首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of a series of sterols on molecular order and motion in bilayers formed from egg lecithin and dicetylphosphate were examined and correlations between order and data on permeability to 22Na+ were sought. Electron spin resonance spectra were observed for probes intercalated both in multilamellar dispersions where the effects of motion and orientation are difficult to separate, and in planar multibilayers where the degree of molecular order may be measured even in the presence of slow probe motion. It was concluded from the planar multi-bilayer data that sterols which increase the degree of ordering of lipid molecules decrease 22Na+ permeability, and that sterols which have the opposite effect on order increase permeability. All the sterols tested lead to decreased rates of motion of the probes. This effect obscures the correlation between order and permeability using data from dispersions.  相似文献   

2.
Macrophage membrane fluidity was investigated with respect to cellular phagocytic activity through the use of fatty acid spin labels. Spin-labeled fatty acid derivatives were incorporated into intact mouse peritoneal macrophages by exchange from bovine serum albumin. The electron spin resonance (ESR) spectra of the spin-labeled fatty acids in the macrophages showed a pronounced temperature dependence and a decrease in the hyperfine splittings (2 T11) of the spectra as the nitroxide radical was moved away from the polar head group of the fatty acid derivatives. Spin-labeled macrophages underwent a time- and temperature-dependent decay, which was inhibited by preincubating the cells with mercuric chloride, heating at 56 degrees C, or by fixing them with 0.25% glutaraldehyde. No correlation between the phagocytic activity of macrophages and membrane freedom of motion could be demonstrated. Treatment of macrophages with anti-macrophage serum or extended in vitro cultivation inhibited cellular phagocytic activity but exerted no effect on the motional freedom of the macrophage membrane. Enrichment of the fatty acid composition of the macrophage membrane with cis- or trans-unsaturated fatty acids had striking effects on cellular phagocytic activity, while no significant changes could be detected in the freedom of motion of incorporated fatty acid spin labels at the degree of specific enrichment achieved here. Thus no correlation between cellular phagocytic activity and lipid motion could be detected.  相似文献   

3.
In the present paper, functional properties of nonvoltage-gated sodium channels in K562 cells were studied after cholesterol depletion, i.e., under conditions of the destruction of microdomains (rafts). For cholesterol depletion, cells were incubated with methyl-beta-cyclodextrin (MbCD), an oligosaccharide that selectively binds sterols. Single currents through sodium channels were recorded in cell-attached and inside-out experiments using the patch-clamp technique. After incubation with MbCD (2.5 or 5 mM), the activation of sodium channels in response to cytochalasin B or D was observed in both native cells and membrane fragments. Biophysical characteristics of sodium channels in cholesterol-depleted K562 cells were close to those in control; unitary conductance was 12 pS. Inside-out experiments with the use of globular actin have indicated that filament assembly on cytoplasmic membrane side causes an inactivation of sodium channels in the modified cells. These data imply that sodium channels in K562 cells are not associated with cholesterol-rich membrane microdomains. Possible mechanisms of the interaction of the plasma membrane and the cortical cytoskeleton are discussed.  相似文献   

4.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bisphosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P less than 0.002 and P less than 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding site is observed (P less than 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P less than 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network.  相似文献   

5.
Macrophage membrane fluidity was investigated with respect to cellular phagocytic activity through the use of fatty acid spin labels.Spin-labeled fatty acid derivatives were incorporated into intact mouse peritoneal macrophages by exchange from bovine serum albumin. The electron spin resonance (ESR) spectra of the spin-labeled fatty acids in the macrophages showed a pronounced temperature dependence and a decrease in the hyperfine splittings (2T|) of the spectra as the nitroxide radical was moved away from the polar head group of the fatty acid derivatives.Spin-labeled macrophages underwent a time- and temperature-dependent decay, which was inhibited by preincubating the cells with mercuric chloride, heating at 56 °C, or by fixing them with 0.25 % glutaraldehyde.No correlation between the phagocytic activity of macrophages and membrane freedom of motion could be demonstrated. Treatment of macrophages with anti-macrophage serum or extended in vitro cultivation inhibited cellular phagocytic activity but exerted no effect on the motional freedom of the macrophage membrane. Enrichment of the fatty acid composition of the macrophage membrane with cis- or trans-unsaturated fatty acids had striking effects on cellular phagocytic activity, while no significant changes could be detected in the freedom of motion of incorporated fatty acid spin labels at the degree of specific enrichment achieved here. Thus no correlation between cellular phagocytic activity and lipid motion could be detected.  相似文献   

