首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The incorporation of 32Pi into phospholipids was studied in Friend erythroleukemia cells either induced or not to erythroid differentiation with 4 mM hexamethylenebisacetamide (HMBA). The effect of the differentiating agent on the recovery of radiolabelled phospholipids was compared in whole cells, isolated nuclei and nuclear matrix after in vivo labelling for 1 hr. The procedure employed for the isolation of nuclei was demonstrated to allow only negligible lipid redistribution caused by cell manipulations. Among the lipids extractable from nuclei, acidic phospholipids, and particularly polyphosphoinositides, were more represented than in whole cells, while small differences were found in the other phospholipid classes examined. The comparison between the uninduced and induced condition showed that the relative amounts of nuclear inositol lipids were modified by HMBA treatment of the cells, with a decreased recovery of phosphatidylinositol 4,5 bisphosphate. These results indicate that phosphatidylinositol and its phosphorylation products synthesized in vivo show a different metabolism in nuclei and whole cells. They appear to be tightly bound nuclear components, also present in membrane-deprived nuclei and nuclear matrix, and are probably related to the nuclear events involved in erythroid differentiation.  相似文献   

4.
The effect of extensive differentiation on the synthesis and accumulation of protein 4.1 were studied on Friend erythroleukemia cells grown in suspension and on fibronectin coated dishes. Whole membranes of Friend erythroleukemia cells (FELC) contained a protein 4.1a and 4.1b doublet of Mr 76 and 74 kDa and two minor bands of Mr 105 and 43 kDa that cross-reacted with anti-human protein 4.1 IgG. These proteins were present even in uninduced cells. The synthesis of protein 4.1 was maximal after 4 days of induction in both suspension culture and in fibronectin-coated dishes whereas the protein 4.1 continued to accumulate until the seventh day. More protein 4.1 accumulated in cells grown on fibronectin-coated dishes, at each stage of differentiation, than in cells grown in suspension. The protein 4.1a/4.1b ratio changed during differentiation. The amounts of protein 4.1b increased progressively after induction until the protein 4.1a/4.1b ratio was similar to that of mouse mature erythrocyte. The protein 4.1a/4.1b ratio appears to be an internal marker of erythroid differentiation.  相似文献   

5.
Friend erythroleukemia cells display transient and permanent changes in the composition of their plasma membrane-bound glycoproteins during dimethyl sulfoxide-induced differentiation. The transient changes, as revealed by metabolic labeling with [14C]glucosamine, are most conspicuous around the time during which most cells become committed to terminal differentiation. Permanent changes are revealed by reductive tritiation after oxidation with NaIO4 or galactose oxidase. In differentiated cells one glycoprotein fraction (Mr 150 000) could not be labeled by any of these methods, although it does contain neuraminic acid. We found no evidence in support of the hypothesis that the anomalous behavior of this fraction is caused by an increased degree of O-acetylated neuraminic acid in the plasma membrane of differentiated cells.  相似文献   

6.
7.
8.
An extensive body of evidence links inositide-specific phospholipase C (PLC) to the nucleus and the main isoform located in the nucleus is PLCbeta(1). Constitutive overexpression of nuclear PLCbeta(1) has been previously shown to inhibit Friend erythroleukemia cells differentiation and to induce cell cycle progression targeting cyclin D3. The aim of this study was to identify new proteins regulated by PLCbeta(1) overexpression, given the role exerted by its signaling in the nucleus during cell growth and differentiation. To identify novel downstream effectors of nuclear PLCbeta(1)-dependent signaling in Friend erythroleukemia cells, we performed the high-resolution 2-DE-based proteomic analysis. Using a proteomic approach we found that SRp20, a member of the highly conserved SR family of splicing regulators, was down-regulated in cells overexpressing nuclear PLCbeta(1) as compared with wild-type cells. Reduction in SRp20 was confirmed by 2-D Western blotting. Moreover, we have shown that nuclear PLCbeta(1) is bound to the SRp20 splicing factor. Indeed, by immunoprecipitation and subcellular fractioning, we have demonstrated that endogenous PLCbeta(1) and SRp20 physically interact in the nucleus. Here we show the existence of a PLCbeta(1)-specific target, the splicing factor SRp20, whose expression is specifically down-regulated by the nuclear signaling evoked by PLCbeta(1).  相似文献   

