidate the contribution of HDL lipids to endothelial cellular phospholipid pools and to prostacyclin synthesis. In experiments with reconstituted HDL, both the lipid and protein moieties were required to stimulate prostacyclin release in amounts equivalent to the native HDL particle. Endothelial cells incorporated label from reconstituted HDL containing cholesteryl [1-14C]arachidonate into the cellular neutral and phospholipid pools as well as into 6-keto-PGF1 alpha and PGE2. Labeled arachidonate incorporated into endothelial cell lipids from reconstituted HDL containing cholesteryl [1-14C]arachidonate was also metabolized to prostaglandins after the cells were exposed to the calcium ionophore, A-23187. Both rat and human HDL which stimulated 6-keto-PGF1 alpha release (rat greater than human) increased the weight percentage of arachidonate in endothelial cell phospholipids; phospholipid arachidonate in the enriched cells fell after exposure to the phospholipase activator, A-23187, with release of 6-keto-PGF1 alpha which was greater than in control cells. Rat HDL that was depleted of cholesteryl arachidonate (achieved by incubation with human low density lipoproteins (LDL) in the presence of cholesteryl ester transfer protein) stimulated 6-keto-PGF1 alpha release less than native rat HDL. LDL enriched in cholesteryl arachidonate stimulated 6-keto-PGF1 alpha release more than native LDL. ApoE-depleted HDL also stimulated 6-keto-PGF1 alpha release more than apoE-rich HDL suggesting the apoE receptor was not involved in the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

16.
1. We have compared the concentration and chemical composition of carp and human plasma lipoproteins and studied their interaction with human fibroblast LDL receptors. 2. The main lipoproteins in carp are of high density (HDL) in contrast to low density lipoproteins (LDL) in human. 3. Carp lipoproteins are devoid of apolipoprotein (apo) E, a major ligand for interaction with LDL receptors in mammals. 4. Carp very low density lipoproteins (VLDL) and LDL but not HDL nor apoA-I cross react with human LDL in their interaction with LDL receptors on human cultured fibroblasts. 5. Carp liver membranes possess high affinity receptors that are saturable and have calcium dependent ligand specificity (apoB and apoE) similar to human LDL receptor. Carp VLDL and LDL but not HDL nor its major apolipoprotein complexed to L-alpha-phosphatidylcholine dimyristoyl (apoA-I-DMPC) competed with the specific binding of human LDL to this receptor.  相似文献   

17.
A molecular filtration procedure for preparing large quantities of human erythrocyte ghost membranes is presented. Hemolysate ghost membranes are rapidly cycled in the retantate channel of the filtration apparatus, while hemoglobin is removed s it pass through Pellicon filters into the filtrate. Several-liter quantities of washed packed erythrocytes can be processed in a few hours with this system and the filtration procedure does not appear to alter erythrocyte or ghost membranes. Intact erythrocytes in isotonic solution can be circulated through the retentate channel for 16 h with only 3% hemolysis and with preservation of their orginal morphology in scanning electron microscopy. Ghost membranes isolated by the procedure are virtually identical in morphology, polypeptide composition and acetylcholinesterase content to membranes isolated by conventional centrifugation techniques.  相似文献   

18.
The effects of adenosine 3':5'-monophosphate (cyclic AMP) on the phosphorylation of membrane proteins in intact rabbit and human erythrocytes were investigated. The addition of cyclic AMP to intact human or rabbit erythrocytes results in an increase in the incorporation of ortho[32P]phosphate into several membrane protein components which are known to serve as substrates for the cyclic-AMP-dependent protein kinases. Thus this increase in protein phsophorylation is probably due to the activation of either soluble or membrane-bound cyclic-AMP-dependent protein kinases. Incubation of human erythrocytes in the presence of ortho [32P]phosphate and cyclic AMP also leads to the phosphorylation of a membrane protein component, band 7, which has not been previously detected in the autophosphorylation of isolated ghosts. Since rabbit erythrocyte membranes do not contain any cyclic-AMP-dependent protein kinase, the results suggest that cytoplasmic kinases also play a role in the phosphorylation of membrane proteins in intact cells.  相似文献   

