首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Developmental changes in the levels of N -methyl- d -aspartate (NMDA) receptor subunit mRNAs were identified in rat brain using solution hybridization/RNase protection assays. Pronounced increases in the levels of mRNAs encoding NR1 and NR2A were seen in the cerebral cortex, hippocampus, and cerebellum between postnatal days 7 and 20. In cortex and hippocampus, the expression of NR2B mRNA was high in neonatal rats and remained relatively constant over time. In contrast, in cerebellum, the level of NR2B mRNA was highest at postnatal day 1 and declined to undetectable levels by postnatal day 28. NR2C mRNA was not detectable in cerebellum before postnatal day 11, after which it increased to reach adult levels by postnatal day 28. In cortex, the expression of NR2A and NR2B mRNAs corresponds to the previously described developmental profile of NMDA receptor subtypes having low and high affinities for ifenprodil, i.e., a delayed expression of NR2A correlating with the late expression of low-affinity ifenprodil sites. In cortex and hippocampus, the predominant splice variants of NR1 were those without the 5' insert and with or without both 3' inserts. In cerebellum, however, the major NR1 variants were those containing the 5' insert and lacking both 3' inserts. The results show that the expression of NR1 splice variants and NR2 subunits is differentially regulated in various brain regions during development. Changes in subunit expression are likely to underlie some of the changes in the functional and pharmacological properties of NMDA receptors that occur during development.  相似文献   

2.
Abstract: Total hexokinase levels (units/g tissue) have been measured during postnatal development of the cerebellum in control, hypothyroid, and hyperthyroid rats. In addition, distribution of hexokinase in the developing cerebellum has been observed with an immunofluorescence method. Hypothyroidism delays the normally observed postnatal increase in total hexokinase activity, whereas hyperthyroidism accelerates the increase. In normal animals, hexokinase levels in maturing Purkinje cells pass through a transient increase, with maximal levels at approximately 8 days postnatally followed by rapid decline to relatively low levels by 12 days; hypothyroidism delays this transient increase and subsequent decline, but hyperthyroidism does not appear to affect markedly the timing of this phenomenon. Cerebellar glomeruli are relatively enriched in hexokinase content, as judged by their intense fluorescence. Hypothyroidism delays the development of intensely stained glomeruli. Hyperthyroidism did not appear to cause precocious increase in numbers of glomeruli but may have increased the rate at which the hexokinase was assimilated by newly formed glomeruli. The effects of hypo- and hyperthyroidism on total cerebellar hexokinase levels are interpreted in terms of the effect of thyroid hormone on the biochemical maturation of synaptic structures rich in hexokinase.  相似文献   

3.
Abstract: Antiserum against purified rat brain hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) has been used in a study of the distribution of hexokinase during the postnatal development of rat cerebellum and retina. The cells of the external germinal layer of the cerebellum exhibit little or no fluorescence. The Purkinje cells exhibit a transient increase in hexokinase levels between 2 and 8 days postnatally, followed by a precipitous decrease (8–12 days) to the relatively low levels found in the mature Purkinje cell. Development of the intensely fluorescent cerebellar glomeruli in the granule cell layer is readily followed during the 3rd and 4th weeks postnatally. With respect to postnatal changes in hexokinase distribution of the retina, perhaps most notable is the observation that even the cytoplasmic protrusions which represent the precursors of the photoreceptor segments are richly endowed with hexokinase. Biochemical differentiation of the photoreceptor segments into hexokinase-rich inner segments and hexokinase-poor outer segments is readily observed long before the growth of the photoreceptor segments has been completed.  相似文献   

4.
The expression of the tropomyosin genes in the rat nervous system was examined during the postnatal development of the cerebellum, using human-specific alpha-, beta-, gamma-, and delta-tropomyosin cDNA probes and rat-specific alpha-, beta-, and delta-tropomyosin oligonucleotide probes. The beta- and gamma-genes do not seem to be expressed in the rat brain. The delta-tropomyosin gene produces two mRNAs: a major one of 2.4 kb, which is highly concentrated during the first postnatal week and then decreases fourfold in level until the age of 35 days, and a minor one of 2 kb, with the same developmental profile as the 2.4-kb mRNA. A 3-kb mRNA is expressed by the alpha-tropomyosin gene and is characteristic of the mature rat. The expression of the tropomyosin genes during the development of the rat cerebellum does not seem to be regulated through alternative splicing but rather implies the differential expression of two different isogenes. The multiple isoforms of tropomyosin produced during neuronal differentiation may be intimately involved in the regulation of the organization and function of actin microfilaments.  相似文献   

