首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kirik IA  Babykin MM 《Genetika》2008,44(5):717-720
The sll0886 gene, controlling light-activated heterotrophic growth (LAHG), was tested for the role in regulating phototaxis in cyanobacterium Synechocystis sp. PCC 6803. Insertional inactivation of the gene in the genome of a wildtype strain did not affect positive (toward light) or negative (away from high light) phototaxis. However, cells lost motility when sll0886 inactivation was combined with the prqRL17Q mutation, which determined negative phototaxis at low light. Immotile cells with the prqRL17Q mutation and the inactivated sll0886 gene did not display any defect in the formation of type IV pili, essential for phototaxis. Hence, the function, rather than biogenesis, of pili was affected. It was concluded that the sll0886 gene, coding for a TPR family protein, is involved in controlling negative phototaxis of cyanobacteria at the level of photoreception and signal transduction and that its role is mediated by the unidentified redundant gene whose function is suppressed by the prqRL17Q mutation.  相似文献   

2.
The open reading frames (ORFs) encoding two potential protein-serine/threonine phosphatases from the cyanobacterium Synechocystis sp. strain PCC 6803 were cloned and their protein products expressed in Escherichia coli cells. The product of ORF sll1033, SynPPM3, is a homologue of the PPM family of protein-serine/threonine phosphatases found in all eukaryotes as well as many members of the Bacteria. Surprisingly, the recombinant protein phosphatase dephosphorylated phosphotyrosine- as well as phosphoserine-containing proteins in vitro. While kinetic analyses indicate that the enzyme was more efficient at dephosphorylating the latter, replacement of Asp608 by asparagine enhanced activity toward a phosphotyrosine-containing protein fourfold. The product of ORF sll1387, SynPPP1, is the sole homolog of the PPP family of protein phosphatases encoded by the genome of Synechocystis sp. strain PCC 6803. Like many other bacterial PPPs, the enzyme dephosphorylated phosphoserine- and phosphotyrosine-containing proteins with comparable efficiencies. However, while previously described PPPs from prokaryotic organisms required the addition of exogenous metal ion cofactors, such as Mg2+ or Mn2+, for activity, recombinantly produced SynPPP1 displayed near-maximal activity in the absence of added metals. Inductively coupled plasma mass spectrometry indicated that recombinant SynPPP1 contained significant quantities, 0.32 to 0.44 mol/mole total, of Mg and Mn. In this respect, the cyanobacterial enzyme resembled eukaryotic members of the PPP family, which are metalloproteins. mRNA encoding SynPPP1 or SynPPM3 could be detected in cells grown under many, but not all, environmental conditions.  相似文献   

3.
A recent proteomic analysis of the thylakoid lumen of Arabidopsis thaliana revealed the presence of several PsbP-like proteins, and a homologue to this gene family was detected in the genome of the cyanobacterium Synechocystis sp. PCC 6803 (Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002) J Biol Chem 277, 8354–8365). Using a peptide-directed antibody against this cyanobacterial PsbP-like protein (sll1418) we could show that it was localized in the thylakoid membrane and associated with Photosystem II. While salt washes did not remove the PsbP-like protein from the thylakoid membrane, it was partially lost during the detergent-based isolation of PSII membrane fractions. In total cell extracts this protein is present in the same amount as the extrinsic PsbO protein. We did not see any significant functional difference between the wild-type and a PsbP-like insertion mutant.  相似文献   

4.
The sll0886 gene, controlling light-activated heterotrophic growth (LAHG), was tested for the role in regulation of phototaxis in cyanobacterium Synechocystis sp. PCC 6803. Insertional inactivation of the gene in the genome of a wild-type strain did not affect positive (toward light) or negative (away from high light) phototaxis. However, cells lost motility when sll0886 inactivation was combined with the prqRL17Q mutation, which determined negative phototaxis at low light. Immotile cells with the prqRL17Q mutation and the inactivated sll0886 gene did not display any defect in the formation of type IV pili, essential for phototaxis. Hence, the function, rather than biogenesis, of pili was affected. It was concluded that the sll0886 gene, coding for a TPR family protein, is involved in controlling negative phototaxis of cyanobacteria at the level of photoreception and signal transduction and that its role is shared with the unidentified redundant gene whose function is suppressed by the prqRL17Q mutation.  相似文献   

