首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Plectin is a cross-linking protein that organizes the cytoskeleton into a stable meshwork that helps maintain the uniform size and shape of cells. As cells of hepatocellular carcinoma are morphologically different from healthy human hepatocytes, we hypothesized that plectin deficiency and cytoskeletal disorganization underlies this pleomorphic transformation. To test this hypothesis we induced apoptosis as the most accessible pathway for creating plectin deficiency status in vivo. We analyzed expression levels and organization of plectin and other cytoskeletal elements, including intermediate filaments, microfilaments, and microtubules, after staurosporine-induced apoptosis in human Chang liver cells. The results revealed the expression of plectin and cytokeratin 18 were downregulated in hepatocellular carcinoma tissues in vivo. The expression of actin and tubulin, however, were not altered. In vitro analysis indicated that plectin and cytokeratin 18 were cleaved following staurosporine-treatment of human Chang liver cells. Time course experiments revealed that plectin was cleaved 2 h earlier than cytokeratin 18. The organization of plectin and cytokeratin 18 networks collapsed after staurosporine-treatment. Conclusively, degradation of plectin induced by staurosporine-treatment in liver cells resulted in cytoskeleton disruption and induced morphological changes in these cells by affecting the expression and organization of cytokeratin 18.  相似文献   

2.
We have shown previously that centrosomes and other microtubule-organizing centers (MTOCs) attach to the apical intermediate filament (IF) network in CACO-2 cells. In this cell line, intermediate filaments do not disorganize during mitosis. Therefore, we speculated that the trigger of the G(2)-M boundary may also detach MTOCs from their IF anchor. If that was the case, at least one of the proteins involved in the attachment must be phosphorylated by p34(cdc2) (cdk1). Using confocal microscopy and standard biochemical analysis, we found that p34(cdc2)-mediated phosphorylation indeed released MTOCs from IFs in permeabilized cells. In isolated, immunoprecipitated multiprotein complexes containing both gamma-tubulin and cytokeratin 19, p34(cdc2) phosphorylated only one protein, and phosphorylation released cytokeratin 19 from the complexes. We conclude that this as yet unidentified protein is a part of the molecular mechanism that attaches MTOCs to IFs in interphase.  相似文献   

3.
Recent studies indicate that the cytoskeleton may be involved in modulating tissue-specific gene expression in mammalian cells. We have studied the role of the cytoskeleton in regulating milk protein synthesis and secretion by primary mouse mammary epithelial cells cultured on a reconstituted basement membrane that promotes differentiation. After 8 days in culture, cells were treated with cytochalasin D (CD) (0.5-1 micrograms/ml) to alter actin filaments or acrylamide (Ac) (5 mM) to alter intermediate filaments (cytokeratins). CD inhibited synthesis of most proteins in a concentration-dependent manner, with beta-casein being the first affected. In contrast, Ac increased protein synthesis and secretion by 17-31% after a 12 hr treatment. Polyacrylamide gel electrophoresis of total secreted proteins indicates that synthetic rates of most proteins were increased equally by Ac treatment. This increase is apparently controlled at the level of translation, because control and Ac-treated cells contained the same amount of poly-A+ RNA, and neither CD nor Ac altered mRNA levels for beta-casein. There was also no indication that either CD or Ac can induce the expression of milk proteins in quiescent cells cultured on a plastic substratum. In conjunction with the biochemical studies, changes in cytoskeletal morphology caused by the drug treatments were analyzed by immunofluorescence microscopy. As has been observed in other cell types, low concentrations of CD caused cells to round up by disrupting actin filaments. Ac treatment slightly decreased the intensity of actin staining, but no changes in microfilament organization were observed. Ac-treated cells showed slight disorganization of the cytokeratin filaments, with some peripheral interfibrillar bundling, but the cytokeratin network did not collapse and no retraction of cell extensions or breakdown of cell-cell contacts was observed. These results confirm previous reports that the actin cytoskeleton may play a role in regulating tissue-specific protein synthesis. How Ac stimulates protein synthesis is unknown, but it is unlikely that this effect is directly mediated through intermediate filaments.  相似文献   

