首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enterotoxigenic Escherichia coli (ETEC) is the leading bacterial cause of diarrhea in the developing world, as well as the most common cause of traveler''s diarrhea. The main hallmarks of this type of bacteria are the expression of one or more enterotoxins and fimbriae used for attachment to host intestinal cells. Longus is a pilus produced by ETEC. These bacteria grown in pleuropneumonia-like organism (PPLO) broth at 37°C and in 5% CO2 produced longus, showing that the assembly and expression of the pili depend on growth conditions and composition of the medium. To explore the role of longus in the adherence to epithelial cells, quantitative and qualitative analyses were done, and similar levels of adherence were observed, with values of 111.44 × 104 CFU/ml in HT-29, 101.33 × 104 CFU/ml in Caco-2, and 107.11 × 104 CFU/ml in T84 cells. In addition, the E9034AΔlngA strain showed a significant reduction in longus adherence of 32% in HT-29, 22.28% in Caco-2, and 21.68% in T84 cells compared to the wild-type strain. In experiments performed with nonintestinal cells (HeLa and HEp-2 cells), significant differences were not observed in adherence between E9034A and derivative strains. Interestingly, the E9034A and E9034AΔlngA(pLngA) strains were 30 to 35% more adherent in intestinal cells than in nonintestinal cells. Twitching motility experiments were performed, showing that ETEC strains E9034A and E9034AΔlngA(pLngA) had the capacity to form spreading zones while ETEC E9034AΔlngA does not. In addition, our data suggest that longus from ETEC participates in the colonization of human colonic cells.Enterotoxigenic Escherichia coli (ETEC) is an important cause of infant diarrhea in developing countries, a leading cause of traveler''s diarrhea, and a reemergent diarrheal pathogen in the United States (1, 25, 29, 33, 38, 40, 41, 44, 51, 52, 55). ETEC strains were first recognized as a cause of diarrheal disease in animals, especially in piglets and calves, where the disease continues to cause lethal infection in newborn animals (3, 37). Studies of ETEC in piglets first elucidated the mechanisms of disease, including the presence of two plasmid-encoded enterotoxins. In humans, the clinical appearance of ETEC infection is identical to that of cholera, with severe dehydrating illness not commonly seen in adults (38, 46). DuPont et al. (12) subsequently showed that ETEC strains were able to cause diarrhea in adult volunteers. ETEC strains cause watery diarrhea similar to that caused by Vibrio cholerae through the action of two enterotoxins, the cholera-like heat-labile and heat-stable enterotoxins (LT and ST, respectively) (38). These strains may express an LT only, an ST only, or both LT and ST. To cause diarrhea, ETEC strains must first adhere to small bowel enterocytes, an event mediated by a variety of surface fimbrial appendages called colonization factor antigens (CFAs), coli surface antigens (CSs), and putative colonization factors (PCF) (22, 33, 38). Transmission electron microscopy (TEM) of ETEC strains typically reveals many peritrichously arranged fimbriae around the bacterium; often, multiple fimbrial morphologies can be visualized on the same bacterium (6, 19, 31, 38). ETEC strains also express the K99 fimbriae, which are pathogenic for calves, lambs, and pigs, whereas K88-expressing organisms are able to cause disease only in pigs (8). Human ETEC strains possess their own array of colonization fimbriae, the CFAs usually encoded in plasmids (10). Currently, more than 20 CFAs known in human ETEC infections have been described (17). The CFAs can be subdivided based on their morphological characteristics. Three major morphological varieties exist: rigid rods (CFA I), bundle-forming flexible rods (CFA III), and thin, flexible, wiry structures (CFA II and CFA IV) (7, 8, 26, 30, 49, 53, 54).A high proportion of human ETEC strains contain a plasmid-encoded type IV pilus (T4P) antigen (CS20) also called longus for its length (19, 21). Longus is a T4P composed of a repeating structural subunit called LngA of 22 kDa, and its N-terminal amino acid sequences shares similarities with the class B type IV pili. These pili include the CFA III pilin subunit CofA of ETEC, the toxin-coregulated pilin (TCP) of V. cholerae, and the bundle-forming pilin (BFP) found in enteropathogenic E. coli (EPEC) and in a small percentage in other Gram-negative pathogens (21, 23). The lngA gene, which encodes the longus pilus in ETEC strains, is widely distributed in different geographic regions such Bangladesh, Chile, Brazil, Egypt, and Mexico (23). Interestingly, the lngA gene has been observed in association with ETEC strain producers of LT and ST (23). Sequence analysis of the fimbrial genes provided insight into the evolutionary history of longus. It appears that the highly conserved nonstructural lngA genes evolved in a similar manner to that of housekeeping genes.Recently, another important adherence factor called E. coli common pilus (ECP) has been identified; it is composed of a 21-kDa pilin subunit whose amino acid sequence corresponds to the product of the yagZ (renamed ecpA) gene present in all E. coli genomes sequenced to date (47). ECP production was demonstrated in strains representing intestinal (enterohemorrhagic E. coli [EHEC], EPEC, and ETEC) and extraintestinal pathogenic E. coli as well as normal-flora E. coli.In this study we report that longus plays an important role in the adherence to colonic epithelial cells. In addition to mediating cell adherence, longus is also associated with other pathogenicity attributes exhibited by other Gram-negative pathogenic bacteria producing T4P, which can contribute in part to the virulence of ETEC.  相似文献   

2.
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of traveler''s diarrhea worldwide. One major virulence factor released by this pathogen is the heat-labile enterotoxin LT, which upsets the balance of electrolytes in the intestine. After export, LT binds to lipopolysaccharide (LPS) on the bacterial surface. Although the residues responsible for LT''s binding to its host receptor are known, the portion of the toxin which mediates LPS binding has not been defined previously. Here, we describe mutations in LT that impair the binding of the toxin to the external surface of E. coli without altering holotoxin assembly. One mutation in particular, T47A, nearly abrogates surface binding without adversely affecting expression or secretion in ETEC. Interestingly, T47A is able to bind mutant E. coli expressing highly truncated forms of LPS, indicating that LT binding to wild-type LPS may be due primarily to association with an outer core sugar. Consequently, we have identified a region of LT distinct from the pocket involved in eukaryotic receptor binding that is responsible for binding to the surface of E. coli.Enterotoxigenic Escherichia coli (ETEC), a common etiologic agent behind traveler''s diarrhea, is also a significant cause of mortality worldwide (38). Many strains of ETEC elaborate a virulence factor called heat-labile enterotoxin or LT (34). LT is an AB5 toxin, consisting of a single A subunit, LTA, and a ring of five B subunits, LTB (33). LTB mediates the toxin''s binding properties, and LTA ADP ribosylates host G proteins, increasing levels of cyclic AMP and causing the efflux of electrolytes and water into the intestinal lumen (27, 35). Each subunit of LT is translated separately from a bicistronic message and then transported to the periplasm, where holotoxin assembly spontaneously occurs (16). Subsequent export into the extracellular milieu is carried out by the main terminal branch of the general secretory pathway (31, 36).LT binds eukaryotic cells via an interaction between LTB and host gangliosides, primarily the monosialoganglioside GM1 (35). The binding site for GM1, situated at the interface of two B subunits, has been identified by crystallography (26). GM1 binding can be strongly impaired by a point mutation in LTB that converts Gly-33 to an aspartic acid residue (37). LT is highly homologous to cholera toxin (CT), both in sequence and structure (7, 35), contributing to ETEC''s potentially cholera-like symptoms (39).Previous work in our lab has demonstrated that LT possesses an additional binding capacity beyond its affinity for host glycolipids: the ability to associate with lipopolysaccharide (LPS) on the surface of E. coli (20). LPS, the major component of the outer leaflet of the gram-negative outer membrane, consists of a characteristic lipid moiety, lipid A, covalently linked to a chain of sugar residues (30). In bacteria like E. coli, this sugar chain can be further divided into an inner core oligosaccharide of around five sugars, an outer core of four to six additional sugars, and in some cases a series of oligosaccharide repeats known as the O antigen. Lipid A itself cannot inhibit binding of soluble LT to cells containing full-length or truncated LPS, indicating that the LT-LPS interaction involves sugar residues on the surface of E. coli (19). The addition of the inner core sugar 3-deoxy-d-manno-octulosonic acid (Kdo) is the minimal lipid A modification required