首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The specificity of anti-progesterone P15G12C12G11 antibody was improved by combination of in vitro scanning saturation mutagenesis and error-prone PCR. The most evolved mutant is able to discriminate against 5beta- or 5alpha-dihydroprogesterone, 23 and 15 times better than the starting antibody, while maintaining the affinity for progesterone that remains in the picomolar range. The high level of homology with anti-progesterone monoclonal antibody DB3 allowed the construction of three-dimensional models of P15G12C12G11 based on the structures of DB3 in complex with various steroids. These models together with binding data, derived from site-directed mutagenesis, were used to build a phage library in which five first sphere positions in complementarity-determining regions 2H and 3L were varied. Variants selected by an initial screening in competition against a large excess of 5beta- or 5alpha-dihydroprogesterone were characterized by a convergent amino acid signature different from that of the wild-type antibody and had lower cross-reactivity. Binding properties of this first set of mutants were further improved by the addition of second sphere mutations selected independently from an error-prone library. The three-dimensional models of the best variant show changes in the antigen binding site that explain well the increase in selectivity. The improvements are partly linked to a change in the canonical class of the light chain third hypervariable loop.  相似文献   

2.
3.
A Peterson  B Seed 《Cell》1988,54(1):65-72
Saturation mutagenesis and a complement fixation selection have yielded CD4 point mutants with impaired antibody and human immunodeficiency virus binding. The patterns of amino acid substitution, in conjunction with previous antibody cross-blocking data, affirm the similar tertiary structures of the CD4 amino-terminal domain and immunoglobulin variable regions. Single residue substitutions affecting virus binding and syncytium formation are observed over an eight residue segment located in a portion of the molecule homologous to the second hypervariable region of an antibody combining site.  相似文献   

4.
Integration host factor (IHF) is a protein that binds to the H' site of bacteriophage lambda with sequence specificity. Genetic experiments implicated amino acid residue Glu(44) of the beta-subunit of IHF in discrimination against substitution of A for T at position 44 of the TTR submotif of the binding site (Lee, E. C., Hales, L. M., Gumport, R. I., Gardner, J. F. (1992) EMBO J., 11, 305-313). We have extended this observation by generating all possible single-base substitutions at positions 43, 44, and 45 of the H' site. IHF failed to bind these H' site substitution mutants in vivo. The K(d)(app) value for each H' site substitution, except for H'45A mutant, was reduced >2000-fold relative to the wild-type site. Substitution of amino acid beta-Glu(44) with alanine prevented IHF from discriminating against the H'44A variant but not the other H' site substitution mutants. Further analysis with other substitutions at position beta44 demonstrated that both oxygens of the wild-type glutamic acid are necessary for discrimination of AT at position 44. Because the beta-Glu(44) residue does not contact the DNA, this residue probably enforces binding specificity indirectly through interaction with amino acids that themselves contact the DNA.  相似文献   

5.
A novel codon-based mutagenesis procedure is described that allows rapid and efficient modification of antibody amino acid sequences expressed as F(ab) fragments in M13. The procedure succeeded in generating a library of mutations in the complementarity-determining regions of chimeric L6, an antibody against a tumor-associated Ag. A set of anti-Id antibodies (anti-Id 1, 3, and 7) that bind near the L6 Ag-binding site served as model Ag. The goal was to select mutant antibody sequences that altered the L6 reactivity with the anti-Id in subtle ways, i.e., to eliminate the binding to one anti-Id while preserving other reactivities or to identify mutants with increased binding. A high frequency of variant M13 phage clones exhibiting altered specificity for the anti-Id were identified. Codon-based mutagenesis in conjunction with the M13 antibody expression and screening system should provide an efficient and general approach for redirecting the specificity and potentially improving the affinity of antibodies in vitro.  相似文献   