4.
Intermediate filaments of rat hepatocytes are composed of cytokeratins 8 and 18 (CK8 and CK18, respectively). Recent work from our laboratory has indicated a close relationship between the synthesis of these cytokeratins, their organization into intermediate filaments, and the promotion of growth and differentiation of cultured rat hepatocytes by insulin, epidermal growth factor, and dexamethasone. In the present study, we examined the mRNA expression, level of protein synthesis, and fibrillar distribution of cytokeratins 8 and 18 and actin in hepatocytes, isolated from normal and dexamethasone-injected rats and cultured as monolayers or spheroids in the presence of insulin, or from normal rat hepatocytes, cultured as monolayers in the presence of dexamethasone, insulin, and dimethyl sulfoxide. The CK8 mRNA level was lower in hepatocytes isolated from noninjected rats and cultured as either monolayers or spheroids, than in those from dexamethasone-injected rats. However, the CK18 mRNA level varied in a manner that was different from that of CK8 mRNA, showing that the modes of expression of the two genes were independent. The various changes in hepatocyte culture conditions led to variations in albumin mRNA levels that largely followed those observed in CK8 mRNA levels. In the case of actin, the amount of mRNAs varied from relatively high levels in hepatocyte monolayers to extremely low levels in hepatocyte spheroids, even though in both cases the cells were isolated from dexamethasone-injected rats. These changes in mRNA levels did not necessarily correlate with changes in the synthesis of cytokeratins 8 and 18, and actin. Changes in culture conditions induced a major reorganization in the distribution of cytokeratin intermediate filaments and actin filament between the region near the surface membrane and the cytoplasm. The most divergent patterns in cytokeratin intermediate filaments and actin filament distributions were observed between hepatocytes cultured as spheroidal aggregates and as monolayers in the presence of dimethyl sulfoxide. The former condition resulted in patterns of cytokeratin and actin gene expression and fibrillar organization that best matched those in situ. In the latter condition, inappropriate patterns were obtained, in spite of the fact that dimethyl sulfoxide treated hepatocytes are known to exhibit survival and functional activities equivalent to that of hepatocyte spheroids. These results demonstrate for the first time that the survival and functional activity (i.e., albumin production) of rat hepatocytes in vitro is not necessarily correlated with a particular pattern of cytokeratin and actin gene expression and fibrillar arrangement.  相似文献   

5.
A novel monoclonal antibody, designated M1.4, recognizes the high molecular weight microtubule-associated protein MAP1A (ca. Mr 380 kD) in both bovine and rat brain. In HeLa cells, however, M1.4 binds to a 240 kD polypeptide on immunoblots and co-localizes with both vimentin and cytokeratin filaments using double-label immunofluorescence microscopy. Immunoelectron microscopy indicates that the 240 kD polypeptide localizes along bundled intermediate filaments in a periodic manner. Two-dimensional electrophoretic analysis indicates that the 240 kD polypeptide has a basic pI of 7.7. When HeLa cell intermediate filaments are isolated using standard non-ionic detergent/high-salt conditions the 240 kD polypeptide does not sediment with the intermediate filaments, unlike the established intermediate filament-associated protein plectin. Immunoblot analysis with M1.4 shows the 240 kD polypeptide is expressed in a number of mammalian cell lines. Additionally, double-label immunofluorescence shows the 240 kD polypeptide to associate with vimentin filaments in African Green Monkey kidney (CV-1) and JC neuroblastoma cells. Due to its unique biochemical and biological characteristics, the 240 kD polypeptide is clearly a novel intermediate filament-associated protein for which we have proposed the designation gyronemin (Gr. gyros: around; nemin: filament).  相似文献   