5.
The distribution of cerebellar gangliosides was studied in staggerer (sg/sg) mutant mice, where the majority of granule cells die after completing their migration across the molecular layer. In addition, the external granule cell layer in sg/sg mice persists longer than in normal mice. Moreover, in the sg/sg cerebellum, Purkinje cells are significantly reduced in number, and almost none have tertiary branchlet spines. The loss of Purkinje cells and granule cells in sg/sg mice is accompanied by an early-onset reactive gliosis that continues through adulthood. By correlating changes in ganglioside composition with the well-documented histological events of cerebellar development in normal and sg/sg mice, we obtained strong evidence for a nonrandom cellular distribution of gangliosides. The sharpest reduction in the GD1a content of sg/sg cerebellum occurred after 15 days of age, coincident with granule cell loss. GT1a, on the other hand, was significantly reduced from 15 through 150 days in the sg/sg mice. GD3 is a major ganglioside of the undifferentiated granule cell, but it becomes rapidly displaced by the more complex gangliosides with the onset of granule cell maturation. In the sg/sg mice, GD3 persisted at abnormally high levels from 15 to 28 days and then accumulated through adulthood. These findings, and those from other cerebellar mouse mutants, suggest that GD1a is enriched in granule cells and that GT1a is enriched in Purkinje cells. Our findings also suggest that GT1a is more concentrated in branchlet spines than in other regions of the Purkinje cell membrane. GT1b appears to be enriched in both granule cells and Purkinje cells, whereas GM1 appears to be enriched in myelin. Furthermore, the apparent persistence of the embryonic ganglioside GD3 in sg/sg mice results from an early-onset reactive gliosis, together with a partial retardation in granule cell maturation. The accumulation of GD3 beyond 28 days reflects the continued accretion of GD3 in reactive glia.  相似文献   

6.
Abstract: Evidence based on the ability to accumulate [3H]noradrenaline by a mechanism sensitive to desmethylimipramine suggests that there is a period of hyperinnervation of the cerebellum by noradrenergic fibres around the beginning of the second postnatal week. Different developmental profiles for specific noradrenaline uptake and noradrenaline content indicate that invasion of the tissue by noradrenergic fibres precedes their full acquisition of transmitter. Developmental increases in the density of β-receptors and adenyl cyclase responsiveness to isoproterenol lags behind those of the presynaptic components and does not begin until the hyperinnervation is declining around day 12.  相似文献   

7.
8.
The molecular species composition of rat cerebellar phospholipid subclasses has been studied by HPLC after phospholipase C treatment and dinitrophenyl derivatization. During rat cerebellum development (3-90 days postpartum), cholinephosphoglycerides and ethanolamine phosphoglycerides represented approximately 80% of all phospholipids, with their relative amount changing after 1 month. Among ethanolamine phosphoglycerides, the molar ratio of diacylglycerophosphoethanolamine (diacylGPE) to alkenylacylGPE decreased from approximately 1.4 at 3 days to approximately 0.5 after 10 days. The phospholipids investigated contained up to 12 different molecular species. The rate of accumulation of the various molecular species of diacylglycerophosphocholine (diacylGPC), diacylGPE, and alkenylacylGPE during cerebellar development allowed a classification into three main groups. The overall increase of the molecular species of the first group (6-diacylGPC, 5-diacylGPE, and 4-alkenylacylGPE) was approximately 18-fold between 3 and 90 days, with a faster rate of accumulation between 3 and 30 days. Those of the second group (3-diacylGPC, 5-diacylGPE, and 5-akenylacylGPE) increased by approximately 45-fold during the same developmental period, at a slow rate before day 15 and a faster one thereafter. The molecular species of the third group (3-alkenylacylGPE) increased by greater than 250-fold between 3 and 90 days, at a very slow rate before day 21 and more quickly thereafter. The different rates of accumulation of the components of the three groups during cerebellar development suggest a preferential location of the first group in membranes of neuronal perikaryons, glial cells, and synaptosomal structures. Those of the second group appear to be located in both synaptosomal membranes and myelin sheets, and those of the third group can be considered as myelin markers.  相似文献   