6.
The murine mAb CB4-1 raised against p24 (HIV-1) recognizes a linear epitope of the HIV-1 capsid protein. Additionally, CB4-1 exhibits cross-reactive binding to epitope-homologous peptides and polyspecific reactions to epitope nonhomologous peptides. Crystal structures demonstrate that the epitope peptide (e-pep) and the nonhomologous peptides adopt different conformations within the binding region of CB4-1. Site-directed mutagenesis of the fragment variable (Fv) region was performed using a single-chain (sc)Fv construct of CB4-1 to analyze binding contributions of single amino acid side chains toward the e-pep and toward one epitope nonhomologous peptide. The mutations of Ab amino acid side chains, which are in direct contact with the Ag, show opposite influences on the binding of the two peptides. Whereas the affinity of the e-pep to the CB4-1 scFv mutant heavy chain variable region Tyr(32)Ala is decreased 250-fold, the binding of the nonhomologous peptide remains unchanged. In contrast, the mutation light chain variable region Phe(94)Ala reduces the affinity of the nonhomologous peptide 10-fold more than it does for the e-pep. Thus, substantial changes in the specificity can be observed by single amino acid exchanges. Further characterization of the scFv mutants by substitutional analysis of the peptides demonstrates that the effect of a mutation is not restricted to contact residues. This method also reveals an inverse compensatory amino acid exchange for the nonhomologous peptide which increases the affinity to the scFv mutant light chain variable region Phe(94)Ala up to the level of the e-pep affinity to the wild-type scFv.  相似文献   

7.
8.
A bacterially expressed single chain antibody (scFv215) directed against the largest subunit of drosophila RNA polymerase II was analysed. Structure and function of the antigen binding site in scFv215 were probed by chain shuffling and by site‐specific mutagenesis. The entire variable region of either the heavy or light chain was replaced by an unrelated heavy or light chain. Both replacements resulted in a total loss of binding activity suggesting that the antigen binding site is contributed by both chains. The functional contributions of each complementarity determining region (CDR) were investigated by site specific mutagenesis of each CDR separately. Mutations in two of the CDRs, CDR1 of light chain and CDR2 of heavy chain, reduced the binding activity significantly. Each of the amino acids in these two CDRs was replaced individually by alanine (alanine walking). Seven amino acid substitutions in the two CDRs were found to reduce the binding activity by more than 50%. The data support a computer model of scFv215 which fits an epitope model based on a mutational analysis of the epitope suggesting an alpha‐helical structure for the main contact area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
用盒式突变和定点突变对大肠杆菌青霉素G酰化酶α亚基177位ser进行了突变研究,结果发现所挑选的突变体均无酶的活力,这一结果可能可以用来解释Ser 177附近肽段和一些青霉素结合蛋白青霉素结合区在一级结构上保持同源性的原因。  相似文献   

10.
青霉素G酰化酶α亚基Ser177的突变对酶活性的影响   总被引:2,自引:0,他引:2  
The technique of cassette and site-specific mutagenesis were used to study the role of residue No. 177 in penicillin G acylase (PGA, EC 3.5.1.11). Ser is conserved at residue No. 177 in all penicillin binding proteins. We got a series of mutants in which the amino acid at residue No. 177 was replaced by other amino acids through the site-specific and cassette mutagenesis, and we characterized the mutants by colony hybridization, NIPAB paper test and DNA sequence analysis. These mutants all show no activity of enzyme, even if the Ser residue was replaced by Thr, Gly and Ala respectively. The results show that Ser residue may be essential for substrate-binding or catalysis of PGA.  相似文献   

11.
DigA16 is an artificial digoxigenin-binding protein, which was derived from the bilin-binding protein, a lipocalin of Pieris brassicae, via reshaping of its natural ligand pocket. Here we report the crystal structures of DigA16 in the presence of either digoxigenin or digitoxigenin and for the apo-protein at resolutions below 1.9A. As a consequence of the altogether 17 amino acid substitutions within the binding site significant structural changes have occurred in the four loops that form the entrance to the ligand pocket on top of the structurally conserved beta-barrel framework. For example, one loop adopts a new alpha-helical backbone structure, which seems to be induced by few critical side-chain contacts. Digoxigenin becomes almost fully buried (by 95%) upon complexation, whereby specificity for the hydrophilic steroid is maintained through hydrogen-bonding networks and shape complementarity. The differential binding of the related steroid digitoxigenin is mainly governed by an internal histidine residue, whose side-chain undergoes significant induced fit. Among those amino acids that line the ligand pocket two tyrosine and one tryptophan residue provide the largest contacts. Interestingly, corresponding three side-chains are found with the same mutual orientation in the anti-digoxigenin antibody 26-10, even though the hapten orientation is quite different there and only 66% of the steroid surface is buried in the combining site. Hence, in the case of the engineered lipocalin DigA16 an example of convergent in vitro evolution is observed. Generally, the remarkable structural plasticity of the loop region and the role of polar residues in the binding site illustrate the potential of the lipocalin scaffold for the generation of specific receptor proteins towards a variety of ligands.  相似文献   

