共查询到20条相似文献,搜索用时 0 毫秒
1.
Paula M. D. Fitzgerald Alexander McPherson Frances A. Jurnak Andrew H. J. Wang Frank Kolpak Alexander Rich Ian Molineux 《Journal of cellular biochemistry》1979,10(4):479-489
Complexes of the gene 5 protein from bacteriophage fd with a variety of oligodeoxynucleotides, ranging in length from two to eight and comprised of several different sequences, have been formed and crystallized for X-ray diffraction analysis. The crystallographic parameters of four different unit cells, all of which are based on hexagonal packing arrangements, indicate that the fundamental unit of the complex is composed of six gene 5 protein dimers. We believe this aggregate has 622 point group symmetry and is a ring formed by end-to-end closure of a linear array of six dimers. From our results we have proposed a double-helix model for the gene 5 protein–DNA complex in which the protein forms a spindle or core around which the DNA is spooled. Currently 5.0-Å X-ray diffraction data from one of the crystalline complexes is being analyzed by molecular replacement techniques to obtain a direct image of the protein–nucleic acid complex. 相似文献
2.
We used a mutant gene 5 protein (g5p) to assign and interpret overlapping CD bands of protein · nucleic acid complexes. The analysis of overlapping protein and nucleic acid CD bands is a common challenge for CD spectroscopists, since both components of the complex may change upon binding. We have now been able to more confidently resolve the bands of nucleic acids complexed with the fd gene 5 protein by exploiting a mutant gene 5 protein that has an insignificant change in tyrosine optical activity at 229 nm upon binding to nucleic acids. We have studied the interactions of the mutant Y34F g5p (Tyr-34 substituted with phenylalanine) with poly[r(A)], poly[d(A)], and fd single-stranded DNA (ssDNA). Our results showed the following: (1) The 205–300 nm spectrum of poly[r(A)] saturated with the Y34F mutant (P/N = 0.25) was essentially the sum of the spectra of poly[r(A)] at a high temperature plus the spectrum of the free protein, except for a minor negative band at 257 nm. (2) The spectra of poly[d(A)] and fd ssDNA saturated with the mutant protein at a P/N = 0.25, minus the spectra of the free nucleic acids at a high temperature, also essentially equaled the spectrum of the free protein in the 205–245 nm region. (3) While the overall secondary structure of the Y34F protein did not change upon binding to any of these nucleic acids, there could be changes in the environment of individual aromatic residues. (4) Nucleic acids complexed with the g5p are unstacked (as if heated) and (in the cases of the DNAs) perturbed as if part of a dehydrated double-stranded DNA. (5) Difference spectra revealed regions of the spectrum specific for the particular nucleic acid, the protein, and whether g5p was bound to DNA or RNA. © 1997 John Wiley and Sons, Inc. Biopoly 42: 337–348, 1997 相似文献
3.
Using ultraviolet light, both the 33,000-dalton single-stranded DNA-binding protein from T4 bacteriophage (gp32) as well as a 25,000-dalton limited trypsin cleavage product of gp32 (core gp32*) that retains high affinity for single-stranded DNA can be crosslinked to an oligodeoxynucleotide, p(dT)8. After photolysis, a single tryptic peptide crosslinked to p(dT)8 was isolated by anion-exchange high-performance liquid chromatography. Gas-phase sequencing of this modified peptide gave the following sequence: Gln-Val-Ser-Gly-(X)-Ser-Asn-Tyr-Asp-Glu-Ser-Lys, which corresponds to residues 179-190 in gp32. Based on the absence of the expected phenylthiohydantoin derivative of phenylalanine 183 at cycle 5 (X) we infer that crosslinking has occurred at this position and that phenylalanine 183 is at the interface of the gp32:p(dT)8 complex in an orientation that allows covalent bond formation with the thymine radical produced by ultraviolet irradiation. 相似文献
4.