for LT binding, although longer oligosaccharide chains are preferred, and expression of a kinase that phosphorylates Kdo abrogates binding by LT (19). Competitive binding assays and microscopy with fluorescently labeled ETEC vesicles show that binding to GM1 and LPS can occur at the same time, revealing that the binding sites are distinct (20, 23). In contrast to LT''s ability to bind to the surface of ETEC, CT (or LT, when expressed heterologously) cannot bind Vibrio cells, presumably because Kdo is phosphorylated in Vibrio spp. (5).As a result of the LT-LPS surface interaction, over 95% of secreted LT is found associated with E. coli outer membrane vesicles (OMVs), rather than being secreted solubly (20). OMVs are spherical structures, 50 to 200 nm in diameter, that are derived from the outer membrane but also enclose periplasmic components (24). As such, active LT is found both on the surface of an OMV and within its lumen (21). ETEC releases a large amount of OMVs (40), and these vesicles may serve as vehicles for delivery of LT to host cells.Recent work by Holmner et al. has uncovered a third binding substrate for LT: human blood group A antigen (17, 18). This interaction was noted previously as a novel binding characteristic of artificially constructed CT-LT hybrid molecules, but it has now been shown to occur with wild-type LT as well (17, 18). LTB binding to sugar residues in the receptor molecule occurs at a site that is separate from the GM1-binding pocket, in the same region we proposed was involved in LPS binding (17, 19). While the severity of cholera disease symptoms has been linked to blood type (14), the effects of blood type on ETEC infection are less clear. However, it has been demonstrated that LT can use A antigen as a functional receptor in cultured human intestinal cells (11, 12), and one recent cohort study found an increased prevalence of ETEC-based diarrhea among children with A or AB blood type (29).We set out to generate a mutation in LT that reduces its LPS binding without adversely affecting its expression, secretion, or toxicity. In this work, we present the discovery of point mutations in LTB that impair its interactions with the bacterial surface. Examination of these mutations reveals an LPS binding pocket which shares residues with the blood sugar pocket. Binding studies of mutants to bacteria with truncated LPS provide a better understanding of the roles that inner and outer core sugars play in toxin binding, and expression, secretion, and toxicity studies demonstrate which mutant is a particularly good candidate for future research. These binding mutants may lead to further discovery of the role that surface binding plays in the pathogenesis associated with ETEC infection.  相似文献   

3.
4.
5.
The Gram-negative type II secretion (T2S) system is a multiprotein complex mediating the release of virulence factors from a number of pathogens. While an understanding of the function of T2S components is emerging, little is known about what identifies substrates for export. To investigate T2S substrate recognition, we compared mutations affecting the secretion of two highly homologous substrates: heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae. Each toxin consists of one enzymatic A subunit and a ring of five B subunits mediating the toxin''s secretion. Here, we report two mutations in LT''s B subunit (LTB) that reduce its secretion from ETEC without global effects on the toxin. The Q3K mutation reduced levels of secreted LT by half, and as with CT (T. D. Connell, D. J. Metzger, M. Wang, M. G. Jobling, and R. K. Holmes, Infect. Immun. 63:4091-4098, 1995), the E11K mutation impaired LT secretion. Results in vitro and in vivo show that these mutants are not degraded more readily than wild-type LT. The Q3K mutation did not significantly affect CT B subunit (CTB) secretion from V. cholerae, and the E11A mutation altered LT and CTB secretion to various extents, indicating that these toxins are identified as secretion substrates in different ways. The levels of mutant LTB expressed in V. cholerae were low or undetectable, but each CTB mutant expressed and secreted at wild-type levels in ETEC. Therefore, ETEC''s T2S system seems to accommodate mutations in CTB that impair the secretion of LTB. Our results highlight the exquisitely fine-tuned relationship between T2S substrates and their coordinate secretion machineries in different bacterial species.Gram-negative bacteria have evolved a number of methods to secrete proteins into the extracellular milieu, with at least six specific secretion systems currently described (14, 30). Type II secretion (T2S), or the main terminal branch of the general secretory pathway, is a feature of a number of proteobacteria and has been shown to be required for pathogenesis and maintenance of environmental niches in a large number of species (5). The T2S system is a multiprotein complex of 12 to 15 components that spans the inner and outer membranes, allowing for the controlled release of certain folded proteins that have been directed to the periplasm through the Sec or Tat machinery (21). Aside from providing a means of exporting freely released virulence factors from plant, animal, and human pathogens (5), the T2S system has been shown to export surface-associated virulence factors (18), fimbrial components (46), outer membrane cytochromes (36), and a surfactant required for sliding motility in Legionella pneumophila (39), among other substrates.While an increasing number of studies have focused on understanding the structure and function of the components of the T2S system itself, little is known about what identifies a periplasmic protein as a substrate for secretion (21, 32). Because proteins secreted from the same bacterial species need not share any obvious structural homology, it is not even clear how much of a T2S substrate interacts with the secretion machinery (32). Analysis of two similar substrates that can each be secreted by the T2S systems of two distinct species would provide information about species-specific identification of T2S substrates and, by extension, the nature of the “secretion motif” identifying those substrates. Heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae represent one such pair of substrates.ETEC and V. cholerae are enteric pathogens causing significant morbidity and mortality worldwide (33). The causative agents of traveler''s diarrhea and cholera, respectively, these two pathogens share a number of similarities, including the nature of their disease symptoms (38). Each pathogen secretes an AB5 toxin important for colonization and the induction of water and electrolyte efflux from intestinal epithelial cells (1, 29). These toxins, LT and CT, are both encoded by two-gene operons. After sec-dependent transport to the periplasm, holotoxin formation occurs spontaneously (13), with one catalytic A subunit (LTA or CTA) assembling with five B subunits (LTB or CTB), which are responsible for the binding properties of the toxins. Export of fully folded and assembled LT or CT is then accomplished by the T2S system (34, 40). In ETEC, this system is encoded by gspC to -M (40), while in V. cholerae, these genes are found in the eps operon (34).LT and CT are very similar in structure, sharing approximately 80% sequence homology and 83% identity in the mature B subunit (16, 24). ETEC is thought to have acquired the genes for CT through horizontal transfer, with the toxins evolving over time to possess slight differences (45). As such, these toxins share the same primary host receptor, the monosialoganglioside GM1, and catalyze the same ADP-ribosylation reaction within host cells (38). However, LT is able to bind other host sphingolipids in addition to GM1 and to interact with sugar residues from the A-type blood antigen, which CT cannot bind (16, 41). Both LT and CT are able to associate with sugar residues in lipopolysaccharide (LPS) on the surface of E. coli cells (17). Binding to each of these substrates can be impaired by point mutation (26, 43).In this study, we report point mutations impairing the release of LT from ETEC and CT from V. cholerae. We analyzed the specificity of the defects in substrate recognition by comparing the effects of substituting charged and neutral residues in key regions of LTB and CTB. To confirm that the identified mutations resulted specifically in a secretion defect, we tested the effect of the mutations on (i) ligand binding by each toxin, (ii) toxin stability, and (iii) formation of secretion-competent B-subunit pentamers. By introducing comparable mutations into both toxins, including one previously reported to impair the secretion of CT (6), and exchanging toxin substrates between the two species, we have revealed species-dependent differences in T2S substrate recognition. Although wild-type LT and CT can be heterologously expressed and secreted from V. cholerae and ETEC, respectively, the substrate residues identified by the secretion machinery in each species are distinct. Together, our results demonstrate that highly homologous T2S substrates are recognized in different ways when secreted by two distinct systems.  相似文献   

6.
7.
8.
9.