6.
Monoclonal antibodies were generated against detergent-insoluble cytoskeletal proteins isolated from low-density membrane fractions of rat liver. By immunofluorescence, one of the antibodies stains three distinct structures in cultured rat fibroblast and hepatocyte lines as well as the PtK2 rat-kangaroo kidney epithelial line. These structures are: i) many tangled filaments similar to intermediate filaments (IFs), ii) fewer and variable numbers of straight filaments, and iii) punctate cytoplasmic foci, often most intense around the nucleus. All three of these structures are resistant to extraction by non-ionic detergent. Close examination reveals that the tangled and straight filaments are not stained uniformly, but as a series of bright patches. In cells treated with nocodazole, the antibody reacts strongly with a perinuclear filamentous cage. Very few tangled filaments are detected in these cells, however, the straight filaments and punctate cytoplasmic staining are resistant to nocodazole treatment. Double-label immunofluorescence shows that, even though tangled filament distribution and nocodazole sensitivity are similar to the behavior of vimentin IFs, there is only partial coincidence of staining with either vimentin or cytokeratin IFs. The straight filaments coincide with some actin stress fibers, but the punctate cytoplasmic staining is not related to IFs, actin, or tubulin. Thus, this monoclonal antibody stains a novel group of three seemingly unrelated cytoskeletal structures, including a previously undescribed insoluble nonfilamentous pool. Taken as a whole, two hypotheses are consistent with these data. i) The antigen recognized may be a protein which has a large insoluble cytoplasmic pool and binds both IFs and actin, but only binds to a subset of each class of filaments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The heptapeptide toxins produced by the blue-green alga (cyanobacterium) Microcystis aeruginosa are selectively hepatotoxic in mammals. The characteristic post-mortem pathology of the liver is extensive lobular disruption due to sinusoidal breakdown, leakage of blood into the tissue and hepatocyte disintegration. Isolated hepatocytes incubated with toxin show severe structural deformity and surface blebbing. This paper demonstrates the effects of Microcystis toxins on the contraction and aggregation of actin microfilaments, and on the relocation and breakdown of cytokeratin intermediate filaments, in cultured hepatocytes. Earlier work did not show changes in the assembly/disassembly of actin; however, this paper demonstrates the change in cytokeratin from intermediate filaments to distributed granules in the cytoplasm of toxin-affected cells. Acrylamide gel electrophoresis of cytoskeletal fractions from hepatocytes did not show changes in total cytokeratins; however, marked changes in the immunogenicity of cytokeratins at 52 and 58 kDa were seen on toxin exposure of cells. Measurement of 32P-phosphorylation of proteins in toxin-affected cells incubated with [32P]orthophosphate showed a dramatic increase compared to control incubations. This is in agreement with research elsewhere describing phosphatase inhibition in vitro by Microcystis toxins. The data indicate that phosphorylated cytokeratin is a major component of cytoplasmic fraction phosphorylated protein after toxin exposure to hepatocytes. It is concluded that the mechanism of Microcystis toxicity to the hepatocyte is through cytoskeletal damage leading to loss of cell morphology, cell to cell adhesion and finally cellular necrosis. The underlying biochemical lesion is likely to be phosphatase inhibition causing hyperphosphorylation of a number of hepatocyte proteins, including those cytokeratins responsible for microfilament orientation and intermediate filament integrity.  相似文献   

8.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11--20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to--and specific for--epithelial cells; vimentin filaments are seen--at this stage of embryogenesis--only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structurees provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