The three-dimensional structure of the gene 5 DNA binding protein (G5BP) from bacteriophage fd has been determined from a combination of multiple isomorphous replacement techniques, partial refinements and deleted fragment difference Fourier syntheses. The structure was refined using restrained parameter least-squares and difference Fourier methods to a final residual of R = 0.217 for the 3528 statistically significant reflections present to 2.3 A resolution. In addition to the 682 atoms of the protein, 12 solvent molecules were included. We describe here the dispositions and orientations of the amino acid side-chains and their interactions as visualized in the G5BP structure. The G5BP monomer of 87 peptide units is almost entirely in the beta-conformation, organized as a three-stranded sheet, a two-stranded beta-ribbon and a broad connecting loop. There is no alpha-helix present in the molecule. Two G5BP monomers are tightly interlocked about an intermolecular dyad axis to form a compact dimer unit of about 55 A X 45 A X 36 A. The dimer is characterized by two symmetry-related antiparallel clefts that traverse the monomer surfaces essentially perpendicular to the dyad axis. From the three-stranded antiparallel beta-sheet, formed from the first two-thirds of the sequence, extend three tyrosine residues (26, 34, 41), a lysine (46) and two arginine residues (16, 21) that, as indicated by other physical and chemical experiments, are directly involved in DNA binding. Other residues likely to share binding responsibility are arginine 80 extending from the beta-ribbon and phenylalanine 73 from the tip of this loop, but as provided, however, by the opposite monomer within each G5BP dimer pair. Thus, both symmetry-related DNA binding sites have a composite nature and include contributions from both elements of the dimer. The gene 5 dimer is clearly the active binding species, and the two monomers within the dyad-related pair are so structurally contiguous that one cannot be certain whether the isolated monomer would maintain its observed crystal structure. This linkage is manifested primarily as a skeletal core of hydrophobic residues that extends from the center of each monomer continuously through an intermolecular beta-barrel that joins the pair. Protruding from the major area of density of each monomer is an elongated wing of tenuous structure comprising residues 15 through 32, which is, we believe, intimately involved in DNA binding. This wing appears to be dynamic and mobile, even in the crystal and, therefore, is likely to undergo conformational change in the presence of the ligand. 相似文献
5.
In vivo, replicative DNA polymerases are made more processive by their interactions with accessory proteins at the replication fork. Single-stranded DNA binding protein (SSB) is an essential protein that binds tightly and cooperatively to single-stranded DNA during replication to remove adventitious secondary structures and protect the exposed DNA from endogenous nucleases. Using information from high resolution structures and biochemical data, we have engineered a functional chimeric enzyme of the bacteriophage RB69 DNA polymerase and SSB with substantially increased processivity. Fusion of RB69 DNA polymerase with its cognate SSB via a short six amino acid linker increases affinity for primer-template DNA by sixfold and subsequently increases processivity by sevenfold while maintaining fidelity. The crystal structure of this fusion protein was solved by a combination of multiwavelength anomalous diffraction and molecular replacement to 3.2 A resolution and shows that RB69 SSB is positioned proximal to the N-terminal domain of RB69 DNA polymerase near the template strand channel. The structural and biochemical data suggest that SSB interactions with DNA polymerase are transient and flexible, consistent with models of a dynamic replisome during elongation. 相似文献
6.
Overproduced and purified receptor binding protein pb5 of bacteriophage T5 binds to the T5 receptor protein FhuA 总被引:2,自引:0,他引:2
Abstract A promotor-less oad gene of bacteriophage T5, encoding the receptor binding protein pb5, was cloned into pT7-3 under the control of phage T7 promoter Φ10. Induction with IPTG resulted in enhanced production of pb5. Upon fractionation of the producing cells, most of the overproduced pb5 was found in the membrane fraction, which was most likely due to aggregation of the protein. The minor, soluble fraction of pb5 specifically inhibited adsorption of T5 to its FhuA receptor protein. Inhibition was also seen with trace amounts of pb5, and binding of pb5 to FhuA appeared to be almost irreversible. Purification of pb5 from the cytosolic fraction was performed by FPLC using a MonoQ column. pb5, which did not bind to the matrix of the column, was obtained in almost pure form. The purified protein also inhibited T5 adsorption. 相似文献
7.
8.
Abstract Using site-saturation mutagenesis, we have established all possible amino acid substitutions at Tyr26 and Phe73 that are compatible with biological activity of the gene 5 protein in vivo. No substitutions were found at either site that gave rise to a fully functional gene 5 protein, indicating that these two amino acid residues are crucial. However, partial activity was found if either residue was replaced by another aromatic amino acid (Y26F, Y26W, F73Y, F73W). The results suggest that both Tyr26 and Phe73 are important for base stacking in the nucleoprotein complex. The functional consequences of the removal of the hydroxyl group from Tyr26 argue that this residue may, in addition, be involved in hydrogen bond formation to confer greater stability on the complex. In contrast, the addition of such a group to Phe73 reduces activity. 相似文献
9.
Properties of the isolated gene 5 protein of bacteriophage fd 总被引:20,自引:0,他引:20
10.
