共查询到18条相似文献,搜索用时 93 毫秒
1.
细胞凋亡是造成病毒性心肌炎(VMC)发病过程中心肌损伤的重要因素;表没食子儿茶素没食子酸酯(EGCG)对缺血再灌注引起的细胞凋亡具有抑制作用,但是否抑制VMC发病过程中的心肌细胞凋亡尚不明确.因此,本研究将分析EGCG对VMC小鼠细胞凋亡的影响及分子机制.BALB/c小鼠随机分为对照组、VMC组(腹腔注射CVB3悬液造模)、VMC+EGCG组(腹腔注射CVB3悬液造模后腹腔注射EGCG)、VMC+EGCG+LY组(腹腔注射CVB3悬液造模后腹腔注射EGCG及P13K抑制剂LY294002).检测血清心肌损伤标志物肌钙蛋白I(cTnI)及乳酸脱氢酶(LDH),心肌中CVB3滴度及RNA表达、HE染色、凋亡基因及p-PI3K、p-PKB表达.结果显示,与对照组比较,VMC组血清cTnI、LDH含量、心肌中CVB3滴度及RNA表达、细胞凋亡率、cleaved caspase-3表达升高,心肌中Survivin、p-PI3K、p-PKB表达降低(P<0.05);与VMC组比较,VMC+EGCG组血清cTnI、LDH含量及心肌中细胞凋亡率、cleaved caspase-3表达降低,心肌中Survivin、p-PI3K、p-PKB表达升高(P<0.05),心肌中CVB3滴度及RNA表达无明显变化(P>0.05);与VMC+EGCG组比较,VMC+EGCG+LY组血清cTnI、LDH含量、心肌中细胞凋亡率、cleaved caspase-3表达升高,心肌中Survivin、p-PI3K、p-PKB表达降低(P<0.05),心肌中CVB3滴度及RNA表达无明显变化(P>0.05).以上结果表明EGCG对VMC小鼠心肌细胞凋亡具有抑制作用且该作用与激活PI3K/PKB通路有关. 相似文献
2.
柯萨奇病毒B3(Coxsackievirus B3,CVB3)是引起病毒性心肌炎的主要病毒株,CVB3感染能够通过激活炎症反应及氧化应激反应来造成心肌细胞损伤。白藜芦醇(Resveratrol,RES)是具有抗炎、抗氧化作用的多酚化合物,已经被证实能够减轻缺血缺氧、缺氧复氧、脂多糖、过氧化氢等病理因素引起的心肌细胞损伤,但RES对CVB3感染引起心肌细胞损伤的保护作用尚未明确。为了研究RES通过核因子-E2相关因子2(Nuclear factor E2-related factor 2,Nrf2)/抗氧化反应元件(Antioxidant response element,ARE)通路减轻CVB3感染乳鼠心肌细胞的炎症和氧化应激反应,本研究采用原代培养大鼠乳鼠心肌细胞,分为DMEM处理的对照组、CVB3感染的CVB3组、CVB3感染及RES处理的RES组、CVB3感染及RES、Nrf2抑制剂鸦胆苦醇处理的RES+鸦胆苦醇组、CVB3感染及RES、血红素加氧酶-1(Heme oxygenase-1,HO-1)抑制剂锌原卟啉-9(Zinc protoporphyrin-9,ZnPP9)处理的... 相似文献
3.