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via β-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated β-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of β-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of β-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate β-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated β-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.Angiogenesis, the formation of new blood vessels, involves several well-coordinated cellular processes, including endothelial cell (EC) migration, synthesis and deposition of extracellular matrix proteins, such as fibronectin, cell-cell adhesion, and formation of branching point structures (1-3, 19, 33); however, less is known about the underlying mechanisms of these processes (6, 8, 12, 14, 16, 17). For example, adherens junctions (AJs), which mediate cell-cell adhesion between ECs, may be involved in limiting the extent of cell migration (2, 14, 38, 40). VE-cadherin, a protein found in AJs, is a single-pass transmembrane polypeptide responsible for calcium-dependent homophilic interactions through its extracellular domains (2, 38, 40). The VE-cadherin cytoplasmic domain interacts with the Armadillo domain-containing proteins, β-catenin, γ-catenin (plakoglobin), and p120-catenin (p120ctn) (2, 15, 38, 40, 43). Genetic and biochemical evidence documents a crucial role of β-catenin in regulating cell adhesion as well as proliferation secondary to the central position of β-catenin in the Wnt signaling pathway (13, 16, 25, 31, 44). In addition, the juxtamembrane protein p120ctn regulates AJ stability via binding to VE-cadherin (2, 7, 9, 15, 21, 28, 32, 43). The absence of regulation or inappropriate regulation of β-catenin and VE-cadherin functions is linked to cardiovascular disease and tumor progression (2, 6).We previously identified lipid phosphate phosphatase 3 (LPP3), also known as phosphatidic acid phosphatase 2b (PAP2b), in a functional assay of angiogenesis (18, 19, 41, 42). LPP3 not only exhibits lipid phosphatase activity but also functions as a cell-associated integrin ligand (18, 19, 35, 41, 42). The known LPPs (LPP1, LPP2, and LPP3) (20-23) are six transmembrane domain-containing plasma membrane-bound enzymes that dephosphorylate sphingosine-1-phosphate (S1P) and its structural homologues, and thus, these phosphatases generate lipid mediators (4, 5, 23, 35, 39). All LPPs, which contain a single N-glycosylation site and a putative lipid phosphatase motif, are situated such that their N and C termini are within the cell (4, 5, 22, 23, 35, 39). Only the LPP3 isoform contains an Arg-Gly-Asp (RGD) sequence in the second extracellular loop, and this RGD sequence enables LPP3 to bind integrins (18, 19, 22). Transfection experiments with green fluorescent protein (GFP)-tagged LPP1 and LPP3 showed that LPP1 is apically sorted, whereas LPP3 colocalized with E-cadherin at cell-cell contact sites with other Madin-Darby canine kidney (MDCK) cells (22). Mutagenesis and domain swapping experiments established that LPP1 contains an apical targeting signal sequence (FDKTRL) in its N-terminal segment. In contrast, LPP3 contains a dityrosine (109Y/110Y) basolateral sorting motif (22). Interestingly, conventional deletion of Lpp3 is embryonic lethal, since the Lpp3 gene plays a critical role in extraembryonic vasculogenesis independent of its lipid phosphatase activity (11). In addition, an LPP3-neutralizing antibody was shown to prevent cell-cell interactions (19, 42) and angiogenesis (42). Here, we addressed the hypothesis that LPP3 plays a key role in EC migration, cell-cell adhesion, and formation of branching point structures by stimulating β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) signaling.  相似文献   

10.
In an effort to develop a safe and effective vaccine for the prevention of enterotoxigenic Escherichia coli (ETEC) F41 infections, we have developed a surface antigen display system using poly-γ-glutamate synthetase A (PgsA) as an anchoring matrix. The recombinant fusion proteins comprised of PgsA and fimbrial protein of F41 were stably expressed in Lactobacillus casei 525. Surface localization of the fusion protein was verified by immunoblotting, immunofluorescence microscopy, and flow cytometry. Oral inoculation of recombinant L. casei 525 into specific-pathogen-free BALB/c mice resulted in significant mucosal immunoglobulin A (IgA) titers that remained elevated for >16 weeks. High levels of IgG responses in sera specific for F41 fimbriae were also induced, with prominent IgG1 titers as well as IgG2a and IgG2b titers. The helper T-cell (Th) response was Th2-cell dominant, as evidenced by increased mucosal and systemic interleukin-4-producing T cells and a concomitant elevation of serum IgG1 antibody responses. More than 80% of the mice were protected against challenge with a 2 × 104-fold 50% lethal dose of standard-type F41 (C83919). The induced antibodies were important for eliciting a protective immune response against F41 infection. These results indicated that the use of recombinant L. casei 525 could be a valuable strategy for future vaccine development for ETEC.Enterotoxigenic Escherichia coli (ETEC) strains colonize the small intestine, secrete enterotoxins, and cause diarrhea. Colonization is facilitated by pili (fimbriae). Pili facilitate the adherence of ETEC to intestinal mucosa (27). Pilus adhesins that are known to be important in ETEC infections of neonatal animals are K88, K99, 987P, FY, and F41 (26, 28, 29, 38). F41 is less prevalent than K88, K99, or 987P and is usually accompanied by K99 (25). There is, however, strong suggestive evidence that F41 can mediate colonization by adhesion. Variants of a K99- and F41-positive porcine ETEC strain that have lost the K99 gene (29) and still carry the gene for and produce F41 are still virulent for newborn pigs (13).The previously conventional vaccine variability in levels of protective immunity may have been due to the lack of stimulation of appropriate mucosal immunity, since these vaccines were delivered parenterally. Mucosal immunization has proven to be an effective approach against the colonization of pathogens and their further spread to the systemic circulation (15, 34). Therefore, it is necessary to develop efficient and safe antigen vectors that will be able to trigger mucosal and systemic immune responses. One promising approach relies on the use of live bacterial vehicles (22). For mucosal immunization, lactic acid bacteria (LAB) are more attractive as delivery vehicles than other live vaccine vectors (e.g., Shigella, Salmonella, and Listeria spp.) (1, 3, 20, 21) because LAB are considered safe, they exhibit adjuvant properties, and they are weakly immunogenic (7, 9, 10, 12, 23, 41). In addition, extracellularly accessible antigens expressed on the surfaces of bacteria are better recognized by the immune system than those that are intracellular (18).It is now realized that the delivery of antigen to mucosal surfaces can induce a strong local immune response in mucosa-associated lymphoid tissue. For the surface display of antigens on Lactobacillus casei, we have developed an expression vector using the poly-γ-glutamate synthetase A (PgsA) gene product as an anchoring matrix. PgsA is a transmembrane protein derived from the poly-γ-glutamic acid synthetase complex (the PgsBCA system) of Bacillus subtilis (5, 6); in this system, the N terminus of the target protein was fused to the PgsA protein, and the resulting fusion protein was expressed on the cell surface (32). In this study, the F41 fimbrial gene of ETEC was inserted into the vector pHB:pgsA and displayed on the surface of L. casei. The oral vaccination of mice with the recombinant L. casei strain elicited systemic and mucosal immune responses. These immune responses against F41 provided protective immunity in mice challenged with virulent live infectious C83919 postimmunization. Moreover, we showed that mice orally immunized with recombinant L. casei anchoring F41 induced a Th2-type response to ETEC F41. The results of this study suggest a potential use for our surface expression system against other pathogens that are transmitted to mucosal systems.  相似文献   

11.
12.