9.
Leslie P. Kozak 《Genetics》1985,110(1):123-143
The cerebellum of BALB/cJ mice has approximately 2.5 times as much glycerol-3-phosphate dehydrogenase (GPDH) as that of C57BL/6J mice. This difference in enzyme levels, which positively correlates with similar differences in the levels of hybridizable GPDH mRNA, is controlled by at least two unlinked regulatory loci and the structural gene, Gdc-1, located on chromosome 15. These regulatory loci, which act predominantly during the second and third weeks of postnatal cerebellar development and differentiation, have been separated from each other in the CXB recombinant inbred strains of mice. One regulatory locus, Gdcr-1, although unlinked to the structural gene, has an allele in BALB/c mice that preferentially enhances expression of the BALB/c structural allele at Gdc-1. The other locus, Gdcr-2, which may or may not be single, enhances GPDH expression at Gdc-1 irrespective of the allele present, as is commonly observed for loci acting from a distance. Measurements of GPDH mRNA in the recombinant inbred mice suggest that these regulatory genes act by modulating mRNA levels. Accordingly, the regulation of GPDH expression in the cerebellum of mice depends on a complex interaction of unlinked regulatory elements with regulatory elements near the structural gene. Furthermore, since the Gdc-1 locus is expressed in virtually every tissue of the mouse except blood and since the observed genetic variation is restricted to the cerebellum, it is likely that other tissues will have their own distinctive genetic mechanisms for modulating Gdc-1 expression.  相似文献   

10.
Glycosaminoglycans of Rat Cerebellum: II. A Developmental Study   总被引:2,自引:2,他引:0  
Total and individual glycosaminoglycans (GAGs) were determined in rat cerebellum in tissue explants at various postnatal ages. The major constituents of GAGs were chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Dermatan sulfate (DS) and keratan sulfate (KS) could not be detected and therefore each amounts to less than 5% of all GAGs at all ages studied. HA was the prominent GAG during postnatal development and only a minor constituent at adult ages, whereas CS was the predominant GAG in adulthood. HS remained relatively constant throughout development. The incorporation of [3H]glucosamine into individual GAGs was highest for HS at postnatal day 6, whereas HA showed intermediate and CS the lowest levels of incorporation during the first postnatal week. All major GAGs showed the lowest incorporation values at adult ages.  相似文献   

11.
The β4-and β10-thymosins, recently identified as actin monomer-sequestering proteins, are developmentally regulated in brain. Using specific mRNA and protein probes, we have used in situ hybridization and immunohis-tochemical techniques to investigate the distribution of the β-thymosin mRNAs and their proteins in developing rat cerebellum. Early in postnatal development, both β-thymosin mRNAs were expressed at highest levels in the postmitotic, premigratory granule cells of the external granular layer; expression diminished as granule cells migrated to and differentiated within the developing internal granular layer. In addition, both β-thymosin proteins were present in bundles of cerebellar afferent fibers in the white matter at this time. Throughout the maturation period, both proteins were present in elongating parallel fibers in the upper portion of the molecular layer. Later in cerebellar development, thymosin β4, but not thymosin β10, was expressed in Golgi epithelial cells and Bergmann processes. Thymosin β4 was expressed in a small population of cells with microglial morphology scattered throughout the gray and white matter. Thymosin β10 was detected in an even smaller population of glia. Expression of thymosin β4 and thymosin β10 in premigratory granule cells and in growing neuronal processes is consistent with the possibility that both β-thymosins are involved in the dynamics of actin polymerization during migration and process extension of neurons.  相似文献   

12.
Expression of inositol 1,4,5-trisphosphate (InsP3) receptor subtypes was determined in mouse brain using oligonucleotide-specific in situ hybridization. All subtypes, except one that deletes 120 bp from the full-length InsP3 receptor cDNA, were expressed in cerebellar Purkinje cells. In hippocampus, various subtypes showed distinct expression patterns. These results suggest that regionally selective expression of InsP3 receptor subtypes may result in the generation of functionally distinct channels.  相似文献   