小檗碱是具有细胞保护作用的生物碱,能够在柯萨奇病毒B3(CVB3)感染引起的病毒性心肌炎小鼠中发挥心肌保护作用,但具体的机制未阐明。在内皮细胞中,小檗碱通过c-Jun氨基末端激酶(JNK)通路抑制细胞凋亡,因此本研究将分析小檗碱通过JNK通路调控CVB3感染心肌细胞凋亡的作用。H9c2心肌细胞分为对照组(不含药物的DMEM处理)、模型组(含CVB3的DMEM处理)、小檗碱组(含CVB3及小檗碱的DMEM处理)、小檗碱+JNK质粒组(含CVB3、小檗碱、JNK质粒的DMEM处理),检测细胞凋亡率、肿瘤坏死因子-α(TNF-α)、白介素-6(IL-6)、活性氧(ROS)、丙二醛(MDA)的含量、p-JNK、cleaved caspase-3、bax、bcl-2的表达量。结果显示,模型组的细胞凋亡率、TNF-α、IL-6、ROS、MDA的含量、p-JNK、cleaved caspase-3、bax的表达量高于对照组,bcl-2的表达量低于对照组(P<0.05);小檗碱组的细胞凋亡率、TNF-α、IL-6、ROS、MDA的含量、p-JNK、cleaved caspase-3、bax的表达量低于模型组,bcl-2的表达量高于模型组(P<0.05);小檗碱+JNK质粒组的细胞凋亡率、TNF-α、IL-6、ROS、MDA的含量、p-JNK、cleaved caspase-3、bax的表达量高于小檗碱组,bcl-2的表达量低于小檗碱组(P<0.05)。以上结果表明小檗碱对CVB3感染心肌细胞的凋亡具有抑制作用,抑制JNK通路是介导这一作用可能的分子机制。 相似文献
4.
本研究探索柯萨奇病毒B3(Coxsackievirus B3,CVB3)感染引起的自噬与病毒复制之间的关系。CVB3感染HeLa细胞,并在病毒感染后6 h、8 h和10 h时检测LC3-Ⅰ蛋白、LC3-Ⅱ蛋白和p62蛋白的表达水平。结果显示CVB3病毒感染促使LC3-Ⅱ/LC3-Ⅰ比值升高,同时降低p62蛋白的表达。分别将自噬诱导剂雷帕霉素(Rapamy-cin)、自噬抑制剂3-甲基腺嘌呤(3-Methyladenine,3MA)或溶酶体抑制剂阿洛司他丁(Aloxistatin,E46D)预处理HeLa细胞2 h,CVB3感染药物处理细胞并在病毒感染6 h后收集细胞、检测CVB3病毒VP1蛋白的表达。结果显示雷帕霉素和E64D促使CVB3病毒VP1蛋白表达增加,而3MA降低CVB3病毒VP1蛋白的表达。本研究得出结论 CVB3病毒感染诱导自噬进而促进病毒复制。 相似文献
5.
目的 研究观察体外合成siRNA对培养HELA细胞中柯萨奇B3病毒(Coxsackievirus B3,CVB3)的影响。方法根据siRNA靶序列设计原则,针对编码CVB3病毒聚合酶、VP1蛋白和5’非编码区基因组,特异性地体外合成三对siRNA,同时合成一对与CVB基因组序列无关的阴性对照siRNA。利用脂质体转染进入Hela细胞,用CVB3感染培养HELA细胞,观察转染后HELA细胞病变;采用RT-PCR技术检测感染CVB3各组的病毒RNA;用免疫荧光技术检测各组CVB3蛋白的表达;并用培养细胞上清液再感染HELA细胞观察病毒滴度。结果针对CVB3病毒聚合酶的siR-NA能有效的抑制病毒的复制和CVB3蛋白的表达,并能抑制病毒的再感染;而针对VP1蛋白和5’非编码区的siRNA能部分抑制病毒的复制和CVB3蛋白的表达。结论我们设计合成针对编码CVB3病毒聚合酶基因组的siRNA能有效抑制CVB3病毒复制和表达。 相似文献
6.
将编码柯萨奇B3病毒(CVB3)衣壳蛋白VP1和VP2的基因,分别克隆到具有7.5k启动子的痘苗病毒表达载体pGJP5上;将CVB3衣壳蛋白全基因克隆到具有T7启动子的痘苗表达载体pTM1上,并筛先到相应的重组痘苗病毒VVP1、VVP2和VVP/4/2/3/1。VVP1和VVP2稳定表达产物为CVB3衣壳蛋白VP1和VP2,而VVP4/2/3/1为一无分泌性的多聚蛋白,且这三种表达产物均属无分泌性 相似文献
7.
