首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is an important goal of genetic epidemiology to localize and identify genetic factors that are involved in the development of a phenotype. In particular, multifactorial diseases have moved into focus. The basic problem of genetic epidemiology is that the biological function of the human genome cannot be comprehensively investigated because of its enormous size. There is, however, correlation of DNA variation both within families and on a population level. As a consequence, it is possible to represent the whole genome with selected genetic markers and to analyze them statistically. Mapping starts with linkage analysis, which considers cosegregation of markers and phenotype within families. Fine mapping of a linkage region is then left to association analysis, which compares allele or genotype frequencies between affected and unaffected probands. Nowadays, the linkage-association paradigm is often replaced by genome-wide association studies that do not rely on an initial linkage analysis.  相似文献   

2.
Traditional quantitative trait loci (QTL) mapping approaches are typically based on early or advanced generation analysis of bi-parental populations. A limitation associated with this methodology is the fact that mapping populations rarely give rise to new cultivars. Additionally, markers linked to the QTL of interest are often not immediately available for use in breeding and they may not be useful within diverse genetic backgrounds. Use of breeding populations for simultaneous QTL mapping, marker validation, marker assisted selection (MAS), and cultivar release has recently caught the attention of plant breeders to circumvent the weaknesses of conventional QTL mapping. The first objective of this study was to test the feasibility of using family-pedigree based QTL mapping techniques generally used with humans and animals within plant breeding populations (PBPs). The second objective was to evaluate two methods (linkage and association) to detect marker-QTL associations. The techniques described in this study were applied to map the well characterized QTL, Fhb1 for Fusarium head blight resistance in wheat (Triticum aestivum L.). The experimental populations consisted of 82 families and 793 individuals. The QTL was mapped using both linkage (variance component and pedigree-wide regression) and association (using quantitative transmission disequilibrium test, QTDT) approaches developed for extended family-pedigrees. Each approach successfully identified the known QTL location with a high probability value. Markers linked to the QTL explained 40–50% of the phenotypic variation. These results show the usefulness of a human genetics approach to detect QTL in PBPs and subsequent use in MAS.  相似文献   

3.
Most traits of interest to medical, agricultural and animal scientists show continuous variation and complex mode of inheritance. DNA-based markers are being deployed to analyse such complex traits, that are known as quantitative trait loci (QTL). In conventional QTL analysis, F2, backcross populations, recombinant inbred lines, backcross inbred lines and double haploids from biparental crosses are commonly used. Introgression lines and near isogenic lines are also being used for QTL analysis. However, such populations have major limitations like predominantly relying on the recombination events taking place in the F1 generation and mapping of only the allelic pairs present in the two parents. The second generation mapping resources like association mapping, nested association mapping and multiparent intercross populations potentially address the major limitations of available mapping resources. The potential of multiparent intercross populations in gene mapping has been discussed here. In such populations both linkage and association analysis can be conductted without encountering the limitations of structured populations. In such populations, larger genetic variation in the germplasm is accessed and various allelic and cytoplasmic interactions are assessed. For all practical purposes, across crop species, use of eight founders and a fixed population of 1000 individuals are most appropriate. Limitations with multiparent intercross populations are that they require longer time and more resource to be generated and they are likely to show extensive segregation for developmental traits, limiting their use in the analysis of complex traits. However, multiparent intercross population resources are likely to bring a paradigm shift towards QTL analysis in plant species.  相似文献   

4.
MOTIVATION: Although population-based association mapping may be subject to the bias caused by population stratification, alternative methods that are robust to population stratification such as family-based linkage analysis have lower mapping resolution. Recently, various statistical methods robust to population stratification were proposed for association studies, using unrelated individuals to identify associations between candidate genes and traits of interest. The association between a candidate gene and a quantitative trait is often evaluated via a regression model with inferred population structure variables as covariates, where the residual distribution is customarily assumed to be from a symmetric and unimodal parametric family, such as a Gaussian, although this may be inappropriate for the analysis of many real-life datasets. RESULTS: In this article, we proposed a new structured association (SA) test. Our method corrects for continuous population stratification by first deriving population structure and kinship matrices through a set of random genetic markers and then modeling the relationship between trait values, genotypic scores at a candidate marker and genetic background variables through a semiparametric model, where the error distribution is modeled as a mixture of Polya trees centered around a normal family of distributions. We compared our model to the existing SA tests in terms of model fit, type I error rate, power, precision and accuracy by application to a real dataset as well as simulated datasets.  相似文献   

