首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both Metnase and Artemis possess endonuclease activities that trim 3′ overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3′ overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4–5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3′-phosphoglycolates (PGs), and in some cases the presence of 3′-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3′ overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3′-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins.  相似文献   

2.
Although tyrosyl-DNA phosphodiesterase (TDP1) is capable of removing blocked 3′ termini from DNA double-strand break ends, it is uncertain whether this activity plays a role in double-strand break repair. To address this question, affinity-tagged TDP1 was overexpressed in human cells and purified, and its interactions with end joining proteins were assessed. Ku and DNA-PKcs inhibited TDP1-mediated processing of 3′-phosphoglycolate double-strand break termini, and in the absence of ATP, ends sequestered by Ku plus DNA-PKcs were completely refractory to TDP1. Addition of ATP restored TDP1-mediated end processing, presumably due to DNA-PK-catalyzed phosphorylation. Mutations in the 2609–2647 Ser/Thr phosphorylation cluster of DNA-PKcs only modestly affected such processing, suggesting that phosphorylation at other sites was important for rendering DNA ends accessible to TDP1. In human nuclear extracts, about 30% of PG termini were removed within a few hours despite very high concentrations of Ku and DNA-PKcs. Most such removal was blocked by the DNA-PK inhibitor KU-57788, but ~5% of PG termini were removed in the first few minutes of incubation even in extracts preincubated with inhibitor. The results suggest that despite an apparent lack of specific recruitment of TDP1 by DNA-PK, TDP1 can gain access to and can process blocked 3′ termini of double-strand breaks before ends are fully sequestered by DNA-PK, as well as at a later stage after DNA-PK autophosphorylation. Following cell treatment with calicheamicin, which specifically induces double-strand breaks with protruding 3′-PG termini, TDP1-mutant SCAN1 (spinocerebellar ataxia with axonal neuropathy) cells exhibited a much higher incidence of dicentric chromosomes, as well as higher incidence of chromosome breaks and micronuclei, than normal cells. This chromosomal hypersensitivity, as well as a small but reproducible enhancement of calicheamicin cytotoxicity following siRNA-mediated TDP1 knockdown, suggests a role for TDP1 in repair of 3′-PG double-strand breaks in vivo.  相似文献   

3.
DNA double-strand breaks (DSBs) with 5′ adducts are frequently formed from many nucleic acid processing enzymes, in particular DNA topoisomerase 2 (TOP2). The key intermediate of TOP2 catalysis is the covalent complex (TOP2cc), consisting of two TOP2 subunits covalently linked to the 5′ ends of the nicked DNA. In cells, TOP2ccs can be trapped by cancer drugs such as etoposide and then converted into DNA double-strand breaks (DSBs) that carry adducts at the 5′ end. The repair of such DSBs is critical to the survival of cells, but the underlying mechanism is still not well understood. We found that etoposide-induced DSBs are efficiently resected into 3′ single-stranded DNA in cells and the major nuclease for resection is the DNA2 protein. DNA substrates carrying model 5′ adducts were efficiently resected in Xenopus egg extracts and immunodepletion of Xenopus DNA2 also strongly inhibited resection. These results suggest that DNA2-mediated resection is a major mechanism for the repair of DSBs with 5′ adducts.  相似文献   

4.
Dewar JM  Lydall D 《Chromosoma》2012,121(2):117-130
Telomeric DNA is present at the ends of eukaryotic chromosomes and is bound by telomere “capping” proteins, which are the (Cdc13–Stn1–Ten1) CST complex, Ku (Yku70–Yku80), and Rap1–Rif1–Rif2 in budding yeast. Inactivation of any of these complexes causes telomere “uncapping,” stimulating a DNA damage response (DDR) that frequently involves resection of telomeric DNA and stimulates cell cycle arrest. This is presumed to occur because telomeres resemble one half of a DNA double-strand break (DSB). In this review, we outline the DDR that occurs at DSBs and compare it to the DDR occurring at uncapped telomeres, in both budding yeast and metazoans. We give particular attention to the resection of DSBs in budding yeast by Mre11–Xrs2–Rad50 (MRX), Sgs1/Dna2, and Exo1 and compare their roles at DSBs and uncapped telomeres. We also discuss how resection uncapped telomeres in budding yeast is promoted by the by 9–1–1 complex (Rad17–Mec3–Ddc1), to illustrate how analysis of uncapped telomeres can serve as a model for the DDR elsewhere in the genome. Finally, we discuss the role of the helicase Pif1 and its requirement for resection of uncapped telomeres, but not DSBs. Pif1 has roles in DNA replication and mammalian and plant CST complexes have been identified and have roles in global genome replication. Based on these observations, we suggest that while the DDR at uncapped telomeres is partially due to their resemblance to a DSB, it may also be partially due to defective DNA replication. Specifically, we propose that the budding yeast CST complex has dual roles to inhibit a DSB-like DDR initiated by Exo1 and a replication-associated DDR initiated by Pif1. If true, this would suggest that the mammalian CST complex inhibits a Pif1-dependent DDR.  相似文献   