9.
Hemidesmosomes (HDs) mediate adhesion of epithelial cells to the extracellular matrix and have morphological associations with intermediate-size filaments (IFs). Hemidesmosomal molecular components including HD1, the two bullous pemphigoid antigens, and the integrin α6β4 have been identified in HDs of stratified and complex epithelium. In this study, we report that HT29-Fu cells, a human colonic tumor cell line, express two hemidesmosomal components (HD1, α6β4) associated in an adhesion structure termed type II HDs. Immunofluorescence studies showed a colocalization of HD1 and α6β4 in basal patches between actin stress fibers. Using cytochalasin B or vinblastine, two drugs which disrupt the cytoskeleton, we demonstrate that the redistribution of HD1 was probably induced by the reorganization of the basal cytokeratin network. We also show thatin vitroHD1 binds to polymerized cytokeratin intermediate filaments; this suggests that HD1 in intestinal epithelial cells functions as a linker protein connecting cytokeratin filaments to the basal plasma membrane, probably through the β4 subunit of the integrin α6β4.  相似文献   

10.
Cofilin is an essential component of the yeast cortical cytoskeleton   总被引:30,自引:17,他引:13       下载免费PDF全文
We have biochemically identified the Saccharomyces cerevisiae homologue of the mammalian actin binding protein cofilin. Cofilin and related proteins isolated from diverse organisms are low molecular weight proteins (15-20 kD) that possess several activities in vitro. All bind to monomeric actin and sever filaments, and some can stably associate with filaments. In this study, we demonstrate using viscosity, sedimentation, and actin assembly rate assays that yeast cofilin (16 kD) possesses all of these properties. Cloning and sequencing of the S. cerevisiae cofilin gene (COF1) revealed that yeast cofilin is 41% identical in amino acid sequence to mammalian cofilin and, surprisingly, has homology to a protein outside the family of cofilin- like proteins. The NH2-terminal 16kD of Abp1p, a 65-kD yeast protein identified by its ability to bind to actin filaments, is 23% identical to yeast cofilin. Immunofluorescence experiments showed that, like Abp1p, cofilin is associated with the membrane actin cytoskeleton. A complete disruption of the COF1 gene was created in diploid cells. Sporulation and tetrad analysis revealed that yeast cofilin has an essential function in vivo. Although Abp1p shares sequence similarity with cofilin and has the same distribution as cofilin in the cell, multiple copies of the ABP1 gene cannot compensate for the loss of cofilin. Thus, cofilin and Abp1p are structurally related but functionally distinct components of the yeast membrane cytoskeleton.  相似文献   

11.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11–20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to – and specific for – epithelial cells; vimentin filaments are seen – at this stage of embryogenesis – only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structures provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

12.
Giant axonal neuropathy (GAN) is a severe autosomal recessive disease affecting both the peripheral and central nervous systems. It is characterized by segmental axonal ballooning due to large neurofilamentous masses and abnormal aggregation of filaments in other cell types including glial cells. Coomassie blue staining of the detergent-resistant cytoskeleton of cultured skin fibroblasts from three patients with GAN revealed the presence of large cytoplasmic filamentous aggregates in the great majority of cells. The aggregates were birefringent when viewed under polarization microscopy and electron microscopy showed that they were composed of aggregates of 8 to 10 nm intermediate filaments. The aggregates stained with antisera specific for vimentin but did not stain with antibodies to actin, tubulin, or the high molecular weight (HMW) microtubule associated protein. Examination of the fibroblasts containing the vimentin aggregates with antibodies to tubulin and the HMW protein showed that they had a normal distribution of microtubules and that the microtubules present were normally associated with the HMW protein. The results suggest that giant axonal neuropathy is a generalized inborn error of organization of intermediate filaments and that a defect in microtubules or their association with HMW protein is not responsible for the observed aggregation of intermediate filaments in this disease. Further study of GAN may be useful in understanding the function of intermediate filaments.  相似文献   