13.
Abstract: The cellular distribution of gangliosides in the cerebellum was studied in a series of adult mouse mutants that lose specific populations of neurons. The weaver ( wv ) mutation destroys the vast majority of granule cells, whereas the Purkinje cell degeneration mutation ( pcd ) destroys the vast majority of Purkinje cells. The staggerer ( sg ) and lurcher ( Lc ) mutations, on the other hand, destroy the vast majority of both granule and Purkinje cells. A proliferation of reactive glial cells, which occurs as a consequence of neuronal loss, has been reported in the sg/sg and pcd/pcd mutants, but not in the wv/wv mutant. Compared with the normal (+/+) mice, the concentration (μg/100 mg dry weight) of GD1a was significantly reduced in those mutants that lost granule cells, but was not reduced in the pcd/pcd mutant. The concentration of GTIa, on the other hand, was significantly reduced in those mutants that lost Purkinje cells, but was not reduced in the wv/wv mutant. A significant elevation in the concentration of GD3, which may be related to the proliferation of reactive glial cells, was observed in the pcd/pcd, sglsg , and Lc /+ mutants, but was not observed in the wv/wv mutant. Because these ganglioside abnormalities were confined to the cerebellum, they cannot result from genetic defects in ganglioside metabolism. Instead, these abnormalities result from a differential enrichment of gangliosides in neural membranes. Our findings suggest that GDT1a is more heavily concentrated in granule cells than Purkinje cells, whereas the opposite appears true for GTla. It also appears that GD3 is enriched in reactive glial cells and may play an important role during the morphological transformation of neural membranes.  相似文献   

14.
Abstract: The neurological mouse mutant dystonia musculorum exhibits bizarre appendicular and truncal dystonia without known cerebellar histopathology. We evaluated striatal dopamine and cerebellar norepinephrine metabolism in this mutant and compared the results with those obtained in wild-type BALB/c and B6C3 controls. Tyrosine hydroxylase activity and dopamine metabolite levels (homovanillic acid and 3,4-dihydroxyphenylacetic acid) in the striatum of the mutant were similar to controls. Tyrosine hydroxylase activity and the steady-state level of 3-methoxy-4-hydroxyphenethyleneglycol, a metabolite of norepinephrine, in the cerebellum were 38% and 42-66%, respectively, greater in the mutant. However, the level of norepinephrine was similar (∼350 ng/g). Further, a Purkinje cell-specific marker, cGMP-dependent protein kinase, was unchanged in the mutant and no Purkinje cell pathology was observed with light microscopy. The lack of Purkinje cell derangement and similar levels of cerebellar norepinephrine and cGMP-dependent protein kinase activity suggest that increased norepinephrine metabolism in the cerebellum of this mutant is not a morphological response to gross target cell loss during morphogenesis. The observed changes may be a reaction to abnormal impulse traffic or altered input/output pathways to the mutant cerebellum during its development.  相似文献   

15.
Muscarinic Binding Sites in Developing Normal and Mutant Mouse Cerebellum   总被引:5,自引:5,他引:0  
Abstract: The development of [3H]quinuclidinylbenzilate ([3H]QNB) binding to cerebellar homogenates of weaver (wv), reeler (rl), staggerer (sg) and jimpy (jp) mutants, in addition to their normal counterparts, was observed. The maximum increase in binding in normal mice occurred postnatally, during the period 5 to 15 days. [3H]QNB binding was significantly reduced in wv, rl and sg mutants (40–50% of control) but was not so markedly affected in jp (80–100% control). Binding was saturable with an apparent K d of 0.15 nM and the affinity of [3H]QNB for its receptor was not affected during the course of development or as a result of the mutation. The presence of significant numbers of binding sites in the agranular mutants suggests that QNB binding sites are localised on cells other than the granule neurons. The possibility of synaptic reorganisation is also discussed.  相似文献   