6.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

7.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bis-phosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P < 0.002 and P < 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding sites is observed (P < 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P < 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network.  相似文献   

8.
Proton and/or sodium electrochemical gradients are critical to energy handling at the plasma membranes of all living cells. Sodium gradients are used for animal plasma membranes, all other living organisms use proton gradients. These chemical and electrical gradients are either created by a cation pumping ATPase or are created by photons or redox, used to make ATP. It has been established that both hydrogen and sodium ions leak through lipid bilayers at approximately the same rate at the concentration they occur in living organisms. Although the gradients are achieved by pumping the cations out of the cell, the plasma membrane potential enhances the leakage rate of these cations into the cell because of the orientation of the potential. This review proposes that cells use certain lipids to inhibit cation leakage through the membrane bilayers. It assumes that Na(+) leaks through the bilayer by a defect mechanism. For Na(+) leakage in animal plasma membranes, the evidence suggests that cholesterol is a key inhibitor of Na(+) leakage. Here I put forth a novel mechanism for proton leakage through lipid bilayers. The mechanism assumes water forms protonated and deprotonated clusters in the lipid bilayer. The model suggests how two features of lipid structures may inhibit H(+) leakage. One feature is the fused ring structure of sterols, hopanoids and tetrahymenol which extrude water and therefore clusters from the bilayer. The second feature is lipid structures that crowd the center of the bilayer with hydrocarbon. This can be accomplished either by separating the two monolayers with hydrocarbons such as isoprenes or isopranes in the bilayer's cleavage plane or by branching the lipid chains in the center of the bilayers with hydrocarbon. The natural distribution of lipids that contain these features are examined. Data in the literature shows that plasma membranes exposed to extreme concentrations of cations are particularly rich in the lipids containing the predicted qualities. Prokaryote plasma membranes that reside in extreme acids (acidophiles) contain both hopanoids and iso/anteiso- terminal lipid branching. Plasma membranes that reside in extreme base (alkaliphiles) contain both squalene and iso/anteiso- lipids. The mole fraction of squalene in alkaliphile bilayers increases, as they are cultured at higher pH. In eukaryotes, cation leak inhibition is here attributed to sterols and certain isoprenes, dolichol for lysosomes and peroxysomes, ubiquinone for these in addition to mitochondrion, and plastoquinone for the chloroplast. Phytosterols differ from cholesterol because they contain methyl and ethyl branches on the side chain. The proposal provides a structure-function rationale for distinguishing the structures of the phytosterols as inhibitors of proton leaks from that of cholesterol which is proposed to inhibit leaks of Na(+). The most extensively studied of sterols, cholesterol, occurs only in animal cells where there is a sodium gradient across the plasma membrane. In mammals, nearly 100 proteins participate in cholesterol's biosynthetic and degradation pathway, its regulatory mechanisms and cell-delivery system. Although a fat, cholesterol yields no energy on degradation. Experiments have shown that it reduces Na(+) and K(+) leakage through lipid bilayers to approximately one third of bilayers that lack the sterol. If sterols significantly inhibit cation leakage through the lipids of the plasma membrane, then the general role of all sterols is to save metabolic ATP energy, which is the penalty for cation leaks into the cytosol. The regulation of cholesterol's appearance in the plasma membrane and the evolution of sterols is discussed in light of this proposed role.  相似文献   