5.
The genome of cyanobacterium Synechocystis sp. PCC 6803 contains the sll0136 (pepP) gene encoding the putative homolog of proline aminopeptidase PII (AMPPII) of the heterotrophic bacterium Escherichia coli. AMPPII is known to cleave the N-terminal amino acid residue of peptides and proteins only in the case of a penultimate proline position. The Synechocystis sp. PCC 6803 insertion mutant with inactivated pepP gene is characterized by the reduced content of phycobiliproteins and also proteins of photosystem II, which may be related to the reduced synthesis or stability of corresponding proteins. A possible involvement of PepP in biogenesis of proteins of the photosynthetic apparatus is discussed.  相似文献   

6.
Synechocystis sp. PCC 6803 lacks a gene for the any known types of lycopene cyclase. Recently, we reported that Sll0659 (unknown for its function) from Synechocystis sp. PCC6803 shows similarity in sequence to a lycopene cyclase gene-CruA from Chlorobium tepidum. To test, whether sll0659 encoded protein serves as lycopene cyclase, in this study, we investigated the carotenoids of the wild types and mutants. In the sll0659 deleted mutant, there is no blockage at the lycopene cyclization step. Our results demonstrate that sll0659 does not affect lycopene cycilzation. However, the ultrastructure of mutants suggests the involvement or necessity of sll0659 in the cell division.  相似文献   

7.
l-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of d-glucose 6-phosphate to l-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989–998, 2004). One of the forms with a ~50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as a ~65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified ~1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive ~65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.Anirban Chatterjee and Krishnarup Ghosh Dastidar contributed equally.  相似文献   

8.
9.
原核生物中S2P参与应答外界环境刺激,然而行光合作用的蓝细菌-集胞藻PCC6803的S2P同源蛋白功能未知。【目的】考察集胞藻PCC6803中S2P同源蛋白sll0862是否参与外界环境刺激的应答。【方法】监测在高温和氧化胁迫的条件下sll0862基因缺失突变株与野生株在生长速率或存活率上的差异,利用水样调制叶绿素荧光仪(water-PAM,脉冲-振幅-调制叶绿素荧光仪)测量在高温和氧化胁迫的条件下突变株与野生株叶绿素荧光参数的差异,来考察其光合作用差异。【结果】sll0862突变株与野生株在正常的培养环境中生长速率并无差异,但是将sll0862突变株与野生株在48℃加热处理半小时后,sll0862突变株的存活率明显低于野生株。当初始OD730值为0.1的藻液中添加终浓度为1 mmol/L双氧水的时候,sll0862突变株的生长速率比野生株明显低,而且氧化胁迫条件下突变株与野生株的调制叶绿素荧光有差异。【结论】集胞藻PCC6803中sll0862基因的缺失导致突变体对高温与氧化胁迫响应出现缺陷,提示有功能的sll0862参与响应热和氧化胁迫。研究结果为进一步阐述S2P同源蛋白sll0862在集胞藻PCC6803中的功能奠定基础。  相似文献   

10.
《动物学研究》2017,(6):449-458
Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms.In this study,the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae,three genera in Luciolinae,and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry.The haploid genome sizes of Lampyridae ranged from 0.42 to 1.31 pg,a 3.1-fold span.Genome sizes of the fireflies varied within the tested subfamilies and genera.Lamprigera and Pyrocoelia species had large and small genome sizes,respectively.No correlation was found between genome size and morphological traits such as body length,body width,eye width,and antennal length.Our data provide additional information on genome size estimation of the firefly family Lampyridae.Furthermore,this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution.  相似文献   

11.
Body temperature, rate of biosynthesis, and evolution of genome size   总被引:3,自引:2,他引:1  
An optimality model relating the rate of biosynthesis to body temperature and gene duplication is presented to account for several observed patterns of genome size variation. The model predicts (1) that poikilotherms living in a warm climate should have a smaller genome than poikilotherms living in a cold climate, (2) that homeotherms should have a small genome as well as a small variation in genome size relative to their poikilothermic ancestors, (3) that cold geological periods should favor the evolution of poikilotherms with a large genome and that warm geological periods should do the opposite, and (4) that poikilotherms with a small genome should be more sensitive to changes in temperature than poikilotherms with a large genome. The model also offers two explanations for the empirically documented trend that organisms with a large cell volume have larger genomes than those with a small cell volume. Relevant empirical evidence is summarized to support these predictions.   相似文献   