5.
The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5′ strand to generate 3′ ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5′->3′ directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN''s 3′->5′ helicase activity and DNA2''s 5′->3′ ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway.  相似文献   

6.
7.
With a model system of pBR322 plasmid DNA solution in vitro, the dose effects of radiation- induced single- and double-strand breaks (SSB and DSB) were measured and DSB was distinguished into α- and β-types. Under the condition of low scavenging capacity existing in the irradiated DNA solution, SSB and αDSB were mainly induced by hydroxyl radicals (·OH). Moreover, a certain relationship was obtained between the SSB and αDSB yields and the DNA concentration. It was found that when the DNA solution was irradiated in the presence of 2.5 mmol dm–3 mannitol, the reciprocals of G(SSB) and G(αDSB), respectively, were linearly related to the reciprocal of the DNA concentration, i.e. the competition reactions of DNA and mannitol for ·OH radicals can be described by second-order kinetics. The rate coefficients and the efficiencies of the ·OH radical inducing SSB were deduced. Also, the reaction rate coefficients and the efficiencies for the induction of αDSB from SSB by the ·OH radical transfer mechanism, were first derived from the competition kinetics. Received: 27 October 1999 / Accepted: 15 March 2000  相似文献   

8.
9.
The spatial distribution of DNA double-strand breaks (DSB) was assessed after treatment of mammalian cells (V79) with densely ionizing radiation. Cells were exposed to beams of heavy charged particles (calcium ions: 6.9 MeV/u, 2.1⋅103 keV/μm; uranium ions: 9.0 MeV/u, 1.4⋅104 keV/μm) at the linear accelerator UNILAC of GSI, Darmstadt. DNA was isolated in agarose plugs and subjected to pulsed-field gel electrophoresis under conditions that separated DNA fragments of size 50 kbp to 5 Mbp. The measured fragment distributions were compared to those obtained after γ-irradiation and were analyzed by means of a convolution and a deconvolution technique. In contrast to the finding for γ-radiation, the distributions produced by heavy ions do not correspond to the random breakage model. Their marked overdispersion and the observed excess of short fragments reflect spatial clustering of DSB that extends over large regions of the DNA, up to several mega base pairs (Mbp). At fluences of 0.75 and 1.5/μm2, calcium ions produce nearly the same shape of fragment spectrum, merely with a difference in the amount of DNA entering the gel; this suggests that the DNA is fragmented by individual calcium ions. At a fluence of 0.8/μm2 uranium ions produce a profile that is shifted to smaller fragment sizes in comparison to the profile obtained at a fluence of 0.4/μm2; this suggests cumulative action of two separate ions in the formation of fragments. These observations are not consistent with the expectation that the uranium ions, with their much larger LET, should be more likely to produce single particle action than the calcium ions. However, a consideration of the greater lateral extension of the tracks of the faster uranium ions explains the observed differences; it suggests that the DNA is closely coiled so that even DNA locations several Mbp apart are usually not separated by less than 0.1 or 0.2 μm. Received: 27 January 1998 / Accepted in revised form: 15 April 1998  相似文献   

10.
11.
The DNA damage response (DDR) is a complex signaling network that leads to damage repair while modulating numerous cellular processes. DNA double-strand breaks (DSBs), a highly cytotoxic DNA lesion, activate this system most vigorously. The DSB response network is orchestrated by the ATM protein kinase, which phosphorylates key players in its various branches. Proteasome-mediated protein degradation plays an important role in the proteome dynamics following DNA damage induction. Here, we identify the nuclear proteasome activator PA28γ (REGγ; PSME3) as a novel DDR player. PA28γ depletion leads to cellular radiomimetic sensitivity and a marked delay in DSB repair. Specifically, PA28γ deficiency abrogates the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair. Furthermore, PA28γ is found to be an ATM target, being recruited to the DNA damage sites and required for rapid accumulation of proteasomes at these sites. Our data reveal a novel ATM-PA28γ-proteasome axis of the DDR that is required for timely coordination of DSB repair.Key words: genomic stability, DNA repair, double-strand breaks, ATM, proteasome, PA28γ (PSME3)  相似文献   