9.
Sarcoplasmic reticular vesicles were prepared from both lobster and rabbit muscle. A variety of water-soluble, lipid-soluble, and alkylating spin labels were used to treat the sarcoplasmic reticular vesicles. All spin label analyses were carried out with and without NiCl2. Nickel is used to remove spin label signal originating from outside of, on the surface of, or localized in the outermost part of the outer bilayer half of the sarcoplasmic reticular membrane.We conclude that the hydrocarbon portion of sarcoplasmic reticular vesicles has symmetry in regard to the physical properties that limit spin label motion; however, we find that the membrane interface limits spin label motion more on the inner surface than the outer surface and that the trapped aqueous volume which is sampled by water soluble spin labels inside the vesicle enclosure limits spin label motion much more than the average aqueous medium outside.  相似文献   

10.
The effect of radiation-induced peroxidation on the fluidity of the phospholipids of the erythrocyte membrane was studied using both erythrocyte ghosts and liposomes formed from the polar lipids of erythrocytes. In liposomes, the oxidation of the phospholipids increased with radiation dose, but there was no change in the fluidity of the lipids as measured by spin-label motion. Under the same conditions of irradiation, no oxidation of phospholipid was detected in erythrocyte ghosts, although changes occurred in the motion of spin labels intercalated with the membrane. These changes were attributed to radiation-induced alterations in the membrane proteins. It is concluded that alterations in motion of spin labels, observed with intact membranes after irradiation, are most likely the result of changes in the structure of membrane proteins rather than the lipids.  相似文献   

11.
Spin labeling methods were used to study the structure and dynamic properties of dimyristoylphosphatidylcholine (DMPC) membranes as a function of temperature and the mole fraction of polar carotenoids. The results in fluid phase membranes are as follows: (1) Dihydroxycarotenoids, zeaxanthin and violaxanthin, increase order, decrease motional freedom and decrease the flexibility gradient of alkyl chains of lipids, as was shown with stearic acid spin labels. The activation energy of rotational diffusion of the 16-doxylstearic acid spin label is about 35% less in the presence of 10 mol% of zeaxanthin. (2) Carotenoids increase the mobility of the polar headgroups of DMPC and increase water accessibility in that region of membrane, as was shown with tempocholine phosphatidic acid ester. (3) Rigid and highly anisotropic molecules dissolved in the DMPC membrane exhibit a bigger order of motion in the presence of polar carotenoids as was shown with cholestane spin label (CSL) and androstane spin label (ASL). Carotenoids decrease the rate of reorientational motion of CSL and do not influence the rate of ASL, probably due to the lack of the isooctyl side chain. The abrupt changes of spin label motion observed at the main phase transition of the DMPC bilayer are broadened and disappear at the presence of 10 mol% of carotenoids. In gel phase membranes, polar carotenoids increase motional freedom of most of the spin labels employed showing a regulatory effect of carotenoids on membrane fluidity. Our results support the hypothesis of Rohmer, M., Bouvier, P. and Ourisson, G. (1979) Proc. Natl. Acad. Sci. USA 76, 847-851, that carotenoids regulate the membrane fluidity in Procaryota as cholesterol does in Eucaryota. A model is proposed to explain these results in which intercalation of the rigid rod-like polar carotenoid molecules into the membrane enhances extended trans-conformation of the alkyl chains, decreases free space in the bilayer center, separate the phosphatidylcholine headgroups and decreases interaction between them.  相似文献   

12.
Using electron spin resonance stop-flow technique, the transverse motion (flip-flop) of 3-([alpha-carboxy-4-(4-hydroxy-3-iodophenoxy)-3,5- diiodophenethyl]carbamoyl)-2,2,5,5-tetramethyl-3-pyrrolin (T3-SL) in dipalmitoyl L-alpha-phosphosphatidylcholine (DPPC) membranes was evaluated. At 22 degrees C, the electron spin resonance spectra of T3-SL in DPPC vesicles were compared before and after the addition of sodium ascorbate, a membrane impermeable reducing agent. The addition of ascorbate reduces the signal amplitude by 67% in 3 min but yields no further reduction for at least 60 min. These results indicate that T3-SL does not flip-flop at any appreciable rate in the membranes. This finding suggests that once partitioned into the membrane, T3 remains in the outer half of the lipid bilayer, thus reducing the possibility that T3 enters the cell by passive diffusion.  相似文献   