12.
We aimed to identify antibodies that can recognize the Asn-Xaa-Ser/Thr(NXS/T) N-glycosylation site that guides oligosaccharyltransferase (OT) activity. We used synthetic Asn-Cys-Ser/Thr(NCS/T) tripeptides conjugated to bovine serum albumin to isolate single chain antibody fragments of a variable region (scFv) from the Griffin 1 phage antibody library. Although Ser and Thr have different side chains, the scFv proteins thus isolated bound to both NCS and NCT with Kd values of the order of 10(-6) M and accepted the substitution of the Cys residue with various amino acids, including Ala, Gly, and Val. However, these proteins recognized neither Asn-Pro-Ser/Thr nor non-NXS/T tripeptides. The scFv proteins recognized NCS/T and N-glycosylation site of mutant yeast protein disulfide isomerase when they were in their native but not denatured state. These results indicate that antibody recognition of the NXS/T motif is conformation dependent and suggest that NXS/T spontaneously adopts a specific conformation that is necessary for antibody recognition. These features are likely to correlate with the known binding specificity of OT.  相似文献   

13.
To study the active site(s) of IL-6 we combined mutagenesis of IL-6 with epitope mapping of IL-6 specific mAb. In addition to amino-terminal deletion mutants we described previously, carboxyl-terminal deletion mutants were prepared. Functional analysis showed that deletion of only five carboxyl-terminal amino acids already reduced the bioactivity 1000-fold. A panel of mAb to IL-6 was subsequently analyzed by antibody competition experiments and binding to the amino- and carboxyl-terminal deletion mutants. On the basis of the competition experiments the six neutralizing mAb were divided in two groups (I and II). The binding pattern with the deletion mutants suggested that the region recognized by the four mAb in group I is composed of residues of amino- and carboxyl-terminus: binding of two mAb was abolished after deletion of amino acid Ala I-Ile26, of the third mAb after deletion of the four carboxyl-terminal amino acids whereas the fourth mAb did not bind to either mutant. Group II mAb retained binding to these mutants. Taken together these data suggest that in the native IL-6 molecule amino acid residues of amino and carboxyl terminus are in close proximity and that together they constitute an active site. Furthermore our data suggest that the part of the molecule recognized by group II antibodies is a second site involved in biologic activity.  相似文献   

14.
Two distinct spontaneous variants of the murine anti-digoxin hybridoma 26-10 were isolated by fluorescence-activated cell sorting for reduced affinity of surface antibody for antigen. Nucleotide and partial amino acid sequencing of the variant antibody variable regions revealed that 1 variant had a single amino acid substitution: Lys for Asn at heavy chain position 35. The second variant antibody had 2 heavy chain substitutions: Tyr for Asn at position 35, and Met for Arg at position 38. Mutagenesis experiments confirmed that the position 35 substitutions were solely responsible for the markedly reduced affinity of both variant antibodies. Several mutants with more conservative position 35 substitutions were engineered to ascertain the contribution of Asn 35 to the binding of digoxin to antibody 26-10. Replacement of Asn with Gln reduced affinity for digoxin 10-fold relative to the wild-type antibody, but maintained wild-type fine specificity for cardiac glycoside analogues. All other substitutions (Val, Thr, Leu, Ala, and Asp) reduced affinity by at least 90-fold and caused distinct shifts in fine specificity. The Ala mutant demonstrated greatly increased relative affinities for 16-acetylated haptens and haptens with a saturated lactone. The X-ray crystal structure of the 26-10 Fab in complex with digoxin (Jeffrey PD et al., 1993, Proc Natl Acad Sci USA 90:10310-10314) reveals that the position 35 Asn contacts hapten and forms hydrogen bonds with 2 other contact residues. The reductions in affinity of the position 35 mutants for digoxin are greater than expected based upon the small hapten contact area provided by the wild-type Asn. We therefore performed molecular modeling experiments which suggested that substitution of Gln or Asp can maintain these hydrogen bonds whereas the other substituted side chains cannot. The altered binding of the Asp mutant may be due to the introduction of a negative charge. The similarities in binding of the wild-type and Gln-mutant antibodies, however, suggest that these hydrogen bonds are important for maintaining the architecture of the binding site and therefore the affinity and specificity of this antibody. The Ala mutant eliminates the wild-type hydrogen bonding, and molecular modeling suggests that the reduced side-chain volume also provides space that can accommodate a congener with a 16-acetyl group or saturated lactone, accounting for the altered fine specificity of this antibody.  相似文献   