12.
Sorting by weighted reversals, transpositions, and inverted transpositions.   总被引:1,自引:0,他引:1  
During evolution, genomes are subject to genome rearrangements that alter the ordering and orientation of genes on the chromosomes. If a genome consists of a single chromosome (like mitochondrial, chloroplast, or bacterial genomes), the biologically relevant genome rearrangements are (1) inversions--also called reversals--where a section of the genome is excised, reversed in orientation, and reinserted and (2) transpositions, where a section of the genome is excised and reinserted at a new position in the genome; if this also involves an inversion, one speaks of an inverted transposition. To reconstruct ancient events in the evolutionary history of organisms, one is interested in finding an optimal sequence of genome rearrangements that transforms a given genome into another genome. It is well known that this problem is equivalent to the problem of "sorting" a signed permutation into the identity permutation. In this paper, we provide a 1.5-approximation algorithm for sorting by weighted reversals, transpositions and inverted transpositions for biologically realistic weights.  相似文献   

13.
Elmerot C  Arnason U  Gojobori T  Janke A 《Gene》2002,295(2):163-172
The small nuclear genome of the pufferfish, Fugu rubripes (order Tetraodontiformes), makes this species highly interesting for genome research. In order to establish the phylogenetic position of the Tetraodontiformes relative to other teleostean orders that might also have a reduced nuclear genome size, we have sequenced the mitochondrial (mt) genome of the pufferfish. The gene order, nucleotide composition and evolutionary rate of the mt genome of the fugu correspond to those of other teleosts. This suggests that the evolution of this genome has not been affected by the processes that led to the dramatic reduction of the size of the nuclear genome of the fugu. The phylogenetic analyses, which were based on the concatenated amino acid sequences of twelve protein-coding mt genes, placed the fugu among the percomorphs. The affinities between the Tetraodontiformes and either the Perciformes or the Zeiformes were limited, however. The common notion of a separate euteleostean clade remained unsupported. The analyses did not support the traditional systematic understanding that the Clupeiformes constitute a basal teleostean lineage. In addition the findings strongly suggest that three teleostean orders, the Perciformes, Zeiformes and Scorpaeniformes, are paraphyletic.  相似文献   

14.
Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rates of speciation and genome size evolution are tightly correlated across land plants, and angiosperms show the highest rates for both, whereas very slow rates are seen in their comparatively species-poor sister group, the gymnosperms. No evidence is found linking overall genome size and rates of speciation. Within angiosperms, both the monocots and eudicots show the highest rates of speciation and genome size evolution, and these data suggest a potential explanation for the megadiversity of angiosperms. It is difficult to associate high rates of diversification with different types of polyploidy, but it is likely that high rates of evolution correlate with a smaller genome size after genome duplications. The diversity of angiosperms may, in part, be due to an ability to increase evolvability by benefiting from whole genome duplications, transposable elements and general genome plasticity.  相似文献   

15.
To explore types, levels and patterns of genetic divergence among diploid Gossypium (cotton) genomes, 780 cDNA, genomic DNA and simple sequence repeat (SSR) loci were re-sequenced in Gossypium herbaceum (A1 genome), G. arboreum (A2), G. raimondii (D5), G. trilobum (D8), G. sturtianum (C1) and an outgroup, Gossypioides kirkii. Divergence among these genomes ranged from 7.32 polymorphic base pairs per 100 between G. kirkii and G. herbaceum (A1) to only 1.44 between G. herbaceum (A1) and G. arboreum (A2). SSR loci are least conserved with 12.71 polymorphic base pairs and 3.77 polymorphic sites per 100 base pairs, whereas expressed sequence tags are most conserved with 3.96 polymorphic base pairs and 2.06 sites. SSR loci also exhibit the highest percentage of 'extended polymorphisms' (spanning multiple consecutive nucleotides). The A genome lineage was particularly rapidly evolving, with the D genome also showing accelerated evolution relative to the C genome. Unexpected asymmetry in mutation rates was found, with much more transition than transversion mutation in the D genome after its divergence from a common ancestor shared with the A genome. This large quantity of orthologous DNA sequence strongly supports a phylogeny in which A-C divergence is more recent than A-D divergence, a subject that is of much importance in view of A-D polyploid formation being key to the evolution of the most productive and finest-quality cottons. Loci that are monomorphic within A or D genome types, but polymorphic between genome types, may be of practical importance for identifying locus-specific DNA markers in tetraploid cottons including leading cultivars.  相似文献   