13.
The prelytic events associated with the interaction of saponins with Physarum polycephalum membrane components were studied. It was found that alfalfa saponins form interaction products with membranal sterols, proteins and phospholipids. The interaction of saponins with proteins affect also certain membranal enzymic activities such as NADH oxidase and Malate dehydrogenase. It is suggested that although the interaction of the saponin with sterols is much more specific than with other membranal components, the lysis of plasmodia of P. polycephalum should be attributed to a concerted attack on the various membrane constituents. In continuation of these interactions, the changes of permeability of plasmodia membrane were expressed by increment of inorganic sodium ions and water influx, traced by lysis, while no efflux of ions was observed.Killed in action in the October War, October 22, 1973.  相似文献   

14.
Cholesterol crystals treated with an aqueous solution of sodium oleate give rise to cylindrical lamellar associations which appear under the microscope as rapidly growing tubes. Myelin forms are also obtained with other membrane sterols (desmosterol, cholestanol, 7-dehydrocholesterol) but not with lanosterol, a metabolic precursor of cholesterol, nor with the catabolic products of cholesterol (coprosterol, cholecalciferol, pregnenolone). The structural requirements for obtaining myelin tubes from sterols and sodium oleate closely agree with the results obtained by studying sterol-lecithin associations using other experimental techniques (unimolecular films at the air/water interface and permeability of liposomes), association of sterols with an erythrocyte protein and cholesterol liquid crystals.  相似文献   

15.
The transport of sterols incorporated into the lecithin bilayer of small unilamellar liposomes through a model membrane was studied. A two-chamber diffusion cell containing liposomes with incorporated [4-14C]cholesterol or β-[4-14C]sitosterol in the donor chamber and liposomes with unlabeled cholesterol in the receiver chamber was used. The permeability coefficients of the sterols through silastic rubber membranes which served as a model membrane were measured. The permeability for cholesterol incorporated into liposomes in a phosphatidyl choline/cholesterol molar ratio of 1 : 1, produced by sonication for 1 h, and subsequent centrifugation at 100000 × g for 1 h, was 1.6 · 10?8 cm sec?1. Dilution of the liposome suspension did not change the permeability coefficient significantly. The permeability coefficient of sitosterol incorporated into liposomes was about 4-times smaller than that of cholesterol. These results suggest that the sterols were delivered to the silastic membrane by the intact liposomes and that free solute was not involved in the transport to the membrane to a significant degree. The large differences in the permeability coefficients between cholesterol and sitosterol indicate that an aqueous interfacial barrier was crossed by the sterol during the delivery to the membrane.  相似文献   

16.
The temperature dependence of ATPase activities and stearic acid spin label motion in red blood cells of normal and MH-susceptible pigs have been examined. Arrhenius plots of red blood cell ghost Ca-ATPase and calmodulin-stimulable Ca-ATPase activities were identical for both normal and MH erythrocyte ghosts. Arrhenius plots of Mg-ATPase activity exhibited a break (defined as a change in slope) at 24 degrees C in both MH and normal erythrocyte ghosts. However, below 24 degrees C the apparent activation energy for this activity was less in MH than normal ghosts. To determine whether breaks in ATPase Arrhenius plots could be correlated with changes in the physical state of the red blood cell membrane, the spin label 16-doxyl-stearate was introduced into the bilayer of both erythrocyte ghosts and red blood cells. With both ghosts and intact cells, at each temperature examined, the mobility of the probe in the lipid bilayer, as measured by electron paramagnetic resonance, was greater in normal than in MH membranes. While there were no breaks in Arrhenius plots for probe motion in the erythrocyte ghosts, the apparent activation energy for probe motion was significantly greater in normal than in MH ghost membranes. While there was no break in the Arrhenius plot of probe motion in normal intact red blood cell membranes, there were breaks in the Arrhenius plot of probe motion at both 24 and 33 degrees C in intact MH red blood cell membranes. Based on the altered temperature dependence of Mg-ATPase activity and spin probe motion in membranes derived from MH red blood cells, we conclude that there may be a generalized membrane defect in MH pigs which is reflected in the red blood cell as an altered membrane composition or organization.  相似文献   