The major cold shock protein from Bacillus subtilis (CspB) was overexpressed using the bacteriophage T7 RNA polymerase/promoter system and purified to apparent homogeneity from recombinant Escherichia coli cells. CspB was crystallized in two different forms using vapor diffusion methods. The first crystal form obtained with ammonium sulfate as precipitant belongs to the trigonal crystal system, space group P3(1)21 (P3(2)21) with unit cell dimensions a = b = 59.1 A and c = 46.4 A. The second crystal form is tetragonal, space group P4(1)2(1)2 (P4(3)2(1)2) with unit cell dimensions a = b = 56.9 A and c = 53.0 A. These crystals grow with polyethylene glycol 4000 as precipitant. 相似文献
11.
Herbert Axelrod Gregory DeLozier Sandra Greene Alexander McPherson 《Journal of Protein Chemistry》1985,4(4):235-243
A chemical modification of the gene 5 DNA binding protein (G5BP) from bacteriophage fd was investigated using X-ray diffraction and difference Fourier analysis. The crystalline protein was reacted with pentaammineruthenium (III) trichloride, Ru(NH3)5Cl3, a reagent believed specific for histidine residues and useful in NMR and chemical modification studies of proteins. The major ruthenium site was found by difference Fourier analysis to be 4 Å from histidine 64, the only histidine residue in the molecule. A second bipartite site, believed to be a ruthenium-anion pair, appeared to be salt-bridged to glutamic acid 40 and arginine 16. Indications were present in the difference Fourier results to suggest that the loop containing tyrosine 41 had undergone a slight conformational rearrangement to accommodate this interaction. 相似文献
12.
Hydrogen bonding motifs of protein side chains: Descriptions of binding of arginine and amide groups
Liat Shimoni Jenny P. Glusker 《Protein science : a publication of the Protein Society》1995,4(1):65-74
The modes of hydrogen bonding of arginine, asparagine, and glutamine side chains and of urea have been examined in small-molecule crystal structures in the Cambridge Structural Database and in crystal structures of protein-nucleic acid and protein-protein complexes. Analysis of the hydrogen bonding patterns of each by graph-set theory shows three patterns of rings (R) with one or two hydrogen bond acceptors and two donors and with eight, nine, or six atoms in the ring, designated R2 2(8), R2 2(9), and R1 2(6). These three patterns are found for arginine-like groups and for urea, whereas only the first two patterns Rl(8) and R2(9) are found for asparagine- and glutamine-like groups. In each case, the entire system is planar within 0.7 Å or less. On the other hand, in macromolecular crystal structures, the hydrogen bonding patterns in protein-nucleic acid complexes between the nucleic acid base and the protein are all R2 2(9), whereas hydrogen bonding between Watson-Crick-like pairs of nucleic acid bases is R2 2(8). These two hydrogen bonding arrangements [R2 2(9) and R2 2(8)] are predetermined by the nature of the groups available for hydrogen bonding. The third motif identified, R1 2(6), involves hydrogen bonds that are less linear than in the other two motifs and is found in proteins. 相似文献
13.
R. Pattanayek M. E. Newcomer 《Protein science : a publication of the Protein Society》1999,8(10):2027-2032
A retinoic acid binding protein isolated from the lumen of the rat epididymis (ERABP) is a member of the lipocalin superfamily. ERABP binds both the all-trans and 9-cis isomers of retinoic acid, as well as the synthetic retinoid (E)-4-[2-(5,6,7,8)-tetrahydro-5,5,8,8-tetramethyl-2 napthalenyl-1 propenyl]-benzoic acid (TTNPB), a structural analog of all-trans retinoic acid. The structure of ERABP with a mixture of all-trans and 9-cis retinoic acid has previously been reported. To elucidate any structural differences in the protein when bound to the all-trans and 9-cis isomers, the structures of all-trans retinoic acid-ERABP and 9-cis retinoic acid ERABP were determined. Our results indicate that the all-trans isomer of retinoic acid adopts an 8-cis structure in the binding cavity with no concomitant conformational change in the protein. The structure of TTNPB-ERABP is also reported herein. To accommodate this all-trans analog, which cannot readily adopt a cis-like structure, alternative positioning of critical binding site side chains is required. Consequently, both protein and ligand adaption are observed in the formation of the various holo-proteins. 相似文献
14.
The minor coat protein pIII at one end of the filamentous bacteriophage fd, mediates the infection of Escherichia coli cells displaying an F-pilus. pIII has three domains (D1, D2 and D3), terminating with a short hydrophobic segment at the C-terminal end. Domain D2 binds to the tip of F-pilus, which is followed by retraction of the pilus and penetration of the E. coli cell membrane, the latter involving an interaction between domain D1 and the TolA protein in the membrane. Surface residues on the D2 domain of pIII were replaced systematically with alanine. Mutant virions were screened for D2-pilus interaction in vivo by measuring the release of infectious virions from E. coli F(+) cells infected with the mutants. A competitive ELISA was developed to measure in vitro the ability of mutant phages to bind to purified pili. This allowed the identification of amino acid residues involved in binding to F and to EDP208 pili. These residues were found to cluster on the outer rim of the 3D structure of the D2 domain, unexpectedly identifying this as the F-pilus binding region on the pIII protein. 相似文献
15.