13.
Dynamic behavior of actin filaments in cells is the basis of many different cellular activities. Remodeling of the actin filament network involves polymerization and depolymerization of the filaments. Proteins that regulate these behaviors include proteins that sever and/or cap actin filaments. This report presents direct observation of severing of fluorescently-labeled actin filaments. Coverslips coated with gelsolin, a multi-domain, calcium-dependent capping and severing protein, bound rhodamine-phalloidin-saturated filaments along their length in the presence of EGTA. Upon addition of calcium, attached filaments bent as they broke. Actophorin, a low molecular weight, monomer sequestering, calcium-independent severing protein did not sever phalloidin-saturated filaments. Both gCap 39, a gelsolin-like, calcium-dependent capping protein that does not sever filaments, and CapZ, a heterodimeric, non-calcium-dependent capping protein, bound the filaments by one end to the coverslip. Visualization of individual filaments also revealed severing activity present in mixtures of actin-binding proteins isolated by filamentous actin affinity chromatography from early Drosophila embryos. This activity was different from either gelsolin or actophorin because it was not inhibited by phalloidin, but was calcium independent. The results of these studies provide new information about the molecular mechanisms of severing and capping by well-characterized proteins as well as definition of a novel type of severing activity.  相似文献   

14.
Several actin binding proteins were isolated from ascites hepatoma cells AH7974 by DNase I affinity chromatography. Among them, a protein having a molecular weight of 18,000 was further purified by DEAE cellulose and hydroxyapatite column chromatographies and gel filtration on a Sephadex G-75 column. The 18K protein not only inhibits actin polymerization but also depolymerizes actin filaments. This conclusion was supported by viscosity and fluorescence intensity measurements and the DNase I inhibition assay. A chemical cross-linking experiment suggested that the 18K protein binds to monomeric actin and forms and 18K-actin 1:1 complex. The net depolymerization rate by the 18K protein measured by the DNase I inhibition assay was slower than the rapid reduction of the fluorescence intensity of pyrene-labeled F-actin upon addition of the 18K protein. This result suggests that the 18K protein not only binds to monomeric actin but also binds to actin filaments directly. The sedimentation assay showed that a part of the 18K protein was cosedimented with actin filaments. Electron microscopic observations demonstrated that the 18K protein decreased the amount of actin filaments and the remaining filaments appeared to be decorated and distorted by the 18K protein. The 18K protein had no Ca2+ ion sensitivity and exhibited the same effect on both this tumor actin and muscle actin.  相似文献   

15.
We investigated the relationship between intermediate filaments (IFs) and other detergent- and nuclease-resistant filamentous structures of cultured liver epithelial cells (T51B cell line) using whole mount unembedded preparations which were sequentially extracted with Triton X-100 and nucleases. Immunogold labelling and stereoscopic observation facilitated the examination of each filamentous structure and their three-dimensional relationships to each other. After solubilizing phospholipid, nucleic acid and soluble cellular protein, the resulting cytoskeleton preparation consisted of a network of cytokeratin and vimentin IFs linked by 3 nm filaments. The IFs were anchored to and determined the position of the nuclear lamina filaments (NLF) network and the centrioles. The NLF was composed of the nuclear lamina filaments measuring 3-6 nm in diameter which radiated from and anchored to the skeleton of the nuclear pores. The IFs located in the nuclear region appeared to be interwoven with the NLF. At the cell surface, the IFs seemed to be attached to the putative actin filament network. They formed a focally interrupted plexus-like structure at the cell periphery. Fragments of vimentin filaments were found among the filamentous network located at the cell surface, and some filaments terminated blindly there.  相似文献   

16.
From the Triton-treated cortex fraction of sea urchin eggs, a high molecular weight actin binding protein (260K protein) was solubilized by a high salt solution and purified. A cosedimentation assay revealed that the 260K protein binds to actin filaments in a concentration-dependent manner. The low-shear viscosity of actin solutions largely increased in a concentration-dependent manner after addition of 260K protein. Electron microscopy showed that this protein induces the formation of large curled bundles of actin filaments. Different from fascin-induced actin bundles, no clear striations were observed within the actin bundles formed by the 260K protein. Antibodies against the 260K protein were raised in a rabbit and affinity purified. Immunoblotting analysis of Triton-solubilized cortex and various subcellular fractions showed that first only a single band reacted with the antibody and second that the 260K protein exclusively localized in the cortex fraction. Indirect immunofluorescence microscopy localized the protein in the cortex and the region of the cleavage furrow. After double staining, the fluorescence images for actin filaments and the 260K protein well correlate with each other.  相似文献   