9.
10.
The effects of short chain (C1-C5) aldehydes, ketones, acids, alcohols and ethers on murine erythroleukemia (MEL) cells were examined to determine which particular chemical moieties and some of their combinations stimulated hemoglobin synthesis in these cells. The C4 series of compounds was active at lower concentrations than homologs of shorter chain lengths. Within an homologous series the potency and efficacy of the alcohol was always less than that of the acid and aldehyde compounds. Though heptanoic acid was found to be an inducer of hemoglobin synthesis in MEL cells, the 4,6-dioxoheptanoic acid analog is a potent inhibitor of hemoglobin synthesis. Analysis of porphyrin content of MEL cells incubated with the inducers 2-butanone, 2-methoxyethanol, acetone and methanol, showed that increased hemoglobin synthesis was always accompanied by the accumulation of porphyrins, most of which was protoporphyrin. These studies suggest that low molecular weight ketones, aldehydes, acids, ethers and alcohols can correct the defect in erythroid differentiation exhibited by MEL cells and they further suggest that the physiological trigger for inducing hemoglobin synthesis in these cells is less discriminating than previously recognized.  相似文献   

11.
Summary Studies are described employing two erythropoietic systems to elucidate regulatory mechanisms that control both normal erythropoiesis and erythroid differentiation of transformed hemopoietic precursors. Evidence is provided suggesting that normal erythroid cell precursors require erythropoietin as a growth factor that regulates the number of precursors capable of differentiating. Murine erythroleukemia cells proliferate without need of erythropoietin; they show a variable, generally low, rate of spontaneous differentiation and a brisk rate of erythropoiesis in response to a variety of chemical agents. Present studies suggest that these chemical inducers initiate a series of events including cell surface related changes, alterations in cell cycle kinetics, and modifications of chromatin and DNA structure which result in the irreversible commitment of these leukemia cells to erythroid differentiation and the synthesis of red-cell-specific products. Presented in the formal symposium on Mechanisms of Cellular Control at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. These studies were supported in part by grants and contracts from the National Institutes of Health (GM-14552, CA-13696, CA-18314, NO1-CB-4008 and NO1-CP-1008) and the National Science Foundation (NSF-PCM-75-08696). E.F. and R.C.R. are fellows of the Schultz Foundation; A.B. was supported in part as an American Cancer Society Scholar; J.E.S. was supported by a USPHS Medical Scientist Training Grant; and M.T. and G.M.M. are Hirschl Trust Scholars.  相似文献   

12.
Summary The synthetic nucleoside, ribavirin (1--D-ribofuranosyl-1,2,4-triazole-3-carboxamide), a broad spectrum antiviral agent currently being tested in clinical studies with AIDS patients; and mycophenolic acid, a non-nucleoside inhibitor of inosinate (IMP) dehydrogenase, are effective inducers of terminal differentiation of Friend virus transformed murine erythroleukemia cells. The inhibition of cell division and the induced maturation produced by these agents appears to be a consequence of inhibition of IMP dehydrogenase, since growth inhibition is reversed and differentiation is prevented by the simultaneous exposure of cells treated with the agents to exogenous guanine or guanosine, which circumvents the effects of blockage of IMP dehydrogenase. However, while the effects mycophenolic acid, a pure IMP dehydrogenase inhibitor with no other biochemical effects, were completely reversed by guanine salvage supplies, cells exposed to ribavirin responded in a different manner. At levels of guanine salvage supplies below 50 M, growth inhibition and cell differentiation were partially reversed. At salvage supply concentrations greater than 50 M, while differentiation was completely blocked, the toxicity of ribavirin was increased and cell division was greatly diminished. These results indicate additional biochemical effects for ribavirin unrelated to the inhibition of IMP dehydrogenase, which may be related to its antiviral properties.  相似文献   