Andes virus (ANDV) causes a fatal hantavirus pulmonary syndrome (HPS) in humans and Syrian hamsters. Human αvβ3 integrins are receptors for several pathogenic hantaviruses, and the function of αvβ3 integrins on endothelial cells suggests a role for αvβ3 in hantavirus directed vascular permeability. We determined here that ANDV infection of human endothelial cells or Syrian hamster-derived BHK-21 cells was selectively inhibited by the high-affinity αvβ3 integrin ligand vitronectin and by antibodies to αvβ3 integrins. Further, antibodies to the β3 integrin PSI domain, as well as PSI domain polypeptides derived from human and Syrian hamster β3 subunits, but not murine or bovine β3, inhibited ANDV infection of both BHK-21 and human endothelial cells. These findings suggest that ANDV interacts with β3 subunits through PSI domain residues conserved in both Syrian hamster and human β3 integrins. Sequencing the Syrian hamster β3 integrin PSI domain revealed eight differences between Syrian hamster and human β3 integrins. Analysis of residues within the PSI domains of human, Syrian hamster, murine, and bovine β3 integrins identified unique proline substitutions at residues 32 and 33 of murine and bovine PSI domains that could determine ANDV recognition. Mutagenizing the human β3 PSI domain to contain the L33P substitution present in bovine β3 integrin abolished the ability of the PSI domain to inhibit ANDV infectivity. Conversely, mutagenizing either the bovine PSI domain, P33L, or the murine PSI domain, S32P, to the residue present human β3 permitted PSI mutants to inhibit ANDV infection. Similarly, CHO cells transfected with the full-length bovine β3 integrin containing the P33L mutation permitted infection by ANDV. These findings indicate that human and Syrian hamster αvβ3 integrins are key receptors for ANDV and that specific residues within the β3 integrin PSI domain are required for ANDV infection. Since L33P is a naturally occurring human β3 polymorphism, these findings further suggest the importance of specific β3 integrin residues in hantavirus infection. These findings rationalize determining the role of β3 integrins in hantavirus pathogenesis in the Syrian hamster model.Hantaviruses persistently infect specific small mammal hosts and are spread to humans by the inhalation of aerosolized excreted virus (41, 42). Hantaviruses predominantly infect endothelial cells and cause one of two vascular leak-based diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) (41). Hantavirus diseases are characterized by increased vascular permeability and acute thrombocytopenia in the absence of endothelial cell lysis (36, 41, 42, 54). In general, hantaviruses are not spread from person to person; however, the Andes hantavirus (ANDV) is an exception, since there are several reports of person-to-person transmission of ANDV infection (11, 37, 47, 52). ANDV is also unique in its ability to cause an HPS-like disease in Syrian hamsters and serves as the best-characterized hantavirus disease model with a long onset, symptoms, and pathogenesis nearly identical to that of HPS patients (20, 21, 50).Hantavirus infection of the endothelium alters endothelial cell barrier functions through direct and immunological responses (8, 14). Although the means by which hantaviruses cause pulmonary edema or hemorrhagic disease has been widely conjectured, the mechanisms by which hantaviruses elicit pathogenic human responses have yet to be defined. Hantaviruses coat the surface of infected VeroE6 cells days after infection (17), and this further suggests that dynamic hantavirus interactions with immune and endothelial cells are likely to contribute to viral pathogenesis. Hantavirus pathogenesis has been suggested to involve CD8+ T cells, tumor necrosis factor alpha or other cytokines, viremia, and the dysregulation of β3 integrins (7, 8, 13-16, 25-28, 32, 34, 38, 44-46). However, these responses have not been demonstrated to contribute to hantavirus pathogenesis, and in some cases there are conflicting data on their involvement (18, 25-28, 34, 35, 44, 45, 48). Immune complex deposition clearly contributes to HFRS patient disease and renal sequelae (4, 7), but it is unclear what triggers vascular permeability in HPS and HFRS diseases or why hemorrhage occurs in HFRS patients but not in HPS patients (8, 36, 54). Acute thrombocytopenia is common to both diseases, and platelet dysfunction resulting from defective platelet aggregation is reported in HFRS patients (7, 8).Pathogenic hantaviruses have in common their ability to interact with αIIbβ3 and αvβ3 integrins present on platelets and endothelial cells (13, 16), and β3 integrins have primary roles in regulating vascular integrity (1, 2, 6, 19, 22, 39, 40). Consistent with the presence of cell surface displayed virus (17), pathogenic hantaviruses uniquely block αvβ3 directed endothelial cell migration and enhance endothelial cell permeability for 3 to 5 days postinfection (14, 15). Pathogenic hantaviruses dysregulate β3 integrin functions by binding domains present at the apex of inactive β3 integrin conformers (38). αvβ3 forms a complex with vascular endothelial cell growth factor receptor 2 (VEGFR2) and normally regulates VEGF-directed endothelial cell permeability (2, 3, 10, 39, 40). However, both β3 integrin knockouts and hantavirus-infected endothelial cells result in increased VEGF-induced permeability, presumably by disrupting VEGFR2-β3 integrin complex formation (2, 14, 19, 39, 40). This suggests that at least one means for hantaviruses to increase vascular permeability occurs through interactions with β3 integrins that are required for normal platelet and endothelial cell functions.αvβ3 and αIIbβ3 integrins exist in two conformations: an active extended conformation where the ligand binding head domain is present at the apex of the heterodimer and a basal, inactive bent conformation where the globular head of the integrin is folded toward the cell membrane (30, 53, 55). Pathogenic HTN and NY-1 hantaviruses bind to the N-terminal plexin-semaphorin-integrin (PSI) domain of β3 integrin subunits and are selective for bent, inactive αvβ3 integrin conformers (38). Pathogenic hantavirus binding to inactive αvβ3 integrins is consistent with the selective inhibitory effect of hantaviruses on αvβ3 function and endothelial cell permeability (14, 15, 38). Although the mechanism of hantavirus induced vascular permeability has yet to be defined, there is a clear role for β3 integrin dysfunction in vascular permeability deficits (5, 6, 22, 29, 39, 40, 51) which make an understanding of hantavirus interactions with β3 subunits important for both entry and disease processes.The similarity between HPS disease in humans and Syrian hamsters (20, 21) suggests that pathogenic mechanisms of ANDV disease are likely to be coincident. Curiously, other hantaviruses (Sin Nombre virus [SNV] and Hantaan virus [HTNV]) are restricted in Syrian hamsters and fail to cause disease in this animal, even though they are prominent causes of human disease (50). Although the host range restriction for SNV and HTNV in Syrian hamsters has not been defined (33), the pathogenesis of ANDV in Syrian hamsters suggests that both human and Syrian hamster β3 integrins may similarly be used by ANDV and contribute to pathogenesis.We demonstrate here that ANDV infection of the Syrian hamster BHK-21 cell line and human endothelial cells is dependent on αvβ3 and inhibited by αvβ3 specific ligands and antibodies. Further, polypeptides expressing the N-terminal 53 residues of human and Syrian hamster β3 subunits block ANDV infection. This further indicates that ANDV interaction with the N-terminal 53 residues of both human and Syrian hamster β3 integrins is required for viral entry. We also demonstrate that ANDV recognition of human and Syrian hamster β3 integrins is determined by proline substitutions at residues 32/33 within the β3 integrin PSI domain. These results define unique ANDV interactions with human and Syrian hamster β3 integrins.  相似文献   

13.
