首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By applying a double-immunolabeling technique to preembedded tissue preparations, we demonstrated the existence of serotoninergic innervation to neurons containing vasoactive intestinal polypeptide (VIP) in the rat suprachiasmatic nucleus (SCN). Immunoreactivity for serotonin and VIP was revealed by the presence of diaminobenzidine (DAB) reaction products and silver-intensified DAB reaction products, respectively; in a further stage, the silver grains were substituted with gold particles. DAB reaction products were precipitated on the surface of vesicular structures, while gold particles were scattered diffusely throughout the neuroplasma at various densities. Serotoninergic axons were numerous and closely packed together, occasionally forming synaptic junctions with gold-labeled VIP-containing neurons. At these synaptic junctions, small vesicular structures accumulated to form a coat under the presynaptic membrane, and the postsynaptic membrane was lined with a homogeneous accumulation of fine deposits. This postsynaptic apparatus varied in appearance; some parts were flat and thin, while others were of irregular thickness. Serotoninergic fibers also formed synaptic junctions with unidentified neurons, in which postsynaptic membrane specialization was also observable. As VIP-containing neurons are known to be synapsed by somatostatin (SRIH)-containing neurons, their regulation must involve both serotonin and SRIH at least.  相似文献   

2.
The aim of the present study was to evaluate the effects of prenatal and postnatal protein deprivation on the morphology and density of vasopressin (VP) and vasoactive intestinal polypeptide (VIP) immunoreactive neurons in the suprachiasmatic nucleus (SCN) of young rats. Female Wistar rats were fed either 6% (malnourished group) or 25% (control group) casein diet five weeks before conception, during gestation and lactation. After weaning, the pups were maintained on the same diet until sacrificed at 30 days of age. The major and minor axes, somatic area and the density of VP- and VIP-immunoreactive neurons were evaluated in the middle sections of the SCN. The present study shows that chronic protein malnutrition (ChPM) in VP neurons induces a significant decrease in number of cells (-31%,) and a significant increase in major and minor axes and somatic area (+12.2%, +21.1% and +15.0%, respectively). The VIP cells showed a significant decrease in cellular density (-41.5%) and a significant increase in minor axis (+13.5%) and somatic area (+10.1%). Our findings suggest that ChPM induces abnormalities in the density and morphology of the soma of VP and VIP neurons. These alterations may be a morphological substrate underlying circadian alterations previously observed in malnourished rats.  相似文献   

3.
M Hery  M C Barrit  M Faudon  F Hery 《Peptides》1986,7(2):183-188
Vasoactive intestinal peptide (VIP) inhibits serotonin (5-HT) uptake in the suprachiasmatic area (SCA) of the rat. The present study investigates the possibility of a functional relationship between 5-HT uptake mechanisms and 5-HT autoreceptor activity in this effect of VIP in the SCA. The hypothesis of a linkage between these two mechanisms of 5-HT regulation has been recently proposed. We investigated the possibility of the presence of 5-HT autoreceptors in the SCA. Using superfusion system, exogenous 5-HT (500 and 50 nM) increased the release of newly synthesized 3H-5-HT. In contrast, 5 nM of exogenous 5-HT inhibited this release. This latter effect was antagonized by methiothepin (10(-7) M). In contrast, the concentration of methiothepin required to inhibit the VIP effect was 10(-6) or 10(-5) M, the same molarity found to decrease the 5-HT uptake. On the other hand, the increase of the 3H-5-HT in the synaptic cleft, induced by VIP, did not modify the inhibition of 3H-5-HT release induced by 5 nM of exogenous 5-HT. We conclude that the effect of VIP on 5-HT metabolism in the SCA is linked to the 5-HT uptake mechanism but not to the activity of 5-HT presynaptic autoreceptors. In our experimental conditions, the activity of 5-HT autoreceptors is independent of the 5-HT uptake processes.  相似文献   