12.
The DNA damage response (DDR) is a complex signaling network that leads to damage repair while modulating numerous cellular processes. DNA double-strand breaks (DSBs)—a highly cytotoxic DNA lesion—activate this system most vigorously. The DSB response network is orchestrated by the ATM protein kinase, which phosphorylates key players in its various branches. Proteasome-mediated protein degradation plays an important role in the proteome dynamics following DNA damage induction. Here, we identify the nuclear proteasome activator PA28γ (REGγ; PSME3) as a novel DDR player. PA28γ depletion leads to cellular radiomimetic sensitivity and a marked delay in DSB repair. Specifically, PA28γ deficiency abrogates the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair. Furthermore, PA28γ is found to be an ATM target, being recruited to the DNA damage sites and required for rapid accumulation of proteasomes at these sites. Our data reveal a novel ATM-PA28γ-proteasome axis of the DDR that is required for timely coordination of DSB repair.  相似文献   

13.
Telomeres, the chromatin structures at the ends of eukaryotic chromosomes, are essential for chromosome stability. The telomere terminates with a TG-rich 3′ overhang, which is bound by sequence-specific proteins that both protect the end and regulate the telomerase elongation process. Here, we demonstrate the presence of 3′ overhangs as long as 200 nt in asynchronously growing cells of the budding yeast Saccharomyces castellii. The 3′ overhangs show a wide distribution of 14–200 nt in length, thus resembling the distribution found in human cells. A substantially large fraction of the 3′ overhangs resides in the 70–200 nt range. Remarkably, we found an accumulation of a distinct class of 70-nt-long 3′ overhangs in the S phase of the cell cycle. Cells without a functional telomerase showed the same wide distribution of 3′ overhangs, but significantly, lacked the specific fraction of 70-nt 3′ overhangs. Hence, our data show that the highly defined 70-nt 3′ overhangs are generated by a telomerase-dependent mechanism, which is uncoupled to the mechanisms producing the bulk of the 3′ overhangs. These data provide new insights that will be helpful for deciphering the complex interplay between the specialized telomere replication machinery and the conventional DNA replication.  相似文献   

14.
The activation of NF-κB has emerged as an important mechanism for the modulation of the response to DNA double-strand breaks (DSBs). The concomitant SUMOylation and phosphorylation of IKKγ by PIASy and ATM, respectively, is a key event in this mechanism. However, the mechanism through which mammalian cells are able to accomplish these IKKγ modifications in a timely and lesion-specific manner remains unclear. In this study, we demonstrate that LRP16 constitutively interacts with PARP1 and IKKγ. This interaction is essential for efficient interactions among PARP1, IKKγ, and PIASy, the modifications of IKKγ, and the activation of NF-κB following DSB induction. The regulation of LRP16 in NF-κB activation is dependent on the DSB-specific sensors Ku70/Ku80. These data strongly suggest that LRP16, through its constitutive interactions with PARP1 and IKKγ, functions to facilitate the lesion-specific recruitment of PARP1 and IKKγ and, ultimately, the concomitant recruitment of PIASy to IKKγ in response to DSB damage. Therefore, the study has provided important new mechanistic insights concerning DSB-induced NF-κB activation.  相似文献   

15.
Activation of the IKK-NFκB pathway increases the resistance of cancer cells to ionizing radiation (IR). This effect has been largely attributed to the induction of anti-apoptotic proteins by NFκB. Since efficient repair of DNA double strand breaks (DSBs) is required for the clonogenic survival of irradiated cells, we investigated if activation of the IKK-NFκB pathway also regulates DSB repair to promote cell survival after IR. We found that inhibition of the IKK-NFκB pathway with a specific IKKβ inhibitor significantly reduced the repair of IR-induced DSBs in MCF-7 cells. The repair of DSBs was also significantly inhibited by silencing IKKβ expression with IKKβ shRNA. However, down-regulation of IKKα expression with IKKα shRNA had no significant effect on the repair of IR-induced DSBs. Similar findings were also observed in IKKα and/or IKKβ knockout mouse embryonic fibroblasts (MEFs). More importantly, inhibition of IKKβ with an inhibitor or down-regulation of IKKβ with IKKβ shRNA sensitized MCF-7 cells to IR-induced clonogenic cell death. DSB repair function and resistance to IR were completely restored by IKKβ reconstitution in IKKβ-knockdown MCF-7 cells. These findings demonstrate that IKKβ can regulate the repair of DSBs, a previously undescribed and important IKKβ kinase function; and inhibition of DSB repair may contribute to cance cell radiosensitization induced by IKKβ inhibition. As such, specific inhibition of IKKβ may represents a more effective approach to sensitize cancer cells to radiotherapy.  相似文献   

16.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   

17.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   

18.
In a search to identify chemical modifications to improve the properties of siRNA, we have investigated the effect of the 2 ′-O-methyl-2-thiouridine modification on the biological activity of siRNA. Our results indicate that judicious placement of 2 ′-O-methyl-2-thiouridine residues could lead to modified siRNA with activity in mammalian cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号