Prophylactic or therapeutic immunomodulation is an antigen-independent strategy that induces nonspecific immune system activation, thereby enhancing host defense to disease. In this study, we investigated the effect of prophylactic immunomodulation on the outcome of influenza virus infection using three bacterially derived immune-enhancing agents known for promoting distinct immunological profiles. BALB/c mice were treated nasally with either cholera toxin (CT), a mutant form of the CT-related Escherichia coli heat-labile enterotoxin designated LT(R192G), or CpG oligodeoxynucleotide. Mice were subsequently challenged with a lethal dose of influenza A/PR/8/34 virus 24 h after the last immunomodulation treatment and either monitored for survival or sacrificed postchallenge for viral and immunological analysis. Treatment with the three immunomodulators prevented or delayed mortality and weight loss, but only CT and LT(R192G) significantly reduced initial lung viral loads as measured by plaque assay. Analysis performed 4 days postinfection indicated that prophylactic treatments with CT, LT(R192G), or CpG resulted in significantly increased numbers of CD4 T cells, B cells, and dendritic cells and altered costimulatory marker expression in the airways of infected mice, coinciding with reduced expression of pulmonary chemokines and the appearance of inducible bronchus-associated lymphoid tissue-like structures in the lungs. Collectively, these results suggest that, despite different immunomodulatory mechanisms, CT, LT(R192G), and CpG induce an initial inflammatory process and enhance the immune response to primary influenza virus challenge while preventing potentially damaging chemokine expression. These studies provide insight into the immunological parameters and immune modulation strategies that have the potential to enhance the nonspecific host response to influenza virus infection.Influenza viruses cause acute, contagious respiratory disease. Despite the availability of vaccines and antiviral therapies, influenza virus infections cause considerable morbidity and mortality each year. It is estimated that during seasonal epidemics 10% of the world population is infected, resulting in 2 to 3 million severe cases and up to 500,000 deaths (1). The failure of conventional methods to prevent illness and death from influenza is attributed to the continuous antigenic variability of the virus due to mutations (antigen drift) and reassortments (antigenic shift). The inadequacy of current anti-influenza virus treatments is particularly concerning in the case of influenza pandemics with new viral strains for which effective vaccines would not be initially available. Thus, an antigen-independent prophylactic treatment that could nonspecifically enhance immune responses to negate or inhibit the progression of influenza virus infection would provide invaluable benefits.Several recent studies have explored the use of immunomodulation strategies as prophylaxis or therapeutic treatments to modify the immune response to influenza virus infection, thereby preventing or decreasing viral burden, disease symptoms, and mortality. These strategies have one of two distinct immunologic goals: either to increase immune system activation and/or Th1 responses specific against influenza virus, or alternatively, decrease inflammation and immunopathology. The first strategy has been demonstrated in animal models by administering host proteins/glycoproteins that function in immune defense, such as the pattern recognition receptor (PRR) mindin (28), milk-derived glycoproteins (61), and virally delivered interferon (IFN) cytokines (27). Immunomodifiers of microbial origin have also been used to enhance host response to infection, including the binding subunit of cholera toxin (CT-B) (49), Th1-promoting Toll-like receptor (TLR) agonists CpG oligodeoxynucleotides (ODN) (15, 82), poly(I:C) (81), 3 M-011 (23), and synthetic lipid A analogs (11). Immunomodulators used in the second strategy, with the aim to prevent detrimental inflammation, have been associated with improved infection outcomes and include enterotoxin mutant LT(S63K) (80) and anti-inflammatory COX-2 inhibitors (84). However, immunomodulation does not always result in beneficial responses to infection. Administration of Δ9-THC, an immunosuppressive compound, decreased cellular infiltration and increased viral load when given prior to and during influenza virus infection (7). Similarly, sphingosine 1-phosphate (S1P) analog, an immunotherapeutic agent, was found to suppress induction of T-cell responses to influenza virus (46). Lastly, fish oil-fed mice demonstrated reduced lung inflammation, cellular infiltration, and cytokine secretion but increased mortality during influenza virus infection (60).These studies highlight the need for experiments that clarify the consequences of various immunomodulation strategies on influenza virus infection and the particular requirements for generating a protective response. Furthermore, very little attention has been given to the mechanisms by which different immunomodulators with unique effector functions modulate the host response when evaluated in the same infection model. To address these questions and increase our understanding of the consequences brought about by prophylactic immunomodulation in pulmonary disease, we chose to compare the effects of pulmonary delivery of three well-characterized vaccine adjuvants on the outcome of influenza virus infection in a murine model. The immunomodulators used in this study are CpG, a nontoxic protein designated LT(R192G) that was derived from the cholera-related heat-labile enterotoxin produced by Escherichia coli, and CT. These bacterially derived agents, known to promote distinct effector functions, are excellent immunomodulators, as they induce strong immune activation and have been previously evaluated as components of influenza vaccines (29, 42, 49, 53, 56, 58). CpG ODNs are synthetic unmethylated oligodeoxynucleotides containing CpG motifs that trigger a TLR9-dependent MyD88 signaling pathway. CpG treatment results in potent Th1 cytokine expression (IFNs and interleukin-12 [IL-12]), activation of dendritic cells (DCs), NK cells, and B cells, and induction of Th1 cells and a Th1 antibody profile (30, 35, 83). CpG has been extensively studied in animal models of systemic and pulmonary infectious diseases caused by influenza virus (15, 82) and other bacterial, fungal, and parasitic pathogens (3, 9, 15, 17, 25, 34, 51, 77).Bacterially derived ADP-ribosylating enterotoxins, including CT from Vibrio cholerae and LT from E. coli, are robust systemic and mucosal adjuvants. Both in vitro and in vivo studies have demonstrated that CT induces secretion of Th2 cytokines (IL-4, IL-5, IL-6, and IL-10) by immune system cells, maturation of DCs, generation of Th2 and T-regulatory cells, and active suppression of Th1 responses (2, 32, 38, 39, 47, 49, 53, 56). Studies in vivo have also shown that intranasal delivery of CT-B, the binding subunit of the enterotoxin, combined with minimal levels of CT holotoxin, induces protective effects in influenza virus-infected mice (49). In contrast to CpG and CT, LT and LT(R192G) induce a more balanced cytokine and antibody subclass profile indicative of a mixed Th1/Th2 immune response (16, 45, 73). LT(R192G) has yet to be evaluated as a prophylactic immunomodulator, but another LT mutant, LT(S63K), has demonstrated some protective effects against influenza virus, respiratory syncytial virus (RSV), and Cryptococcus neoformans infections (80). Although safety concerns limit the use of native enterotoxins for intranasal or intrapulmonary use in humans (54, 76), animal model studies are warranted because they enhance our understanding of the initial responses that can ultimately lead to protection of the host against infection. In addition, the use of these enterotoxins in laboratory research has the potential to be translated into clinical application by using mutated low-toxinogenic derivatives that retain their immunomodulatory properties.In this study we used a comprehensive approach to evaluate the effects of intrapulmonary delivery of three strong immunomodulators prior to influenza virus infection in a murine model. We hypothesized that the unique immunologic effects induced by prophylactic treatment with CT, LT(R192G), or CpG would differentially affect survival, viral loads, and immune responses of BALB/c mice to influenza A/PR/8/34 (H1N1) virus infection. The relevance of this study to influenza virus disease pathogenesis and infectious disease immunomodulation strategies is discussed.  相似文献   

14.
Superinfection exclusion or homologous interference, a phenomenon in which a primary viral infection prevents a secondary infection with the same or closely related virus, has been observed commonly for viruses in various systems, including viruses of bacteria, plants, and animals. With plant viruses, homologous interference initially was used as a test of virus relatedness to define whether two virus isolates were “strains” of the same virus or represented different viruses, and subsequently purposeful infection with a mild isolate was implemented as a protective measure against isolates of the virus causing severe disease. In this study we examined superinfection exclusion of Citrus tristeza virus (CTV), a positive-sense RNA closterovirus. Thirteen naturally occurring isolates of CTV representing five different virus strains and a set of isolates originated from virus constructs engineered based on an infectious cDNA clone of T36 isolate of CTV, including hybrids containing sequences from different isolates, were examined for their ability to prevent superinfection by another isolate of the virus. We show that superinfection exclusion occurred only between isolates of the same strain and not between isolates of different strains. When isolates of the same strain were used for sequential plant inoculation, the primary infection provided complete exclusion of the challenge isolate, whereas isolates from heterologous strains appeared to have no effect on replication, movement or systemic infection by the challenge virus. Surprisingly, substitution of extended cognate sequences from isolates of the T68 or T30 strains into T36 did not confer the ability of resulting hybrid viruses to exclude superinfection by those donor strains. Overall, these results do not appear to be explained by mechanisms proposed previously for other viruses. Moreover, these observations bring an understanding of some previously unexplained fundamental features of CTV biology and, most importantly, build a foundation for the strategy of selecting mild isolates that would efficiently exclude severe virus isolates as a practical means to control CTV diseases.Superinfection exclusion or homologous interference is a phenomenon in which a preexisting viral infection prevents a secondary infection with the same or a closely related virus, whereas infection by unrelated viruses can be unaffected. The phenomenon was first observed by