柯萨奇病毒 (Coxsackievirus ,CV)属小核糖核酸病毒科肠道病毒属 ,根据其对乳鼠的致病能力不同分为A、B两组 ,A组病毒能够引起乳鼠广泛性肌炎及坏死 ,B组病毒可致局灶性肌炎。研究表明 ,CVB是病毒性心肌炎的主要病因[1,2 ] 。为寻找一种有效的抗CVB3 治疗药物 ,笔者通过体外实验发现大黄注射液有抗柯萨奇病毒作用[3] ,并根据中药大黄五脏皆治的理论 ,本研究进一步利用CVB3 病毒性心肌炎小鼠模型观察了该药的抗病毒作用。现报告如下 :1 材料与方法1.1 细胞Hep 2细胞由武汉大学典型培养物保藏中心提供。细… 相似文献
8.
病毒性心肌炎是心血管系统的常见病与多发病。对病毒引起的心肌细胞病理改变及机制的探讨一直是该领域的研究热点。自从科学家报道“凋亡”这种细胞死亡形式以来,为病毒性疾病研究者找到了一条新的研究途径。此后,许多国内外基础医学研究者通过不同方法对细胞受到病毒侵袭后的死亡形式进行研究。目前认为,病毒性心肌炎急性期机体心肌组织的确存在凋亡, 相似文献
9.
为了研究慢病毒介导的shRNA(Short hairpin RNA,shRNA)在柯萨奇B组3型病毒(Coxsackievirus B3,CVB3)导致的心肌炎小鼠模型中的抗病毒作用,合成针对CVB3基因组3753~3771区域的慢病毒Lenti-sh3753,感染HeLa细胞后感染CVB3病毒,通过荧光显微镜观测shRNA的表达和病毒致细胞病变效应,并测定培养上清中的病毒滴度,将慢病毒Lenti-sh3753感染BALB/c小鼠后感染CVB3病毒,观察小鼠的存活率,心脏组织中的病毒滴度和病理变化。结果发现Lenti-sh3753能在HeLa细胞中表达shRNA,并能有效抑制细胞中病毒RNA的复制。在小鼠模型上,Lenti-sh3753能提高小鼠的存活率,降低心脏中的病毒含量,从而减轻病理反应。这些结果提示,Lenti-sh3753在细胞和动物模型中能针对性地降解CVB3病毒RNA,明显降低病毒滴度,有效控制病毒感染。 相似文献
10.
肿瘤对人类的生存危害极大,恶性肿瘤的治疗一直是世界性的难题。肿瘤血管生成是肿瘤赖以生长、转移的基础,受多种因子的调节。目前发现有多条信号网络参与调控肿瘤血管生成,PI3K/Akt是其中比较重要的一条信号传导途径,该通路与肿瘤的发生发展密切相关。本文介绍了PI3K/Akt信号通路的结构组成与活性调控,并重点阐述PI3K/Akt信号途径与肿瘤血管生成的关系。 相似文献
13.