Mechanism and role of cooperative binding of bacteriophage fd gene 5 protein to single-stranded deoxyribonucleic acid 总被引:1,自引:0,他引:1
The highly cooperative binding of fd gene 5 to single-stranded DNA was studied kinetically by rapid photo-cross-linking and stopped-flow UV absorption measurements. The observed change in absorbance was shown to be due to the binding by direct evidence of rapid photo-cross-linking of the bound proteins to fd DNA. The bimolecular rate constant obtained for the association was 1.6 X 10(10) M-1 s-1 (in terms of the molecular concentration of DNA), which was concluded to be diffusion controlled. The breakdown of cluster complexes on fd DNA was induced by the addition of large excess amounts of short single-stranded DNA. The breakdown took place in about 1 s. The kinetic process of redistribution of dissociated proteins was monitored by rapid photo-cross-linking and subsequent electrophoresis of the cross-linked complex. The dissociated proteins first formed isolated complexes, but later they were again converted into the cluster. The kinetic results showed that the cooperativity originated from the stabilization of the protein-DNA complex by the cluster formation, not from the accelerated association in the cluster formation. This kind of cooperative binding was shown to perform negative feedback control in the cluster formation. On the basis of the kinetic results obtained, we proposed a model for the regulatory role of the fd gene 5 protein in the synthesis of single-stranded fd DNA. 相似文献
16.
Nathanael H. Hunter Blair C. Bakula 《Journal of biomolecular structure & dynamics》2018,36(7):1893-1907
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed. 相似文献
17.
18.
K. O. Greulich R. W. Wijnaendts van Resandt G. G. Kneale 《European biophysics journal : EBJ》1985,11(3):195-201
The DNA binding protein of the filamentous bacteriophage Pfl exhibits fluorescence from a single tryptophan residue. The location of the emission maximum at 340 nm ist quite common for proteins, but the single lifetime of 7.8 ns is one of the longest yet reported. Protein fluorescence is quenched more efficiently by Cs+ than by I-; the Trp is located in a partially exposed pocket, in the vicinity of a negative charge.In the native complex of the binding protein with Pfl DNA the fluorescence emission maximum is at 330 nm, indicating a more apolar environment for Trp 14. The native nucleoprotein complex exhibits a similar fluorescence lifetime (6.5 ns) and an approximately equal fluorescence yield, indicating the absence of Trp-DNA stacking. The tryptophan in the complex is virtually inaccessible to ionic quenchers, and thus appears to be buried.Fluorescence depolarisation measurements have been used to examine the rotational mobility of the tryptophan in the protein and in the nucleoprotein complex. In the protein alone a single rotational correlation time () of 19 ns is observed, corresponding to rotation of the entire dimeric molecule; in the native nucleoprotein complex with Pfl DNA, a of 500 ns is observed, corresponding to a rigid unit of at least 50 subunits. In neither case does the tryptophan exhibit any detectable flexibility on the subnanosecond time scale. 相似文献
19.
The circular dichroism (CD) spectra of single-stranded DNAs (ssDNAs) are significantly perturbed by the binding of single-stranded DNA binding proteins such as the Ff bacteriophage gene 5 protein (g5p) and the A domain of the 70 kDa subunit of human replication protein A (RPA70-A). These two proteins have similar OB-fold secondary structures, although their CD spectra at wavelengths below 250 nm differ greatly. The spectrum of g5p is dominated by a tyrosyl L(a) band at 229 nm, while that of RPA70-A is dominated by its beta secondary structure. Despite differences in their inherent spectral properties, these two proteins similarly perturb the spectra of bound nucleic acid oligomers. CD spectra of free, non-protein-bound ssDNAs are dependent on interactions of the nearest-neighboring nucleotides in the sequence. The CD spectra (per mol of nucleotide) of simple repetitive sequences 48 nucleotides in length and containing simple combinations of A and C are related by nearest-neighbor equations. For example, 3 x Deltaepsilon[d(AAC)(16)] = 3 x Deltaepsilon[d(ACC)(16)] + Deltaepsilon[d(A)(48)] - Deltaepsilon[d(C)(48)]. Moreover, nearest-neighbor equations relate the spectra of ssDNAs when they are bound by g5p, indicating that each type of perturbed nearest neighbor has a similar average structure within the binding site of the protein. 相似文献