16.
Topical literature and Web site databases provide genome sizes for approximately 4,000 animal species, invertebrates and vertebrates, 330 of which are mammals. We provide the genome size for 67 mammalian species, including 51 never reported before. Knowledge of genome size facilitates sequencing projects. The data presented here encompassed 5 Metatheria (order Didelphimorphia) and 62 Eutheria: 15 Xenarthra, 24 Euarchontoglires (Rodentia), as well as 23 Laurasiatheria (22 Chiroptera and 1 species from Perissodactyla). Already available karyotypes supplement the haploid nuclear DNA contents of the respective species. Thus, we established the first comprehensive set of genome size measurements for 15 Xenarthra species (armadillos) and for 12 house-mouse species; each group was previously represented by only one species. The Xenarthra exhibited much larger genomes than the modal 3 pg DNA known for mammals. Within the genus Mus, genome sizes varied between 2.98 pg and 3.68 pg. The 22 bat species we measured support the low 2.63 pg modal value for Chiroptera. In general, the genomes of Euarchontoglires and Laurasiatheria were found being smaller than those of (Afrotheria and) Xenarthra. Interspecific variation in genome sizes is discussed with particular attention to repetitive elements, which probably promoted the adaptation of extant mammals to their environment.  相似文献   

17.
Background and AimsWe investigate patterns of evolution of genome size across a morphologically and ecologically diverse clade of Brassicaceae, in relation to ecological and life history traits. While numerous hypotheses have been put forward regarding autecological and environmental factors that could favour small vs. large genomes, a challenge in understanding genome size evolution in plants is that many hypothesized selective agents are intercorrelated.MethodsWe contribute genome size estimates for 47 species of Streptanthus Nutt. and close relatives, and take advantage of many data collections for this group to assemble data on climate, life history, soil affinity and composition, geographic range and plant secondary chemistry to identify simultaneous correlates of variation in genome size in an evolutionary framework. We assess models of evolution across clades and use phylogenetically informed analyses as well as model selection and information criteria approaches to identify variables that can best explain genome size variation in this clade.Key ResultsWe find differences in genome size and heterogeneity in its rate of evolution across subclades of Streptanthus and close relatives. We show that clade-wide genome size is positively associated with climate seasonality and glucosinolate compounds. Model selection and information criteria approaches identify a best model that includes temperature seasonality and fraction of aliphatic glucosinolates, suggesting a possible role for genome size in climatic adaptation or a role for biotic interactions in shaping the evolution of genome size. We find no evidence supporting hypotheses of life history, range size or soil nutrients as forces shaping genome size in this system.ConclusionsOur findings suggest climate seasonality and biotic interactions as potential forces shaping the evolution of genome size and highlight the importance of evaluating multiple factors in the context of phylogeny to understand the effect of possible selective agents on genome size.  相似文献   

18.
It has been proposed that intron and genome sizes in birds are reduced in comparison with mammals because of the metabolic demands of flight. To test this hypothesis, we examined the sizes of 14 introns in a nonflying relative of birds, the American alligator (Alligator mississippiensis), and in 19 flighted and flightless birds in 12 taxonomic orders. Our results indicate that a substantial fraction (66%) of the reduction in intron size as well as in genome size had already occurred in nonflying archosaurs. Using phylogenetically independent contrasts, we found that the proposed inverse correlation of genome size and basal metabolic rate (BMR) is significant among amniotes and archosaurs, whereas intron and genome size variation within birds showed no significant correlation with BMR. We show statistically that the distribution of genome sizes in birds and mammals is underdispersed compared with the Brownian motion model and consistent with strong stabilizing selection; that genome size differences between vertebrate clades are overdispersed and punctuational; and that evolution of BMR and avian intron size is consistent with Brownian motion. These results suggest that the contrast between genome size/BMR and intron size/BMR correlations may be a consequence of different intensities of selection for these traits and that we should not expect changes in intron size to be significantly associated with metabolically costly behaviors such as flight.  相似文献   

19.
Major progress has been made in catfish genomics including construction of high-density genetic linkage maps, BAC-based physical maps, and integration of genetic linkage and physical maps. Large numbers of ESTs have been generated from both channel catfish and blue catfish. Microarray platforms have been developed for the analysis of genome expression. Genome repeat structures are studied, laying grounds for whole genome sequencing. USDA recently approved funding of the whole genome sequencing project of catfish using the next generation sequencing technologies. Generation of the whole genome sequence is a historical landmark of catfish research as it opens the real first step of the long march toward genetic enhancement. The research community needs to be focused on aquaculture performance and production traits, take advantage of the unprecedented genome information and technology, and make real progress toward genetic improvements of aquaculture brood stocks.  相似文献   

20.
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号