13.
4-Hydroxynonenal (HNE) is one of the major end products of lipid peroxidation. Here we show that the exposure of murine erythroleukemia (MEL) cells to 1 μM HNE, for 10.5 h over 2 days, induces a differentiation comparable with that observed in cells exposed to DMSO for the whole experiment (7 days). The exposure of MEL cells for the same length of time demonstrates a higher degree of differentiation in HNE-treated than in DMSO-treated MEL cells. The protooncogene c-myc is down-modulated early, in HNE-induced MEL cells as well as in DMSO-treated cells. However, ornithine decarboxylase gene expression first increases and then decreases, during the lowering of the proliferation rate. These findings indicate that HNE, at a concentration physiologically found in many normal tissues and in the plasma, induces MEL cell differentiation by modulation of specific gene expression.  相似文献   

14.
15.
16.
The inhibition of cellular iron uptake by hemin described previously in reticulocytes was studied in murine erythroleukemia (Friend) cells that can be induced to differentiate in culture by dimethyl sulfoxide (DMSO). Hemin had no effect on iron uptake into noninduced cells. After the induction by DMSO, hemin inhibited iron uptake into Friend cells and this effect of hemin became more pronounced with the further progress of differentiation. The reduction of cellular iron accumulation was caused mainly by inhibition of iron incorporation into heme, iron uptake into the non-heme pool was influenced by hemin treatment. Inhibition of heme synthesis by isonicotinic acid hydrazide (INH) caused an accumulation of iron in mitochondria in DMSO-induced cells but not in uninduced cells. On the basis of these results, a specific system transporting iron to mitochondria induced by DMSO treatment is suggested as a target for the inhibitory action of hemin. In Friend cells of the Fw line which are deficient in ferrochelatase, heme has no effect on iron uptake. The addition of INH to the Fw cells does not enhance the iron accumulatoni in mitochondria.  相似文献   

17.
Gu ZM  Liu CX  Wu SF  Zhao M  Xu HZ  Liu W  Zhou HC  Chen GQ  Wu YL 《FEBS letters》2011,585(2):375-380
RIG-G is a retinoic acid- or interferon-induced gene with potential anti-proliferation function. However, the mechanism underlying ATRA-induced RIG-G induction is not completely understood. Here, we demonstrate that ATRA up-regulates the expression of PU.1, which in turn directly binds to the promoter and increases the expression of RIG-G gene. Luciferase reporter assay and electrophoretic mobility shift assay reveal that PU.1 preferentially binds to one of the two putative binding sites on the RIG-G promoter. Moreover, silencing of PU.1 by shRNA markedly inhibited ATRA- but not IFNα-induced expression of RIG-G. These data provide new insight into the mechanism of ATRA-induced RIG-G expression.  相似文献   

18.
PU.1转录因子是保守的DNA结合蛋白Ets家族成员,因其DNA结合区识别共有序列GAGGAA,故该区又称为Ets结合区或PU.1box。PU.1主要在造血系统如髓细胞和B淋巴细胞中表达,调节关键髓系基因的转录从而调控造血系统的分化。PU.1周身敲除后,由于胎儿肝脏中缺乏B淋巴细胞和髓系细胞,导致小鼠胚胎早期死亡,表明PU.1是调控生命过程的关键转录因子。目前,在脂肪细胞中PU.1对脂肪生成作用及机制的研究报道较少。PU.1与脂肪细胞脂肪生成,与miRNAs、antisense RNA以及C/EBPα/β-PPARγ通路的调控关系将是今后研究的重点。  相似文献   

19.
PU.1 is one of key regulators of hematopoietic cell development, a tightly-regulated lineage-specific process. Here we provide the first evidence that PU.1 protein is cleaved into two fragments of 24 kDa and 16 kDa during apoptosis progression in leukemic cell lines and primary leukemic cells. Further experiments with specific capase-3 inhibitor Z-DEVD-fmk and the in vitro proteolytic system confirmed that PU.1 is a direct target of caspase-3. Using site-directed mutagenesis analyses, the aspartic acid residues at positions 97 and 151 of PU.1 protein were identified as capsase-3 target sites. More intriguingly, the suppression of PU.1 expression by small interfering RNAs (siRNAs) significantly inhibits DNA-damaging agents NSC606985 and etoposide-induced apoptosis in leukemic cells, together with the up-regulated expression of anti-apoptotic bcl-2 gene. These results would provide new insights for understanding the mechanism of PU.1 protein in hematopoiesis and leukemogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号