McKinney (57, 58) between two genotypes of Tobacco mosaic virus (TMV) and later with bacteriophages (21, 94). Since that time, the phenomenon has been observed often for viruses of animals (1, 13, 18, 34, 43, 47, 50, 85, 86-88, 102, 103) and plants (11, 30, 31, 32, 39, 40, 49, 77, 99, 100). In plant virology, homologous interference initially was used as a test of virus relatedness to define whether two virus isolates were “strains” of the same virus or represented different viruses (58, 77). Subsequently, it was developed into a management tool to reduce crop losses by purposely infecting plants with mild isolates of a virus to reduce infection and losses due to more severe isolates, which is referred to as “cross-protection” (reviewed in references 32 and 40).Homologous superinfection exclusion of animal viruses has been related to several mechanisms acting at various stages of the viral life cycle, including prevention of the incoming virus entry into cells (50, 86, 87), or inhibition of translation or interference with replication (1, 47, 50, 83). Several mechanisms have been postulated for homologous interference of plant viruses, including prevention of the disassembly of the challenge virus as it enters the cell resulting from the expression of the coat protein of the protector virus (67, 84; reviewed in reference 10) and induction of RNA silencing by the protector virus that leads to sequence-specific degradation of the challenge virus RNA (24, 69, 70). However, common mechanisms of superinfection exclusion, expected to be associated with the viruses of plants and animals, have not been elucidated.Citrus tristeza virus (CTV) is the largest and most complex member of the Closteroviridae family, which contains viruses with mono-, bi-, and tripartite genomes transmitted by a range of insect vectors, including aphids, whiteflies, and mealybugs (3, 6, 19, 20, 46). CTV has long flexuous virions (2,000 nm by 10 to 12 nm) encapsidated by two coat proteins and a single-stranded RNA genome of ∼19.3 kb. The major coat protein (CP) covers ca. 97% of the genomic RNA, and the minor coat protein (CPm) completes encapsidation of the genome at its 5′ end (25, 81). The RNA genome of CTV encodes 12 open reading frames (ORFs) (44, 64) (Fig. (Fig.1).1). ORFs 1a and 1b are expressed from the genomic RNA and encode polyproteins required for virus replication. ORF 1a encodes a 349-kDa polyprotein containing two papainlike protease domains plus methyltransferaselike and helicaselike domains. Translation of the polyprotein is thought to occasionally continue through the polymerase-like domain (ORF 1b) by a +1 frameshift. Ten 3′-end ORFs are expressed by 3′-coterminal subgenomic RNAs (sgRNAs) (37, 45) and encode the following proteins: major (CP) and minor (CPm) coat proteins, p65 (HSP70 homolog), and p61 that are involved in assembly of virions (79); a hydrophobic p6 protein with a proposed role in virus movement (20, 89); p20 and p23, which along with CP are suppressors of RNA silencing (54); and p33, p13, and p18, whose functions remain unknown. Remarkably, citrus trees can be infected with mutants with three genes deleted: p33, p18, and p13 (89).Open in a separate windowFIG. 1.(A) Schematic diagram of the genome organization of wild-type CTV (CTV9R) and its derivative CTV-BC5/GFP encoding GFP. The open boxes represent ORFs and their translation products. PRO, papainlike protease domain; MT, methyltransferase; HEL, helicase; RdRp, an RNA-dependent RNA polymerase; HSP70h, HSP70 homolog; CPm, minor coat protein; CP, major coat protein; GFP, green fluorescent protein. Bent arrows indicate positions of BYV (BCP) or CTV CP (CCP) sgRNA controller elements. Inserted elements are shown in gray. (B) Scheme of the “superinfection exclusion assay.” Young Madam Vinous sweet orange trees were initially inoculated with one of 13 tested CTV isolates. When primary infections were established, the trees were subsequently challenged with CTV-BC5/GFP. All inoculations were done by grafting of the infected tissue into the stem of a tree. The positions of primary (Pri) and challenge (Chl) graft inoculations are shown. The ability of the challenge virus to superinfect trees was determined by visual observation of GFP fluorescence in phloem-associated cells on the internal surface of bark from a young flash starting at about 2 months upon challenge inoculation. Scale bar, 0.4 mm.The host range of CTV is limited to citrus in which the virus infects only phloem-associated cells. CTV consists of numerous isolates that have distinctive biological and genetic characteristics (38, 48, 56, 72, 74, 75, 95). Recently, a classification strategy for CTV isolates was proposed based on sequence similarity. Analysis of nearly 400 isolates in an international collection revealed five major CTV genotype groups with some isolates undefined (38). For the purposes of the present study, strains are defined as phylogenetically distinct lineages of CTV based upon analysis of nucleotide sequences of the 1a ORF (38). This region of the genome shows high genetic diversity between CTV variants, with levels of sequence identity ranging between 72.3 to 90.3% (38, 48, 52, 74, 75; M. Hilf, unpublished data). Using this definition, T3, T30, T36, VT, and T68 are designated as strains. Individual virus samples are designated as isolates of one of these strains. The ORF 1a nucleotide sequences of isolates of the T36 and T68 strains are equally dissimilar to isolates of the T3, T30, and VT strains, with identities of 72.9, 73, and 72.4% and 77.6, 77.9, and 76.8%, respectively. Identities of ORF 1a range from 89.4 to 90.3% between isolates of the T3, T30, and VT strains. Sequences of ORF1a of isolates belonging to the T36 strain and those from the T68 strain show 72.3% identity. This compares to a range of 89 to 94.8% identity found in the more conserved 3′-half regions of the genomes of isolates from different CTV strains. Each strain is named after a “type isolate” and is composed of isolates with minor sequence divergence (generally less than 5% throughout genome) from the type member. However, isolates of a strain may have significant variations in symptoms and symptoms severity. Remarkably, field trees harbor complex populations of CTV, which are often composed of mixtures of different strains and recombinants between these strains (36, 48, 52, 68, 75, 96, 101). The genetic basis of such frequent coexistence of different strains within the same tree is unknown.CTV causes economically important diseases of citrus worldwide. One of the most effective management tools has been cross-protection when effective protecting isolates could be found. Preinfection with mild isolates allows commercial production of sweet oranges and limes in Brazil (16) and Peru (9) and grapefruit in South Africa (92). However, identification of protecting isolates has been empirical, difficult, and rare. Cross-protection usually has worked only in certain varieties, and the lack of effective protecting isolates has prevented its use in many varieties and citrus growing areas (15, 41, 61, 73). In general, there has been no understanding why some mild isolates were effective and others failed to protect. Because CTV diseases prevail in citrus growing areas worldwide, elucidation of the mechanisms of exclusion of one CTV variant by another one is an important goal.In the present study we examined relationships between different genotypes of CTV in terms of their ability to prevent superinfection by another isolate of the virus. We show that superinfection exclusion occurred only between minor genetic variants of the same strain (sequence group) and not between isolates of different strains. When isolates of the same strain were used for sequential plant inoculation, the primary infection provided full exclusion of the challenge isolate. In all combinations of virus isolates belonging to different strains, the primary infection of plants with one strain had no noticeable effect on the establishment of the secondary infection. The results obtained here help elucidate some previously unexplained fundamental features of CTV biology and pose the possibility of an existence of a novel mechanism for superinfection exclusion between virus variants.  相似文献   

15.
Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes.Botulinum neurotoxins (BoNTs) are the most toxic agents known, and as little as 30 ng neurotoxin is potentially lethal to humans (36). These toxins are responsible for botulism, a disease characterized by flaccid paralysis. Seven antigenically distinct BoNTs are known (types A to G), and BoNT types A, B, E, and F are the principal types associated with human botulism (37). Significant sequence diversity and antigenically variable subtypes have recently been reported for the type A, B, and E neurotoxin genes (14, 22, 23, 42).Apart from the species Clostridium botulinum, which itself consists of four phylogenetically distinct groups of organisms, some strains of other clostridia, namely Clostridium butyricum and Clostridium baratii, are also known to produce BoNTs (2, 4, 7, 13, 20, 26, 34, 44). Also, strains that produce two toxins and strains carrying silent toxin genes have been reported (8, 22, 24, 39). Due to the great physiological variation of the BoNT-producing clostridia, their isolation and identification cannot depend solely on biochemical characteristics (32). Indeed, the standard culture methods take into consideration only C. botulinum and not C. baratii and C. butyricum, and identification and confirmation require detection of BoNT by a standard mouse bioassay (SMB) (12). The SMB is highly sensitive and specific but also expensive, time-consuming, and undesirable because of the use of experimental animals. Detection of neurotoxin gene fragments by PCR is a rapid alternative method for detection and typing of BoNT-producing clostridia (3). Different PCR methods have been described for detecting neurotoxin type A-, B-, E-, and F-producing clostridia (9, 15-18, 21, 40, 41).A previously described multiplex PCR method able to simultaneously detect type A, B, E, and F neurotoxin genes is a useful tool for rapid detection of the BoNT-producing clostridia (31). While this method generally has a high level of inclusivity for detection of type B, E, and F neurotoxin genes, limitations for detection of the recently described subtype A2, A3, and A4 strains have been identified (6, 28). To increase the efficiency of this multiplex PCR method, new primers were designed to detect genes for all identified type A neurotoxin subtypes (19). Additionally, an internal amplification control (IAC) was added according to ISO 22174/2005. The specificity and selectivity of this multiplex PCR method were evaluated in comparison with an SMB (12) using target and nontarget strains, and the robustness was assessed using clinical, food, and environmental samples. Moreover, to evaluate the applicability of this multiplex PCR method, a survey with food and environmental samples was performed in a German food control laboratory.  相似文献   

16.