17.
Sterols and the sensitivity of Pythium species to filipin   总被引:1,自引:0,他引:1  
Schlosser, Eckart (University of Illinois, Urbana), and David Gottlieb. Sterols and the sensitivity of Pythium species to filipin. J. Bacteriol. 91:1080-1084. 1966.-The growth of several Pythium species was not affected by filipin. No leakage of inorganic phosphate was observed after treatment with the antibiotic. No sterol could be detected in 1 g (dry weight) of mycelium. Thus, the insensitivity of these fungi to the antibiotic may be explained by the lack of sterols, the postulated reaction site for filipin in the cell membrane. Though not capable of synthesizing sterols, Pythium species can incorporate exogeneous sterols, which renders them sensitive to filipin; such treatment causes a lag in growth and leakage of inorganic phosphate. The leakage after filipin treatment is indirect evidence that the sterols have been incorporated into the cell membrane. Induced sensitivity to filipin was reversible; it was lost when the sterols were diluted out by one transfer through a medium free from sterols. The hypothesis that the primary site of interaction of filipin is the sterol located in the cell membrane was strengthened by these studies. The experiments further demonstrated a change in sensitivity of a fungus to a toxic agent due to nutritional conditions.  相似文献   

18.
Spin-label electron spin resonance was used to characterize the microenvironment around spin probes which localize (i) in membranes, (ii) at the membrane surface, or (iii) in the cytoplasm of living Neisseria gonorrhoeae. Four colony types (T1, T2, T3, and T4) of gonococci were compared on the basis of the electron spin resonance parameters 2T parallel to, S (order parameter), and tau c (microviscosity). The concentration of spin label used had little or no effect on viability. T1 and T2 gonococci were found to have a more restricted environment for molecular motion of a membrane surface spin label than did T3 and T4. The membrane fluidity, as measured by a membrane lipid spin label, of T4 (S = 0.571) was significantly greater than that of T1 or T3 (S = 0.580). This difference was detected at 37 degrees C, at 25 degrees C, in agar-grown bacteria, and in exponential-phase cells. Studies using spin labels which probe different levels of the membrane indicated the presence of a membrane flexibility gradient. Cytoplasmic spin-label studies indicated that the cytoplasm of all gonococcal colony types was three to five times more viscous than water.  相似文献   

19.
Electron paramagnetic resonance (EPR) measurements using various fatty acid spin labels were performed on membranes of intact human erythrocytes at physiological, and at low ionic strength. In the case of spin probes bearing the nitroxide near the polar head group, a less restricted motion at low ionic strength was seen than with those labels with a nitroxide deeper within the hydrophobic tail of the membrane. Although these data clearly show an influence of ionic strength on membrane structure, and possibly a modified protein-lipid interaction, they cannot be simply discussed in terms of an altered membrane fluidity.  相似文献   

20.
The activity of phytosterols on human organism includes the ability of these compounds to incorporate into membranes. In the consequence the plant sterols are able to increase total sterol concentration in membrane or/and to replace cholesterol molecules. The aim of this work was to compare the influence of both these effects on the properties of model erythrocyte membranes. Moreover, the interactions between the plant sterols (β-sitosterol and stigmasterol) and saturated–monounsaturated phosphatidylcholine were investigated and the condensing and ordering potency of these phytocompounds on membrane phospholipids were thoroughly analyzed. It was found that the addition of the plant sterols into model membrane modifies the condensation, ordering and interactions in the system. Moreover, the replacement of mammalian sterol by phytosterol more strongly influences the model system than even a 10% increase of total sterol concentration induced by the incorporation of the plant sterol, at constant content of cholesterol. The investigated plant sterols at their lower concentration in the mixed system are of similar effect on its properties. At higher content stigmasterol was found to modify the properties of model membrane more strongly than β-sitosterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号