Prolonged exposure to volatile anesthetics, such as isoflurane and sevoflurane, causes neurodegeneration in the developing animal brains. Recent studies showed that dexmedetomidine, a selective α2-adrenergic agonist, reduced isoflurane-induced cognitive impairment and neuroapoptosis. However, the mechanisms for the effect are not completely clear. Thus, we investigated whether exposure to isoflurane or sevoflurane at an equivalent dose for anesthesia during brain development causes different degrees of neuroapoptosis and whether this neuroapoptosis is reduced by dexmedetomidine via effects on PI3K/Akt pathway that can regulate cell survival. Seven-day-old (P7) neonatal Sprague-Dawley rats were randomly exposed to 0.75% isoflurane, 1.2% sevoflurane or air for 6 h. Activated caspase-3 was detected by immunohistochemistry and Western blotting. Phospho-Akt, phospho-Bad, Akt, Bad and Bcl-xL proteins were detected by Western blotting in the hippocampus at the end of exposure. Also, P7 rats were pretreated with various concentrations of dexmedetomidine alone or together with PI3K inhibitor {"type":"entrez-nucleotide","attrs":{"text":"LY294002","term_id":"1257998346","term_text":"LY294002"}}LY294002, and then exposed to 0.75% isoflurane. Terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) and activated caspase-3 were used to detect neuronal apoptosis in their hippocampus. Isoflurane, not sevoflurane at the equivalent dose, induced significant neuroapoptosis, decreased the levels of phospho-Akt and phospho-Bad proteins, increased the expression of Bad protein and reduced the ratio of Bcl-xL/Bad in the hippocampus. Dexmedetomidine pretreatment dose-dependently inhibited isoflurane-induced neuroapoptosis and restored protein expression of phospho-Akt and Bad as well as the Bcl-xL/Bad ratio induced by isoflurane. Pretreatment with single dose of 75 µg/kg dexmedetomidine provided a protective effect similar to that with three doses of 25 µg/kg dexmedetomidine. Moreover, {"type":"entrez-nucleotide","attrs":{"text":"LY294002","term_id":"1257998346","term_text":"LY294002"}}LY294002, partly inhibited neuroprotection of dexmedetomidine. Our results suggest that dexmedetomidine pretreatment provides neuroprotection against isoflurane-induced neuroapoptosis in the hippocampus of neonatal rats by preserving PI3K/Akt pathway activity. 相似文献
14.
Magnesium has been investigated as a biodegradable metallic material. Increased concentrations of Mg 2+ around magnesium implants due to biodegradation contribute to its satisfactory osteogenic capacity. However, the mechanisms underlying this process remain elusive. We propose that activation of the PI3K/Akt signalling pathway plays a role in the Mg 2+-enhanced biological behaviours of osteoblasts. To test this hypothesis, 6, 10 and 18 mM Mg 2+ was used to evaluate the stimulatory effect of Mg 2+ on osteogenesis, which was assessed by evaluating cell adhesion, cell viability, ALP activity, extracellular matrix mineralisation and RT-PCR. The expression of p-Akt was also determined by western blotting. The results showed that 6 and 10 mM Mg 2+ elicited the highest stimulatory effect on cell adhesion, cell viability and osteogenic differentiation as evidenced by cytoskeletal staining, MTT assay results, ALP activity, extracellular matrix mineralisation and expression of osteogenic differentiation-related genes. In contrast, 18 mM Mg 2+ had an inhibitory effect on the behaviour of osteoblasts. Furthermore, 10 mM Mg 2+ significantly increased the phosphorylation of Akt in osteoblasts. Notably, the aforementioned beneficial effects produced by 10 mM Mg 2+ were abolished by blocking the PI3K/Akt signalling pathway through the addition of wortmannin. In conclusion, these results demonstrate that 6 mM and 10 mM Mg 2+ can enhance the behaviour of osteoblasts, which is at least partially attributed to activation of the PI3K/Akt signalling pathway. Furthermore, a high concentration (18 mM Mg 2+) showed an inhibitory effect on the biological behaviour of osteoblasts. These findings advance the understanding of cellular responses to biodegradable metallic materials and may attract greater clinical interest in magnesium. 相似文献
15.
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the main causes of neonatal disability and death. As a derivative of N-acetylserotonin, N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC) can easily cross the blood–brain barrier and have a long half-life in the brain. In this study, the hypothesis was verified that HIOC plays a neuroprotective role in the HIE model and its potential mechanism was evaluated. Firstly, an HIE rat model was established to deliver HIOC, revealing that it can reduce cerebral infarction volume, cerebral edema, and neuronal apoptosis. The results of immunofluorescence staining, Western blots and RT-PCR further showed that HIOC could inhibit the activation of the NLRP3 inflammasome and the expression of related proteins. Finally, the activation of the phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by HIOC was verified in vitro and in vivo. It was discovered that HIOC could increase the nuclear translocation of Nrf2, and that this induction can be reversed by the PI3K/Akt pathway inhibitor LY294002. In general terms, the neuroprotective effect of HIOC was confirmed in the HIE model, which is related to the activation of the Pi3k/Akt/Nrf2 signal pathway and the inhibition of the NLRP3 inflammasome. 相似文献
16.