15.
In susceptible insects, Cry toxin specificity correlates with receptor recognition. In previous work, we characterized an scFv antibody (scFv73) that inhibits binding of Cry1A toxins to cadherin-like receptor. The CDR3 region of scFv73 shared homology with an 8-amino acid epitope ((869)HITDTNNK(876)) of the Manduca sexta cadherin-like receptor Bt-R(1) (Gomez, I., Oltean, D. I., Gill, S. S., Bravo, A., and Soberón, M. (2001) J. Biol. Chem. 276, 28906-28912). In this work, we show that the previous sequence of scFv73 CDR3 region was obtained from the noncoding DNA strand. However, most importantly, both scFv73 CDR3 amino acid sequences of the coding and noncoding DNA strands have similar binding capabilities to Cry1Ab toxin as Bt-R(1) (869)HITDTNNK(876) epitope, as demonstrated by the competition of scFv73 with binding to Cry1Ab with synthetic peptides with amino acid sequences corresponding to these regions. Using synthetic peptides corresponding to three exposed loop regions of domain II of Cry1Aa and Cry1Ab toxins, we found that loop 2 synthetic peptide competed with binding of scFv73 to Cry1A toxins in Western blot experiments. Also, loop 2 mutations that affect toxicity of Cry1Ab toxin are affected in scFv73 binding. Toxin overlay assays of Cry1A toxins to M. sexta brush border membrane proteins showed that loop 2 synthetic peptides competed with binding of Cry1A toxins to cadherin-like Bt-R(1) receptor. These experiments identified loop 2 in domain II of as the cognate binding partner of Bt-R(1) (869)HITDTNNK(876). Finally, 10 amino acids from beta-6-loop 2 region of Cry1Ab toxin ((363)SSTLYRRPFNI(373)) showed hydropathic pattern complementarity to a 10-amino acid region of Bt-R(1) ((865)NITIHITDTNN(875)), suggesting that binding of Cry1A toxins to Bt-R(1) is determined by hydropathic complementarity and that the binding epitope of Bt-R(1) may be larger than the one identified by amino acid sequence similarity to scFv73.  相似文献   

16.
We have identified a UDP-glucose-binding site within human UDP-glucose dehydrogenase (hUGDH) by photoaffinity labeling with a specific probe, [(32)P]5N(3)UDP-glucose, and cassette mutagenesis using a synthetic hUGDH gene. Photolabel-containing peptides were generated by photolysis followed by tryptic digestion and isolated using the phosphopeptide isolation kit. Photolabeling of these peptides was effectively prevented by the presence of UDP-glucose during photolysis, demonstrating a selectivity of the photoprobe for the UDP-glucose-binding site. Amino acid sequencing and compositional analysis identified the UDP-glucose-binding site of hUGDH as the region containing the sequence, ASVGFGGSXFQK, corresponding to A268-K279 of the amino acid sequence of hUGDH. The unidentified residue, X, can be designated as a photolabeled C276 because the sequences including the cysteine residue in question have a complete identity with those of other UGDH species known. The importance of the C276 residue in the binding of UDP-glucose was further examined with mutant proteins at the C276 site. The mutagenesis at C276 has no effect on the expression of the mutants (C276G, C276K, C276E, C276L, and C276Y). Enzyme activities of the C276 mutants were not measurable under normal assay conditions, suggesting an important role for the C276 residue. No incorporation of [(32)P]5N(3)UDP-glucose was also observed for the mutants. These results indicate that C276 plays an important role for efficient binding of UDP-glucose to hUGDH.  相似文献   