19.
The ability of protein 4.1 to stimulate the binding of spectrin to F-actin has been compared by cosedimentation analysis for three avian (erythrocyte, brain, and brush border) and two mammalian (erythrocyte and brain) spectrin isoforms. Human erythroid protein 4.1 stimulated actin binding of all spectrins except the brush border isoform (TW 260/240). These results suggested that the beta subunit determined the protein 4.1 sensitivity of the heterodimer, since all avian alpha subunits are encoded by a single gene. Tissue-specific posttranslational modification of the alpha subunit was excluded by examining the properties of hybrid spectrins composed of the purified alpha subunit from avian erythrocyte or brush border spectrin and the beta subunit of human erythrocyte spectrin. A hybrid composed of avian brush border alpha and human erythroid beta spectrin ran on nondenaturing gels as a discrete band, migrating near human erythroid spectrin tetramers. The actin-binding activity of this hybrid was stimulated by protein 4.1, while either chain alone was devoid of activity. Therefore, although both subunits were required for actin binding, the sensitivity of the spectrin-actin interaction to protein 4.1 is a property uniquely bestowed on the heterodimer by the beta subunit. The singular insensitivity of brush border spectrin to stimulation by erythroid protein 4.1 was also consistent with the absence of proteins in avian intestinal epithelial cells which were immunoreactive with polyclonal antisera sensitive to all of the known avian and human erythroid 4.1 isoforms.  相似文献   

20.
Lipoprotein cholesterol (C) supports the high rate of progesterone production by the human placenta as endogenous cholesterol synthesis is low. To study underlying mechanisms whereby lipoproteins, including high density lipoprotein-2 (HDL2), stimulate progesterone secretion, trophoblast cells were isolated from human term placentas and maintained in primary tissue culture. Lipoproteins were added at several concentrations and medium progesterone secretion was determined. HDL2 (d 1.063-1.125 g/ml) as well as low density lipoproteins (LDL) (d 1.019-1.063 g/ml) but not HDL3 (d 1.125-1.21 g/ml) stimulated progesterone secretion in a dose-dependent manner, with HDL2 cholesterol entering the cell and serving as substrate for progesterone synthesis. Conversely, LDL and HDL2 produced a significant decrease in [2-14C]acetate incorporation into cell cholesterol. Cholesterol-depleted lipoproteins did not stimulate progesterone secretion. The stimulating effect of LDL was abolished by apolipoprotein modification by cyclohexanedione or reductive methylation and by the addition of anti-LDL receptor antibody or 10 microM chloroquine to the medium. [14C]acetate conversion into cholesterol was accelerated by these procedures. However, HDL2 stimulation of progesterone secretion and reduction of [14C]acetate incorporation into cholesterol was not blocked by chemical modification of apolipoproteins, anti-LDL receptor antibody, or chloroquine. Treatment of HDL2 with tetranitromethane or dimethylsuberimidate also did not block the stimulation of progesterone. To determine whether the capacity of HDL2 to deliver cholesterol to the trophoblast cells was restricted to subfractions differing in apoE content, HDL2 was chromatographed on heparin-Sepharose and three fractions (A, B, and C) were obtained. Fraction A was poorest in apoE and free cholesterol, fraction B contained the majority of cholesterol, and fraction C was the richest in apoE and free cholesterol. When added to trophoblast cells, fraction A stimulated little progesterone secretion, fraction B stimulated moderately, and fraction C did so greatly. Modification of these subfractions with cyclohexanedione or reductive methylation did not inhibit these effects. In conclusion, HDL2 stimulated progesterone secretion in human trophoblast cell culture. Contrary to LDL, the HDL effect was not mediated by apolipoproteins or the LDL receptor pathway. The ability of HDL2 to stimulate progesterone secretion is consistent with the passive transfer of free cholesterol to the cell membrane from a physicochemically specific subfraction of HDL. This mechanism may be an auxiliary source of cholesterol for human steroidogenic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号