4.
The effect of vasoactive intestinal peptide (VIP) on spontaneous and induced release of newly synthesized 5-hydroxytryptamine (5-HT) was studied in the suprachiasmatic area (SCA) using a superfusion system. To test the possible modualtion by E2 on the interaction VIP-5-HT, the experiments were conducted on male, ovariectomized (OVX) and ovariectomized oestradiol implanted rats (OVX-E2). VIP (10?7 M) infused for 15 min caused an increase of 5-HT release from SCA of male and OVX. The positive effect of VIP on 5-HT release results partially from an inhibition of the reuptake of 5-HT: in male and OVX SCA, VIP inhibited the 3H-5-HT uptake by 40 to 50%. The infusion of VIP before a pulse of K+ (10-20-30-56 mM) leads to a potentialisation of the evoked release suggesting that VIP sensitized the presynaptic membrane to the process linking depolarization and release. When SCA taken from OVX-E2 were exposed to VIP, 5-HT uptake and consequently 5-HT release were unchanged. The present results suggest that the metabolism of 5-HT in the SCA is influenced by VIP and that this regulation may be modulated by E2. This interaction between E2, VIP and 5-HT at the SCA level may be involved in the regulation of phasic LH and prolactin surge.  相似文献   

5.
Catecholaminergic fibers in the suprachiasmatic nucleus of adult rats were investigated by use of light- and electron-microscopic immunocytochemistry. The suprachiasmatic nucleus receives a modest density of tyrosine hydroxylase-containing axons, homogeneously distributed in the nucleus and forming varicosities throughout its entire rostro-caudal extension. Immunolabeling with antibodies against dopamine showed that this catecholamine input comprises a dopaminergic component. Many tyrosine hydroxylase-positive cells were localized at the immediate periphery of the suprachiasmatic nucleus. With electron-microscopic examination, dendrites of these neurons were found within the limits of the nucleus as well as at a border zone between the suprachiasmatic nucleus proper and the optic tract where they received unlabeled synapses, providing a morphological support for a possible role of dopaminergic neurons in the integration and/or transfer of light-related signals. More than 91% of catecholaminergic axonal varicosities were found to establish morphologically defined synapses with dendrites. To investigate whether these synapses might be shared with neurons of one or both of the two main peptidergic populations of the nucleus, namely vasoactive intestinal peptide- and vasopressin-containing neurons, we carried out doublelabeling experments combining immunoperoxidase and immunogold-silver labeling. Results showed only a few cases of direct association of the catecholaminergic terminals with these peptidergic categories. In both types of dually stained sections, catecholaminergic synapses were preferentially made with unlabeled dendrites. The homogeneous distribution of tyrosine hydroxylase-immunoreactive fibers in the suprachiasmatic nucleus could therefore reflect a lack of significant catecholaminergic innervation of both vasoactive intestinal peptide- and vasopressin-synthesizing neurons.  相似文献   

6.
The hypothalamic suprachiasmatic nucleus (SCN) contains a heterogeneous population of neurons, some of which are temperature sensitive in their firing rate activity. Neuronal thermosensitivity may provide cues that synchronize the circadian clock. In addition, through synaptic inhibition on nearby cells, thermosensitive neurons may provide temperature compensation to other SCN neurons, enabling postsynaptic neurons to maintain a constant firing rate despite changes in temperature. To identify mechanisms of neuronal thermosensitivity, whole cell patch recordings monitored resting and transient potentials of SCN neurons in rat hypothalamic tissue slices during changes in temperature. Firing rate temperature sensitivity is not due to thermally dependent changes in the resting membrane potential, action potential threshold, or amplitude of the fast afterhyperpolarizing potential (AHP). The primary mechanism of neuronal thermosensitivity resides in the depolarizing prepotential, which is the slow depolarization that occurs prior to the membrane potential reaching threshold. In thermosensitive neurons, warming increases the prepotential's rate of depolarization, such that threshold is reached sooner. This shortens the interspike interval and increases the firing rate. In some SCN neurons, the slow component of the AHP provides an additional mechanism for thermosensitivity. In these neurons, warming causes the slow AHP to begin at a more depolarized level, and this, in turn, shortens the interspike interval to increase firing rate.  相似文献   