Forty-two strains of Vibrio parahaemolyticus were isolated from Bay of Bengal estuaries and, with two clinical strains, analyzed for virulence, phenotypic, and molecular traits. Serological analysis indicated O8, O3, O1, and K21 to be the major O and K serogroups, respectively, and O8:K21, O1:KUT, and O3:KUT to be predominant. The K antigen(s) was untypeable, and pandemic serogroup O3:K6 was not detected. The presence of genes toxR and tlh were confirmed by PCR in all but two strains, which also lacked toxR. A total of 18 (41%) strains possessed the virulence gene encoding thermostable direct hemolysin (TDH), and one had the TDH-related hemolysin (trh) gene, but not tdh. Ten (23%) strains exhibited Kanagawa phenomenon that surrogates virulence, of which six, including the two clinical strains, possessed tdh. Of the 18 tdh-positive strains, 17 (94%), including the two clinical strains, had the seromarker O8:K21, one was O9:KUT, and the single trh-positive strain was O1:KUT. None had the group-specific or ORF8 pandemic marker gene. DNA fingerprinting employing pulsed-field gel electrophoresis (PFGE) of SfiI-digested DNA and cluster analysis showed divergence among the strains. Dendrograms constructed using PFGE (SfiI) images from a soft database, including those of pandemic and nonpandemic strains of diverse geographic origin, however, showed that local strains formed a cluster, i.e., “clonal cluster,” as did pandemic strains of diverse origin. The demonstrated prevalence of tdh-positive and diarrheagenic serogroup O8:K21 strains in coastal villages of Bangladesh indicates a significant human health risk for inhabitants.Vibrio parahaemolyticus, a halophilic bacterium, is a causative agent of seafood-related gastroenteritis worldwide (5, 13, 41) and one of the major causes of seafood-associated gastroenteritis in the United States, Asia, Europe, and countries where sporadic cases and outbreaks occur regularly (12, 13). The bacterium is prevalent in brackish and marine waters (43). Historically first identified as the causative agent of a gastroenteritis outbreak in Japan in 1950 (14), V. parahaemolyticus is now recognized as one of the most important food-borne pathogens in Asia, causing approximately half of food poisoning outbreaks in Taiwan, Japan, Vietnam, and Southeast Asian countries.The gene encoding the thermostable direct hemolysin (TDH)—manifested as beta-hemolysis when V. parahaemolyticus is plated onto Wagatsuma blood agar (43), i.e., the Kanagawa phenomenon (KP)—has been shown to be present in more than 90% of clinical strains and less than 1% of environmental strains (31, 39). Some strains also possess the gene trh, encoding the TDH-related hemolysin (TRH), or both tdh and trh (18, 43). Another gene, the thermolabile hemolysin gene (tlh), was reported to be present in V. parahaemolyticus (36) and subsequently in all V. parahaemolyticus strains tested (38).V. parahaemolyticus gastroenteritis is a multiserogroup affliction, with at least 13 O serogroups and 71 K serotypes detected (19, 42). In 1996, serogroup O3:K6 was first reported from diarrhea patients in Kolkata, India (32), and subsequently worldwide, as an increasing incidence of gastroenteritis caused by the serogroup O3:K6 was reported in many countries (41). Rapid spreading of serogroup O3:K6 infections in Asia (27, 32), and subsequently in the United States (12), Africa (3), Europe (25), and Latin America (15), indicated its potential as a pandemic pathogen (34, 43). In addition, V. parahaemolyticus serogroup O3:K6 possesses the group-specific (GS) gene sequence in the toxRS operon and ORF8, of the 10 known open reading frames (ORFs) of the O3:K6-specific filamentous phage f237. The GS gene and ORF8 provide genetic markers distinguishing O3:K6 from other serogroups (27, 29). Recent studies have shown O4:K68, O1:K25, O1:K26, O1:K untypeable (O1:KUT), and O3:K46 serogroups to share genetic markers specific for the pandemic serogroup O3:K6 (7, 10, 27, 34, 41). The non-O3:K6 serogroups with pandemic traits are increasingly found worldwide, and therefore, their pandemic potential cannot be ruled out.In Bangladesh, strains of different serogroups having genetic markers for the serogroup O3:K6 of V. parahaemolyticus were reported to have been isolated from hospitalized gastroenteritis patients in Dhaka (7). A systematic surveillance of the coastal areas bordering the Bay of Bengal where diarrheal disease is endemic (1) has not been done. This study, the first of its kind, was undertaken to investigate virulence potential, as well as phenotypic and genotypic traits of V. parahaemolyticus strains occurring in the estuarine ecosystem of Bangladesh.  相似文献   

17.
Like all viruses, herpesviruses extensively interact with the host cytoskeleton during entry. While microtubules and microfilaments appear to facilitate viral capsid transport toward the nucleus, evidence for a role of intermediate filaments in herpesvirus entry is lacking. Here, we examined the function of vimentin intermediate filaments in fibroblasts during the initial phase of infection of two genotypically distinct strains of human cytomegalovirus (CMV), one with narrow (AD169) and one with broad (TB40/E) cell tropism. Chemical disruption of the vimentin network with acrylamide, intermediate filament bundling in cells from a patient with giant axonal neuropathy, and absence of vimentin in fibroblasts from vimentin−/− mice severely reduced entry of either strain. In vimentin null cells, viral particles remained in the cytoplasm longer than in vimentin+/+ cells. TB40/E infection was consistently slower than that of AD169 and was more negatively affected by the disruption or absence of vimentin. These findings demonstrate that an intact vimentin network is required for CMV infection onset, that intermediate filaments may function during viral entry to facilitate capsid trafficking and/or docking to the nuclear envelope, and that maintenance of a broader cell tropism is associated with a higher degree of dependence on the vimentin cytoskeleton.Human cytomegalovirus (CMV) is a ubiquitous herpesvirus that can cause serious disease in immunocompromised individuals (8, 58). Virtually all cell types, with the exception of lymphocytes and polymorphonuclear leukocytes, can support CMV replication in vivo (80), and this remarkably broad tropism is at the basis of the numerous clinical manifestations of CMV infection (8, 58). The range of permissive cells in vitro is more limited, with human fibroblasts (HF) and endothelial cells being the most widely used for propagation of clinical isolates. Two extensively studied strains, AD169 and Towne, were generated by serial passage of tissue isolates in HF for the purpose of vaccine development (22, 68). During this process, both strains accumulated numerous genomic changes (11) and lost the ability to grow in cell types other than HF. By contrast, propagation in endothelial cells produced strains with more intact genomes and tropism, such as TB40/E, VR1814, TR, and PH (59, 80).The viral determinants of endothelial and epithelial cell tropism have recently been mapped to the UL128-UL131A (UL128-131A) genomic locus (32, 92, 93). Each of the products of the UL128, UL130, and UL131A genes is independently required for tropism and participates in the formation of a complex at the surface of the virion with the viral glycoproteins gH and gL (74, 93), which can also independently associate with gO (45). The gH/gL/UL128-131A complex appears to be required for entry into endothelial cells by endocytosis, followed by low-pH-dependent fusion of the virus envelope with endosomal membranes (73, 74) although some virus strains expressing the UL128-UL131A genes do not require endosome acidification for capsid release (66, 79).HF-adapted strains consistently contain mutations in the UL128-131A genes (32). Loss of endothelial cell tropism in AD169 has been associated with a frameshift mutation in the UL131A gene, leading to the production of a truncated protein and to the loss of the gH/gL/UL128-131A complex, but not the gH/gL/gO complex, from the surface of AD169 virions (1, 3, 92). Reestablishment of wild-type UL131A expression in AD169 by repair of the UL131A gene mutation or by cis-complementation yielded viruses with restored tropism for endothelial cells but with reduced replication