5.
Selective DNA pooling is an advanced methodology for linkage mapping of quantitative trait loci (QTL) in farm animals. The principle is based on densitometric estimates of marker allele frequency in pooled DNA samples of phenotypically extreme individuals from half-sib, backcross and F(2) experimental designs in farm animals. This methodology provides a rapid and efficient analysis of a large number of individuals with short tandem repeat markers that are essential to detect QTL through the genome - wide searching approach. Several strategies involving whole genome scanning with a high statistical power have been developed for systematic search to detect the quantitative traits loci and linked loci of complex traits. In recent studies, greater success has been achieved in mapping several QTLs in Israel-Holstein cattle using selective DNA pooling. This paper outlines the currently emerged novel strategies of linkage mapping to identify QTL based on selective DNA pooling with more emphasis on its theoretical pre-requisite to detect linked QTLs, applications, a general theory for experimental half-sib designs, the power of statistics and its feasibility to identify genetic markers linked QTL in dairy cattle. The study reveals that the application of selective DNA pooling in dairy cattle can be best exploited in the genome-wide detection of linked loci with small and large QTL effects and applied to a moderately sized half-sib family of about 500 animals.  相似文献   

6.
Development of a single nucleotide polymorphism map of porcine chromosome 2   总被引:1,自引:0,他引:1  
Single nucleotide polymorphism markers are developed on SSC2, predominantly on the p-arm. Several studies reported a quantitative trait loci (QTL) for backfat thickness in this region. Single nucleotide polymorphisms were identified by comparative re-sequencing of polymerase chain reaction (PCR) products from a panel of eight individuals. The panel consisted of five Large Whites (each from a different Dutch breeding company), a Meishan, a Pietrain and a Wild Boar. In total, 67 different PCR products were sequenced and 301 SNPs were identified in 32,429 bp of consensus sequence, an average of one SNP in every 108 bp. After correction for sample size, this polymorphism rate corresponds to a heterozygosity value of one SNP in every 357 bp. For 63% of the SNPs, there was variation among the five Large Whites, and these SNPs are relevant for linkage and association studies in commercial populations. Comparing the Whites with other breeds revealed higher variation rates with: (i) Meishan, 89%; (ii) Pietrain, 69%; (iii) Wild Boar, 70%. Because many of the experimental populations to identify QTL are based on crosses between these breeds, these SNPs are relevant for the fine mapping of the QTL identified within these crosses.  相似文献   

7.
Genomic DNA methylation profiles exhibit substantial variation within the human population, with important functional implications for gene regulation. So far little is known about the characteristics and determinants of DNA methylation variation among healthy individuals. We performed bioinformatic analysis of high-resolution methylation profiles from multiple individuals, uncovering complex patterns of inter-individual variation that are strongly correlated with the local DNA sequence. CpG-rich regions exhibit low and relatively similar levels of DNA methylation in all individuals, but the sequential order of the (few) methylated among the (many) unmethylated CpGs differs randomly across individuals. In contrast, CpG-poor regions exhibit substantially elevated levels of inter-individual variation, but also significant conservation of specific DNA methylation patterns between unrelated individuals. This observation has important implications for experimental analysis of DNA methylation, e.g. in the context of epigenome projects. First, DNA methylation mapping at single-CpG resolution is expected to uncover informative DNA methylation patterns for the CpG-poor bulk of the human genome. Second, for CpG-rich regions it will be sufficient to measure average methylation levels rather than assaying every single CpG. We substantiate these conclusions by an in silico benchmarking study of six widely used methods for DNA methylation mapping. Based on our findings, we propose a cost-optimized two-track strategy for mammalian methylome projects.  相似文献   