7.
Summary Messenger RNAs (mRNA) coding for vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), somatostatin and vasopressin were localized in the suprachiasmatic nucleus (SCN) of the rat hypothalamus using in situ hybridization histochemistry. Specific mRNA coding for each of these peptides was distributed in areas coextensive with the immunohistochemical localization of the appropriate peptide. The autoradiographic signal produced with probes to VIP and PHI created dense concentrations of silver grains over neuronal perikarya in the ventrolateral SCN, and the coextensive distribution of both VIP-and PHI-mRNAs suggests that both peptides are synthesized within the same neurons. The distribution of somatostatin-mRNA was distinct from that of VIP and PHI. Labeled neurons are observed at the interface of the two SCN subdivisions and the distribution of these neurons is identical to those shown to contain somatostatin immunoreactivity. Vasopressin-mRNA is also differentially concentrated within neurons in the dorsomedial subdivision of the SCN in an area that is coextensive with vasopressin-immunoreactive perikarya. The discrete pattern of hybridization for each of these mRNAs indicates that each of these peptides are synthesized in SCN neurons and reaffirms the differential distribution of each of these chemically defined cell populations within cytoarchitecturally distinct subdivisions of the nucleus.  相似文献   

8.
The suprachiasmatic nuclei (SCN) constitute the principal pacemaker of the circadian timing system in mammals. The generated rhythm is forwarded mostly through projections to various hypothalamic nuclei. On the other hand, the regulated processes feedback to the SCN. One of the possible feedback pathways is the orexinergic projection from the lateral hypothalamus. Orexins are recently identified neuropeptides with an overall facilitatory effect on waking behaviors. Orexinergic fibers are widely distributed throughout the brain and are also present in the SCN. In this study we examined the effect of orexin-A on the spontaneous activity of rat SCN cell in vitro. Neurons showed 2 different firing pattern (continuous-regular, intermittent-irregular). Orexin-A increased firing rate in both cell types at 10(-8) M concentration, but caused a clear suppression of neuronal activity at 10(-7) M. Continuously firing neurons were less responsive than those firing intermittently. These results show that orexin-A may play a role in the modulation of the circadian pacemaker function. The neuropeptide might exert both direct, postsynaptic effects on SCN neurons and indirect, presynaptic effects on excitatory and inhibitory terminals. The dose-dependent modification of the firing rate indicate that the weight of these factors changes with the concentration of orexin-A.  相似文献   

9.
The primary mitogens such as epidermal growth factor and transforming growth factor-α are known to stimulate DNA synthesis in primary cultures of adult rat hepatocytes. Vasoactive intestinal polypeptide (VIP) was found to amplify DNA synthesis induced by the primary mitogens and thus acted as a comitogen. The comitogenic effect of VIP was specific for the culture medium, suggesting that minor components in the medium were required for hepatocytes to fully respond to VIP. Glutamic acid is probably one of these minor components, although other components present in the nutrient-rich medium were also necessary for the full comitogenic effect. Other comitogens such as insulin, vasopressin, and angiotensin II interacted additively with low concentrations of VIP. The comitogenic effect of VIP was also found in hepatocytes cultured from regenerating rat liver after a partial hepatectomy. In the regenerating hepatocyte cultures, VIP can act as a mitogen even in the absence of the primary mitogen EGF. VIP mRNA was found in several organs including brain, intestine, and liver, and its expression was slightly induced in liver 24 h after a partial hepatectomy. These results suggest that VIP can act as a hepatic comitogen and may play a role in liver cell proliferation. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Circadian rhythms generated by the hypothalamic suprachiasmatic nucleus (SCN) are synchronized with the external light/dark cycle by photic information transmitted directly from the retina via the retinohypothalamic tract (RHT). The RHT contains the neurotransmitters glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), which code chemically for 'light' or 'darkness' information, respectively. We investigated interactions of PACAP and glutamate by analysing effects on the second messenger calcium in individual SCN neurons using the Fura-2 technique. PACAP did not affect NMDA-mediated calcium increases, but influenced signalling cascades of non-NMDA glutamate receptors, which in turn can regulate NMDA receptors. On the one hand, PACAP amplified/induced glutamate-dependent calcium increases by interacting with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate signalling. This was not related to direct PACAPergic effects on the second messengers cAMP and calcium. On the other hand, PACAP reduced/inhibited calcium increases elicited by glutamate acting on metabotropic receptors. cAMP analogues mimicked this inhibition. Most neurons displaying PACAPergic neuromodulation were immunoreactive for vasoactive intestinal polypeptide, which is a marker for retinorecipient SCN neurons. The observed PACAPergic effects provide a broad range of interactions that allow a fine-tuning of the endogenous clock by the integration of 'light' and 'darkness' information on the level of single SCN neurons.  相似文献   