17.
Dystrophin is widely thought to mechanically link the cortical cytoskeleton with the muscle sarcolemma. Although the dystrophin homolog utrophin can functionally compensate for dystrophin in mice, recent studies question whether utrophin can bind laterally along actin filaments and anchor filaments to the sarcolemma. Herein, we have expressed full-length recombinant utrophin and show that the purified protein is fully soluble with a native molecular weight and molecular dimensions indicative of monomers. We demonstrate that like dystrophin, utrophin can form an extensive lateral association with actin filaments and protect actin filaments from depolymerization in vitro. However, utrophin binds laterally along actin filaments through contribution of acidic spectrin-like repeats rather than the cluster of basic repeats used by dystrophin. We also show that the defective linkage between costameric actin filaments and the sarcolemma in dystrophin-deficient mdx muscle is rescued by overexpression of utrophin. Our results demonstrate that utrophin and dystrophin are functionally interchangeable actin binding proteins, but that the molecular epitopes important for filament binding differ between the two proteins. More generally, our results raise the possibility that spectrin-like repeats may enable some members of the plakin family of cytolinkers to laterally bind and stabilize actin filaments.  相似文献   

18.
James A. Wilkins  Shin Lin 《Cell》1982,28(1):83-90
Immunofluorescence and microinjection experiments have shown that vinculin (molecular weight 130,000) is localized at adhesion plaques of fibroblasts spread on a solid substrate. We found that this protein affects actin filament assembly and interactions in vitro at substoichiometric levels. Vinculin inhibits the rate of actin polymerization under conditions that limit nuclei formation, indicating an effect on the filament elongation step of the reaction. Vinculin also reduces actin filament-filament interaction measured with a low-shear viscometer. Scatchard plot analysis of the binding of 3H-labeled vinculin to actin filaments showed that there is one high-affinity binding site (dissociation constant = 20 nM) for every 1,500–2,000 actin monomers. These results suggest that vinculin interacts with a specific site located at the growing ends of actin filaments in a cytochalasin-like manner, a property consistent with its proposed function as a linkage protein between filaments and the plasma membrane.  相似文献   

19.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

20.
Abstract. The spatial relationships between the protein constituents of two junctional structures, adhaerens junctions and desmosomes, were determined by double immunofluorescence microscopy using marker proteins specific for these structures. Adhaerens junctions were visualized by immunofluorescent labeling for the membrane-associated protein vinculin and by their association with actin filaments. Desmosomal components were identified by labeling with anti-bodies to a group of minor desmosomal plaque proteins (DP1 antigens) and their association with filaments stained by cytokeratin antibodies. Double immunofluorescence microscopy of these components was performed in several tissues and cultured cells, including intact intestine, dissociated intestinal cells, and two morphologically different types of epithelial cells, cultured bovine kidney (MDBK), and mammary gland (BMGE) epithelial cells. This allowed the direct demonstration that each filament system is associated exclusively with its specific membrane-bound junctional protein. Vinculin and DP1-protein were found in distinct sites in the subapical intercellular junctional complex of intestinal epithelium and MDBK cells. Cell-substrate focal contacts contained vinculin and actin and showed no apparent relationships to the tonofilament system whereas intercellular contacts of BMGE cells were characterized by positive staining for DP1-protein and associated cytokeratin filaments. Immunolabeling of the cultured cells at different intervals after plating for the cytoskeletal elements and their membrane anchorage proteins was used to determine the temporal sequence of their organization. We propose that this approach may be used for the molecular definition and identification of cellular contacts and junctions as well as for studies of junction topology, dynamics of junction-cytoskeleton interactions, and junction biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号