16.
 本文在前文~[2]的基础上进一步以MCN和DNaseⅠ为探针研究大鼠脑神经元终末分化后不同生理时期染色质构象,结果表明:MCN酶解DNA产物PAGE显示脑老化过程大脑皮层及小脑神经元染色质核小体单体DNA分别保持在176bp和215bp水平,核小体连接DNA长度存在组织差异,但不受老化影响;<2>DNaseⅠ酶解DNA产物PAGE显示各年龄组大脑皮层及小脑神经元染色质DNA存在10bp间隔重复结构和相同的泳动区带分布特征,提示脑老化中染色质具有稳定的B型双螺旋结构和一致的螺线管卷曲形式。染色质DNaseⅠ降解率随年龄增加而降低,提示老化导致活性染色质区域减少,老化过程脑神经元染色质构象改变成为其转录功能减退的结构基础。  相似文献   

17.
The mouse is currently widely used as a model organism in the analysis of gene function but how developmentally regulated patterns of connexin gene expression in the mouse compare with those in the human is unclear. Here we compare the patterns of connexin expression in the heart during the development of the mouse (from embryonic day 12.5 to 6 weeks postpartum) and the human (at 9 weeks gestation and adult stage). The extent of connexin43 expression in the ventricles progressively increased during development of the mouse heart. The developmental pattern of expression for connexins 40 and 45 in the mouse heart was similar, but not identical, and in the ventricles showed a progressive and preferential expression in the conduction system. In general, these dynamic changes of connexins 43, 40 and 45 during mouse cardiac development appear to be mirrored in the human.  相似文献   

18.
Studies on acute hyperammonemic models suggest a role of oxidative stress in neuropathology of ammonia toxicity. Mostly, a low grade chronic type hyperammonemia (HA) prevails in patients with liver diseases and causes derangements mainly in cerebellum associated functions. To understand whether cerebellum responds differently than other brain regions to chronic type HA with respect to oxidative stress, this article compares active levels of all the antioxidant enzymes vis a vis extent of oxidative damage in cerebral cortex and cerebellum of rats with acute and chronic HA induced by intra-peritoneal injection of ammonium acetate (successive doses of 10 × 103 & 8 × 103 μmol/kg b.w. at 30 min interval for acute and 8 × 103 μmol/kg b.w. daily up to 3 days for chronic HA). As compared to the respective control sets, cerebral cortex of acute HA rats showed significant decline (P < 0.01–0.001) in the levels of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) but with no change in glutathione reductase (GR). In cerebellum of acute HA rats, SOD, catalase and GR though declined significantly, GPx level was found to be stable. Contrary to this, during chronic HA, levels of SOD, catalase and GPx increased significantly in cerebral cortex, however, with a significant decline in the levels of SOD and GPx in cerebellum. The results suggest that most of the antioxidant enzymes decline during acute HA in both the brain regions. However, chronic HA induces adaptive changes, with respect to the critical antioxidant enzymes, in cerebral cortex and renders cerebellum susceptible to the oxidative stress. This is supported by ∼ 2- and 3-times increases in the level of lipid peroxidation in cerebellum during chronic and acute HA respectively, however, with no change in the cortex due to chronic HA.  相似文献   

19.
Abstract: We examined the ability of developing cere-bellar cell cultures to synthesize a 71,000 MW stress protein (SP71) in response to heat shock and Cd2+ treatment. The induction of SP71 synthesis appeared to be dependent on both the age of the culture and the stressor used. Heat shock induced SP71 synthesis in freshly prepared cells and in cell cultures at each age examined, whereas Cd2+ was effective only in cultures at 7 days of age and older. These findings are discussed with reference to the development of various cell types in these cultures.  相似文献   

20.
S100在猫小脑中的分布及其表达的年龄相关性变化   总被引:2,自引:1,他引:1  
用免疫组织化学ABC法标记S100免疫阳性(S100-IR)细胞,观察S100蛋白在青年猫和老年猫小脑中的分布,探讨其表达的年龄相关变化及意义。光镜下计数颗粒层和髓质中S100-IR细胞密度及浦肯野细胞(PC)层阳性细胞线密度。结果显示,颗粒层和髓质中S100-IR细胞密度较小、分布均匀,PC层阳性细胞相对密集,分子层未见阳性反应;阳性细胞胞浆深染。与青年猫相比,老年猫小脑颗粒层、髓质和PC层中S100-IR细胞密度显著增加(P<0.01),胞体较大,阳性较强。表明S100-IR细胞在小脑中的分布具区域性差异,呈明显的年龄相关性增生,推测其增生对衰老神经元的丢失起保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号