11.
12.
13.
The neuropeptide vasoactive intestinal polypeptide (VIP) has emerged as a key candidate molecule mediating the synchronization of rhythms in clock gene expression within the suprachiasmatic nucleus (SCN). In addition, neurons expressing VIP are anatomically well positioned to mediate communication between the SCN and peripheral oscillators. In this study, we examined the temporal expression profile of 3 key circadian genes: Per1, Per2 , and Bmal1 in the SCN, the adrenal glands and the liver of mice deficient for the Vip gene (VIP KO), and their wild-type counterparts. We performed these measurements in mice held in a light/dark cycle as well as in constant darkness and found that rhythms in gene expression were greatly attenuated in the VIP-deficient SCN. In the periphery, the impact of the loss of VIP varied with the tissue and gene measured. In the adrenals, rhythms in Per1 were lost in VIP-deficient mice, while in the liver, the most dramatic impact was on the phase of the diurnal expression rhythms. Finally, we examined the effects of the loss of VIP on ex vivo explants of the same central and peripheral oscillators using the PER2::LUC reporter system. The VIP-deficient mice exhibited low amplitude rhythms in the SCN as well as altered phase relationships between the SCN and the peripheral oscillators. Together, these data suggest that VIP is critical for robust rhythms in clock gene expression in the SCN and some peripheral organs and that the absence of this peptide alters both the amplitude of circadian rhythms as well as the phase relationships between the rhythms in the SCN and periphery.  相似文献   

14.
E. Wechsung  A. Houvenaghel 《Peptides》1994,15(8):1373-1376
The influence of intravenous infusion of VIP, 150 and 300 pmol/kg/min, on gastrointestinal electrical activity was studied in conscious piglets with electrodes implanted in the wall of the antrum pylori, duodenum, jejunum, and ileum. Both doses resulted in a decrease in antral electrical activity. In the small intestine, only the lower dose caused a shortening of the irregular spiking activity phase in the jejunum and ileum. In the jejunum this resulted in a reduction of the MMC interval. It may be concluded that the prevailing effect of VIP is an inhibition of gastrointestinal electrical activity in the piglet.  相似文献   

15.
A sensitive radioimmunoassay for plasma vasoactive intestinal polypeptide (VIP) has been developed based on preparations of fully immunoreactive 125I-labeled VIP and hightiter specific antiserum as well as elimination of plasma interference substance(s). Fully immunoreactive 125I-labeled VIP (specific activity = 520 μCi/nmol) was prepared by lactoperoxidase iodination and purified by gel filtration followed by chromatography on an O-(carboxymethyl) (CM)-Sephadex C-25 column. Specific anti-VIP serum produced from New Zealand white rabbits had a titer of 1:500,000 and the following binding parameters: effective affinity constant (Keff), 2.9 × 1011m?1; heterogeneity index (α), 0.57; average affinity constant (K0), 2.4 × 1010m?1. Interfering substance(s) in plasma samples was proved to be present by direct radioimmunoassay and eliminated by an XAD-2 resin adsorption technique, leading to a minimal overall sensitivity of 0.48 pm for plasma samples. The average plasma VIP concentration of 78 normal fasting human subjects was 5.7 ± 3.4 (SD) pm, and that of 5 patients with watery diarrhea syndrome was 359 ± 93 pm, which reduced gradually to the normal basal value after clinical treatment.  相似文献   