8.
Linkage analysis was developed to detect excess co-segregation of the putative alleles underlying a phenotype with the alleles at a marker locus in family data. Many different variations of this analysis and corresponding study design have been developed to detect this co-segregation. Linkage studies have been shown to have high power to detect loci that have alleles (or variants) with a large effect size, i.e. alleles that make large contributions to the risk of a disease or to the variation of a quantitative trait. However, alleles with a large effect size tend to be rare in the population. In contrast, association studies are designed to have high power to detect common alleles which tend to have a small effect size for most diseases or traits. Although genome-wide association studies have been successful in detecting many new loci with common alleles of small effect for many complex traits, these common variants often do not explain a large proportion of disease risk or variation of the trait. In the past, linkage studies were successful in detecting regions of the genome that were likely to harbor rare variants with large effect for many simple Mendelian diseases and for many complex traits. However, identifying the actual sequence variant(s) responsible for these linkage signals was challenging because of difficulties in sequencing the large regions implicated by each linkage peak. Current 'next-generation' DNA sequencing techniques have made it economically feasible to sequence all exons or the whole genomes of a reasonably large number of individuals. Studies have shown that rare variants are quite common in the general population, and it is now possible to combine these new DNA sequencing methods with linkage studies to identify rare causal variants with a large effect size. A brief review of linkage methods is presented here with examples of their relevance and usefulness for the interpretation of whole-exome and whole-genome sequence data.  相似文献   

9.
J Horst  R Oehme  E Kleihauer  E Kohne 《Blut》1984,48(4):213-219
Nuclear DNA has been analyzed by means of restriction endonuclease mapping procedure to identify chromosomes that carry mutant Hb K?ln beta-globin genes in a family with individuals heterozygous for this disease. Inherited DNA polymorphisms within the beta-globin gene cluster yielded a direct linkage of the Hb K?ln mutation to haplotype constellations that are diagnostic for further offspring.  相似文献   

10.
11.
An Arabidopsis example of association mapping in structured samples   总被引:6,自引:0,他引:6       下载免费PDF全文
A potentially serious disadvantage of association mapping is the fact that marker-trait associations may arise from confounding population structure as well as from linkage to causative polymorphisms. Using genome-wide marker data, we have previously demonstrated that the problem can be severe in a global sample of 95 Arabidopsis thaliana accessions, and that established methods for controlling for population structure are generally insufficient. Here, we use the same sample together with a number of flowering-related phenotypes and data-perturbation simulations to evaluate a wider range of methods for controlling for population structure. We find that, in terms of reducing the false-positive rate while maintaining statistical power, a recently introduced mixed-model approach that takes genome-wide differences in relatedness into account via estimated pairwise kinship coefficients generally performs best. By combining the association results with results from linkage mapping in F2 crosses, we identify one previously known true positive and several promising new associations, but also demonstrate the existence of both false positives and false negatives. Our results illustrate the potential of genome-wide association scans as a tool for dissecting the genetics of natural variation, while at the same time highlighting the pitfalls. The importance of study design is clear; our study is severely under-powered both in terms of sample size and marker density. Our results also provide a striking demonstration of confounding by population structure. While statistical methods can be used to ameliorate this problem, they cannot always be effective and are certainly not a substitute for independent evidence, such as that obtained via crosses or transgenic experiments. Ultimately, association mapping is a powerful tool for identifying a list of candidates that is short enough to permit further genetic study.  相似文献   

12.

Background  

With the availability of large-scale, high-density single-nucleotide polymorphism (SNP) markers, substantial effort has been made in identifying disease-causing genes using linkage disequilibrium (LD) mapping by haplotype analysis of unrelated individuals. In addition to complex diseases, many continuously distributed quantitative traits are of primary clinical and health significance. However the development of association mapping methods using unrelated individuals for quantitative traits has received relatively less attention.  相似文献   

13.
Leaves of eucalypt species contain a variety of plant secondary metabolites, including terpenoids and formylated phloroglucinol compounds (FPCs). Both terpene and FPC concentrations are quantitative traits that can show large variation within a population and have been shown to be heritable. The molecular genetic basis of this variation is currently unknown. Progeny from a field trial of a three-generation mapping pedigree of Eucalyptus nitens were assayed for terpenes and FPCs. Quantitative trait loci (QTL) analyses were conducted using a map constructed from 296 markers to locate regions of the genome influencing foliar concentrations of these plant secondary compounds. A large number of significant QTL for 14 traits were located across nine linkage groups, with significant clustering of QTL on linkage groups 7, 8 and 9. As expected, QTL for biosynthetically related compounds commonly colocated, but QTL for unrelated monterpenes and FPCs also mapped closely together. Colocation of these QTL with mapped candidate genes from the various biosynthetic pathways, and subsequent use of these genes in association mapping, will assist in determining the causes of variation in plant secondary metabolites in eucalypts.  相似文献   