capacities in HF (1, 92). Interestingly, the efficiencies of entry of wild-type and repaired or complemented AD169 viruses were comparable, suggesting that the presence of UL131A did not interfere with the initial steps of infection in HF but negatively affected virion release (1, 92).The cellular determinants of CMV tropism are numerous and have not been fully identified. Virus entry begins with virion attachment to the ubiquitously expressed heparan sulfate proteoglycans at the cell surface (17), followed by engagement of one or more receptor(s) including the integrin heterodimers α2β1, α6β1, and αVβ3 (23, 39, 94); the platelet-derived growth factor-α receptor (84); and the epidermal growth factor receptor, whose role in CMV entry is still debated (38, 95).Subsequent delivery of capsids into the cytoplasm requires fusion of the virus envelope with cellular membranes. Release of AD169 capsids in HF occurs mainly by fusion at the plasma membrane at neutral pH although incoming virions have also been found within phagolysosome-like vacuoles (16, 83). Fusion with the plasmalemma appears to be mediated by the gH/gL/gO complex as AD169 virions do not contain the gH/gL/UL128-131A complex, and infectivity of a gO mutant was severely reduced (37). The mechanism used by strain TB40/E to penetrate into HF has not been described but was assumed to be similar to that of AD169 (80) even though TB40/E virions contain both gH/gL/gO and gH/gL/UL128-131A complexes.Transport of released, de-enveloped capsids toward the nucleus is mediated by cellular microtubules, and treatment of Towne-infected HF with microtubule-depolymerizing agents substantially reduced expression levels of the viral nuclear immediate-early protein 1 (IE1) (64). Depolymerization of actin microfilaments was also observed in HF as early as 10 to 20 min postinfection with the Towne strain while stress fiber disappearance was evident at 3 to 5 h postinfection (hpi) with AD169 (4, 42, 54), suggesting that microfilament rearrangement may be required to facilitate capsid transition through the actin-rich cell cortex.The role of intermediate filaments (IF) in CMV infection not been studied. In vivo, expression of the IF protein vimentin is specific to cells of mesenchymal origin like HF and endothelial cells (12). Although the phenotype of vimentin−/− (vim) mice appears to be mild (15), vimentin-null cells display numerous defects including fragmentation of the Golgi apparatus (26), development of nuclear invaginations in some instances (76), and reduced formation of lipid droplets, glycolipids, and autophagosomes (29, 52, 87). Vimentin IF interact with integrins α2β1, α6β4, and αVβ3 at the cell surface and participate in recycling of integrin-containing endocytic vesicles (40, 41). They also accompany endocytic vesicles during their perinuclear accumulation (34), regulate endosome acidification by binding to the adaptor complex AP-3 (86), control lysosome distribution into the cytoplasm (87), and promote directional mobility of cellular vesicles (69). The vimentin cytoskeleton is tightly associated with the nuclear lamina (10) and was shown to anchor the nucleus within the cell, to mediate force transfer from the cell periphery to the nucleus, and to bind to repetitive DNA sequences as well as to supercoiled DNA and histones in the nuclear matrix (56, 89, 90). Microtubules and vimentin IF form close connections in HF (30). Drug-induced disassembly of the microtubule network alters IF synthesis and organization, leading to the collapse of vimentin IF into perinuclear aggregates (2, 25, 30, 70). By contrast, coiling of IF after injection of antivimentin antibodies has no effect on the structure of microtubules (28, 46, 53), indicating that the interaction between vimentin IF and microtubules is functionally unidirectional.In this work, we sought to assess the role of the vimentin cytoskeleton in CMV entry. We hypothesized that vimentin association with integrins at the cell surface, with endosomes and microtubules in the cytoplasm, and with the lamina and matrix in the nucleus might facilitate viral binding and penetration, capsid transport toward the nucleus, and nuclear deposition of the viral genome.We found that, akin to microtubules, vimentin IF do not depolymerize during entry of either AD169 or TB40/E. In comparison to AD169, onset of TB40/E infection in HF was delayed, and the proportion of infected cells was reduced. Virus entry was negatively affected by the disruption of vimentin networks after exposure to acrylamide (ACR), by IF bundling in cells from patients with giant axonal neuropathy (GAN), and by the absence of vimentin IF in vim mouse embryo fibroblasts (MEF). In vim cells, the efficiency of particles trafficking toward the nucleus appeared significantly lower than in vimentin+/+ (vim+) cells, and in each instance the negative effects were more pronounced in TB40/E-infected cells than in AD169-infected cells. These data show that vimentin is required for efficient entry of CMV into HF and that the endotheliotropic strain TB40/E is more reliant on the presence and integrity of vimentin IF than the HF-adapted strain AD169.  相似文献   

18.
19.
20.
The purpose of this study was the enrichment and phylogenetic identification of bacteria that dechlorinate 4,5,6,7-tetrachlorophthalide (commercially designated “fthalide”), an effective fungicide for rice blast disease. Sequential transfer culture of a paddy soil with lactate and fthalide produced a soil-free enrichment culture (designated the “KFL culture”) that dechlorinated fthalide by using hydrogen, which is produced from lactate. Phylogenetic analysis based on 16S rRNA genes revealed the dominance of two novel phylotypes of the genus Dehalobacter (FTH1 and FTH2) in the KFL culture. FTH1 and FTH2 disappeared during culture transfer in medium without fthalide and increased in abundance with the dechlorination of fthalide, indicating their growth dependence on the dechlorination of fthalide. Dehalobacter restrictus TEA is their closest relative, with 97.5% and 97.3% 16S rRNA gene similarities to FTH1 and FTH2, respectively.4,5,6,7-Tetrachlorophthalide (commercially designated “fthalide”) is an effective fungicide for rice blast disease, which inhibits melanin biosynthesis and the formation of the mature appressorial cells of the rice blast pathogen on the host plant (5, 16). Fthalide has been reported to be reductively dechlorinated in soil (16) and compost (28), although its fates in paddy soil and the fthalide-dechlorinating bacteria are unknown. Besides fthalide, polychlorinated aromatic compounds are known to be reductively dechlorinated by the bacteria of several phyla. Six strains of Desulfitobacterium spp. of the phylum Firmicutes (2, 3, 6, 10, 23, 29) and Desulfomonile tiedjei DCB-1 of the phylum Proteobacteria (21) can dechlorinate polychlorinated phenols. Three strains of the phylum Chloroflexi can dechlorinate a variety of compounds, including polychlorinated phenols, benzenes, biphenyls, or dibenzo-p-dioxins: Dehalococcoides ethenogenes 195 (9, 19), Dehalococcoides sp. strain CBDB1 (1, 4), and strain DF-1 of Chloroflexi, collectively called the “o-17/DF-1 group” (18). Dehalococcoides spp. utilize hydrogen as an electron donor and acetate as a carbon source for growth coupled to the reductive dechlorination of chlorinated compounds (1, 12, 13, 19, 26). In contrast, Desulfitobacterium spp. can dechlorinate chlorinated compounds not only with hydrogen, but also organic acids, such as formate, pyruvate, lactate, or butyrate (3, 10, 23). Strain DF-1 can utilize hydrogen and formate for the dechlorination of polychlorinated biphenyls (PCBs) (18).In this study, bacteria that dechlorinate fthalide were enriched from a paddy soil with sequentially transferred cultures using a soil-free medium supplemented with single organic acids. Acetate, formate, lactate, and butyrate were used in this study because they are frequently used in the enrichment of dechlorinators and release hydrogen at different concentrations (8, 11, 14). Fthalide-dechlorinating bacteria in the enriched culture were phylogenetically identified based on the 16S rRNA gene with PCR-denaturing gradient gel electrophoresis (DGGE), a 16S rRNA gene clone library, and quantitative real-time PCR (qPCR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号