Oxidative glutamate toxicity is involved in diverse neurological disorders including epilepsy and ischemic stroke. Our present work aimed to assess protective effects of huperzine A (HupA) against oxidative glutamate toxicity in a mouse-derived hippocampal HT22 cells and explore its potential mechanisms. Cell survival and cell injury were analyzed by MTT method and LDH release assay, respectively. The production of ROS was measured by detection kits. Protein expressions of BDNF, phosphor-TrkB (p-TrkB), TrkB, phosphor-Akt (p-Akt), Akt, phosphor-mTOR (p-mTOR), mTOR, phosphor-p70s6 (p-p70s6) kinase, p70s6 kinase, Bcl-2, Bax, and β-actin were assayed via Western blot analysis. Enzyme-linked immunosorbent assay was employed to measure the contents of nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Our findings illustrated 10 μM HupA for 24 h significantly protected HT22 from cellular damage and suppressed the generation of ROS. Additionally, after treating with LY294002 or wortmannin [the selective inhibitors of phosphatidylinositol 3 kinase (PI3K)], HupA dramatically prevented the down-regulations of p-Akt, p-mTOR, and p-p70s6 kinase in HT22 cells under oxidative toxicity. Furthermore, it was observed that the protein levels of BDNF and p-TrkB were evidently enhanced after co-treatment with HupA and glutamate in HT22 cells. The elevations of p-Akt and p-mTOR were abrogated under toxic conditions after blockade of TrkB by TrkB IgG. Cellular apoptosis was significantly suppressed (decreased caspase-3 activity and enhanced Bcl-2 protein level) after HupA treatment. It was concluded that HupA attenuated oxidative glutamate toxicity in murine hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway. 相似文献
17.
The activation of PI3K (phosphoinositide 3-kinase) family members is a universal event in response to virtually all cytokines, growth factors and hormones. As a result of formation of PtdIns with an added phosphate at the 3 position of the inositol ring, activation of the protein kinases PDK1 (phosphoinositide-dependent kinase 1) and PKB (protein kinase B)/Akt occurs. The PI3K/PKB pathway impinges upon a remarkable array of intracellular events that influence either directly or indirectly whether or not a cell will undergo apoptosis. In this review, the many ways in which PI3K/PKB can control these processes are summarized. Not all of the events described will necessarily play a role in any one cell type, but a subset of these events is probably essential for the survival of every cell. 相似文献
18.
Src and the mammalian target of rapamycin (mTOR) signaling are commonly activated in non-small cell lung cancer (NSCLC) and hence potential targets for chemotherapy. Although the combined use of Src inhibitor Dasatinib with other chemotherapeutic agents has shown superior efficacy for cancer treatment, the mechanisms that lead to enhanced sensitivity of Dasatinib are not completely understood. In this study, we found that Rapamycin dramatically enhanced Dasatinib-induced cell growth inhibition and cell cycle G1 arrest in human lung adenocarcinoma A549 cells without affecting apoptosis. The synergistic effects were consistently correlated with the up-regulation of cyclin-dependent kinases inhibitor proteins, including p16, p19, p21, and p27, as well as the repression of Cdk4 expression and nuclear translocation. Mechanistic investigations demonstrated that FoxO1/FoxO3a and p70S6K/4E-BP1, the molecules at downstream of Src-PI3K-Akt and mTOR signaling, were significantly suppressed by the combined use of Dasatinib and Rapamycin. Restraining Src and mTOR with small interfering RNA in A549 cells further confirmed that the Src/PI3K/mTOR Pathway played a crucial role in enhancing the anticancer effect of Dasatinib. In addition, this finding was also validated by a series of assays using another two NSCLC cell lines, NCI-H1706 and NCI-H460. Conclusively, our results suggested that the combinatory application of Src and mTOR inhibitors might be a promising therapeutic strategy for NSCLC treatment. 相似文献
|