16.
The effects of vasoactive intestinal polypeptide (VIP) and dibutyryl cyclic adenosine 3':5'monophosphate (dbcAMP) on two human colon carcinoma cell lines, HCT 116 and GEO, were investigated. VIP and dbcAMP inhibited the growth of both cell lines in monolayer culture in a dose-dependent manner. Within 6 h of treatment with 1 mM dbcAMP or 0.3 microM VIP, numerous mucin-like droplets were secreted by GEO cells. VIP and dbcAMP also increased carcinoembryonic antigen (CEA) secretion. In both cell lines, a 9-fold increase in conditioned medium CEA levels was observed at 1 mM dbcAMP and a 2.6-fold increase at 1.5 microM VIP. Time- and concentration-dependent evaluation in cAMP levels were elicited by VIP in the two cell lines. Immunocytochemical studies for cell-surface glycoprotein detection in GEO cells showed that VIP induced a morphological and functional organization of mucin-secreting cells. These results indicate that VIP and dbcAMP have antiproliferative and strong differentiation-promoting effects in colon cancer cells. This is the first report of VIP-induced mucin secretion in colon tumor cells.  相似文献   

17.
Vasoactive intestinal polypeptide (VIP) is released into the portal circulation by a meal stimulus, but is rapidly cleared from plasma. Although it is known to bind to receptors on liver cells, the role of the liver in the clearance of VIP is not clearly defined. We therefore studied the disappearance of VIP in recirculating and in single pass isolated perfused rat liver (IPRL) preparations. Disappearance of added VIP was rapid in recirculating IPRL experiments with a half life of ca. 30 min. In single-pass steady-state studies in which livers were perfused at 16 ml/min for 30 min, clearance of VIP was complete (16 ml/min) at concentrations of 500 fmol/ml, but clearance fell to 3 and 1 ml/min at perfusate concentrations of 8 and 40 pmol/ml respectively. Further experiments to evaluate whether VIP was disappearing in perfusate itself demonstrated substantial metabolism of VIP in perfusate which had previously been circulated through a liver for 90 min. The products of metabolism were identical to those found in the IPRL. We conclude that VIP is rapidly cleared as it passes through the isolated perfused rat liver model with a significant proportion of clearance attributable to release of a peptidase from the liver into the perfusate.  相似文献   

18.
19.
20.
Studies were carried out on the role of vasoactive intestinal polypeptide (VIP) in the regulation of secretion and blood flow in the rat salivary gland. The first experiments to investigate the spontaneous secretory pattern revealed a clear diurnal fluctuation with a significant increase at night, so that the subsequent experiments were performed during the daytime where the secretion was consistently low. Intravenous administration of VIP at a dose smaller than 40 pmole caused a dose-dependent vasodilatory response, but at a high dose such a local effect was hampered by a decrease in systemic blood pressure. VIP potentiated the acetylcholine chloride (AcCho)--evoked salivary secretion, but VIP (0-100 pmole/kg) alone did not cause salivary secretion. Atropine reduced the salivary secretion evoked by AcCho and VIP, and the blood flow change evoked by AcCho. However, the blood flow change evoked by VIP was not affected by atropine. Hexamethonium exerted no significant effect on the response to administration of AcCho or VIP. The results indicate that VIP has a significant vasodilatory action and cooperates with AcCho in the regulation of salivary secretion in the rat, and VIP effects are atropine resistant, as in other species of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号