14.
Identification of allelic variants associated with complex traits provides molecular genetic information associated with variability upon which both artificial and natural selections are based. Family-based association mapping (FBAM) takes advantage of linkage disequilibrium among segregating progeny within crosses and among parents to provide greater power than association mapping and greater resolution than linkage mapping. Herein, we discuss the potential adaption of human family-based association tests and quantitative transmission disequilibrium tests for use in crop species. The rapid technological advancement of next generation sequencing will enable sequencing of all parents in a planned crossing design, with subsequent imputation of genotypes for all segregating progeny. These technical advancements are easily adapted to mating designs routinely used by plant breeders. Thus, FBAM has the potential to be widely adopted for discovering alleles, common and rare, underlying complex traits in crop species.  相似文献   

15.
张磊  张宝石 《植物学报》2007,24(4):553-560
作物的许多重要农艺性状属于数量性状, 鉴定和发掘控制数量性状的基因及其优异的等位变异, 并使之快速应用于育种实践是新时期作物科学家和育种学家所面临的重大课题。本文从QTL作图、QTL的精细定位与图位克隆、QTL近等基因系和染色体片断代换系的建立以及基于LD的关联分析等方面对植物数量性状的研究进展进行了讨论, 提出了以植物基因组学技术为平台, 将QTL作图与关联分析方法相结合, 是进行数量性状遗传机理研究同时服务于作物育种实践的有效途径。  相似文献   

16.
植物数量性状基因的定位与克隆   总被引:1,自引:0,他引:1  
张磊  张宝石 《植物学通报》2007,24(4):553-560
作物的许多重要农艺性状属于数量性状,鉴定和发掘控制数量性状的基因及其优异的等位变异,并使之快速应用于育种实践是新时期作物科学家和育种学家所面临的重大课题。本文从QTL作图、QTL的精细定位与图位克隆、QTL近等基因系和染色体片断代换系的建立以及基于LD的关联分析等方面对植物数量性状的研究进展进行了讨论,提出了以植物基因组学技术为平台,将QTL作图与关联分析方法相结合,是进行数量性状遗传机理研究同时服务于作物育种实践的有效途径。  相似文献   

17.
DNA pooling is a potential methodology for genetic loci with small effect contributing to complex diseases and quantitative traits. This is accomplished by the rapid preliminary screening of the genome for the allelic association with the most common class of polymorphic short tandem repeat markers. The methodology assumes as a common founder for the linked disease locus of interest and searches for a region of a chromosome shared between affected individuals. The general theory of DNA pooling basically relies on the observed differences in the allelic distribution between pools from affected and unaffected individuals, including a reduction in the number of alleles in the affected pool, which indicate the sharing of a chromosomal region. The power of statistic for associated linkage mapping can be determined using two recently developed strategies, firstly, by measuring the differences of allelic image patterns produced by two DNA pools of extreme character and secondly, by measuring total allele content differences by comparing between two pools containing large numbers of DNA samples. These strategies have effectively been utilized to identify the shared chromosomal regions for linkage studies and to investigate the candidate disease loci for fine structure gene mapping using allelic association. This paper outlines the utilization of DNA pooling as a potential tool to locate the complex disease loci, statistical methods for accurate estimates of allelic frequencies from DNA pools, its advantages, drawbacks and significance in associate linkage mapping using pooled DNA samples.  相似文献   

18.
The simultaneous analysis of multiple loci could substantially increase the efficiency of mapping studies. Toward this goal, we used the polymerase chain reaction to amplify multiple DNA fragments originating from dispersed genomic segments that are flanked by Alu repeats. Analysis of different human DNA samples revealed numerous amplification products distinguishable by size, some of which vary between individuals. A family study demonstrated that these polymorphic fragments are inherited in a Mendelian fashion. Because of the ubiquitous distribution of Alu repeats, these markers, called "alumorphs," could be useful for linkage mapping of the human genome. A major advantage of alumorphs is that no prior knowledge of DNA sequence of marker loci is required. This approach may find general application for any genome where interspersed repetitive sequences are found.  相似文献   

19.

Background  

Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies.  相似文献   

20.
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage‐linkage disequilibrium (linkage‐LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full‐sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole‐genome re‐sequencing of the 435‐member association mapping panel, we identified significant SNPs ( 9.4 × 10?7) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time‐specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time‐specific effects showed species‐specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号