17.
The structure of the scFv fragment FITC-E2, obtained from a naive phage antibody scFv library derived from human donors, was determined at 2.1 A resolution in the free form and at 3.0 A in the complexed form. The wild-type (wt) scFv binds fluorescein with a K(D) of 0.75 nM. The free scFv readily crystallizes by compacting its 18 amino acid-long CDR-H3, partially occluding the binding site and further blocking access by binding to the "bottom" of a neighboring scFv molecule with a cluster of exposed aromatic residues within CDR-H3. Only upon mutating one of the residues involved in this dominant crystal contact, an exposed tryptophan in the middle of CDR-H3, crystals of the complex could be obtained. A series of alanine mutants within the putative antigen binding site, covering a range of binding affinities, were used to relate macroscopic thermodynamic and kinetic binding parameters to single-molecule disruption forces measured by AFM. The effects of the mutations on the binding properties, particularly on the fraction of binding-competent molecules within the population, cannot be fully explained by changes in the strength of local interactions. The significant conformational change of CDR-H3 between the free and the liganded form illustrates the plasticity of the binding site. An accompanying study in this issue by Curcio and colleagues presents the molecular dynamics simulation of the forced unbinding experiments and explores possible effects of the mutations on the unbinding pathway of the hapten.  相似文献   

18.
The site on influenza virus N9 neuraminidase recognized by NC41 monoclonal antibody comprises 19 amino acid residues that are in direct contact with 17 residues on the antibody. Single sequence changes in some of the neuraminidase residues in the site markedly reduce antibody binding. However, two mutants have been found within the site, Ile368 to Arg and Asn329 to Asp selected by antibodies other than NC41, and these mutants bind NC41 antibody with only slightly reduced affinity. The three-dimensional structures of the two mutant N9-NC41 antibody complexes as derived from the wild-type complex are presented. Both structures show that some amino acid substitutions can be accommodated within an antigen-antibody interface by local structural rearrangements around the mutation site. In the Ile368 to Arg mutant complex, the side-chain of Arg368 is shifted by 2.9 A from its position in the uncomplexed mutant and a shift of 1.3 A in the position of the light chain residue HisL55 with respect to the wild-type complex is also observed. In the other mutant, the side-chain of Asp329 appears rotated by 150 degrees around C alpha-C beta with respect to the uncomplexed mutant, so that the carboxylate group is moved to the periphery of the antigen-antibody interface. The results provide a basis for understanding some of the potential structural effects of somatic hypermutation on antigen-antibody binding in those cases where the mutation in the antibody occurs at antigen-contacting residues, and demonstrate again the importance of structural context in evaluating the effect of amino acid substitutions on protein structure and function.  相似文献   

19.
The malate dehydrogenase from Escherichia coli has been specifically altered at a single amino acid residue by using site-directed mutagenesis. The conserved Arg residue at amino acid position 102 in the putative substrate binding site was replaced with a Gln residue. The result was the loss of the high degree of specificity for oxaloacetate. The difference in relative binding energy for oxaloacetate amounted to about 7 kcal/mol and a difference in specificity between oxaloacetate and pyruvate of 8 orders of magnitude between the wild-type and mutant enzymes. These differences may be explained by the large hydration potential of Arg and the formation of a salt bridge with a carboxylate group of oxaloacetate.  相似文献   

20.
The specificity and reactivity of human alpha 1-proteinase inhibitor has been investigated by in vitro mutagenesis of the reactive site P1 methionine 358 residue to alanine 358 and cysteine 358. A comparison of the second-order association rates of both uncharged mutants with 9 serine proteinases indicated that each reacted similarly to either the normal plasma inhibitor or to a mutant containing valine in this position (Travis, J., Owen, M., George, P., Carrell, R., Rosenberg, S., Hallewell, R. A., and Barr, P. J. (1985) J. Biol. Chem. 260, 4384-4389) when tested against either neutrophil or pancreatic elastase. However, oxidation, carboxymethylation, or aminoethylation of the cysteine mutant to yield a charged P1 residue resulted in a significant decrease in association rates with both elastolytic enzymes, and aminoethylation created an excellent trypsin and plasmin inhibitor. These results indicate that the specificity of alpha 1-proteinase inhibitor is determined in a general manner by the class of amino acid residue in the P1 position. Substitution within the same category, such as from valine to alanine or cysteine among the aliphatic hydrophobic residues, has little effect on association rates with the elastolytic enzymes tested. However, alteration from an uncharged to a charged residue may cause considerable changes in both inhibitor specificity and reactivity as noted here with the cysteine derivatives and also previously with a natural variant in which methionine 358 to arginine 358 conversion resulted in the production of a potent thrombin inhibitor (Owen, M. C., Brennan, S. O., Lewis, J. H., and Carrell, R. W. (1983) N. Engl. J. Med. 309, 694-698).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号