首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The membrane-proximal external region (MPER) of HIV-1, located at the C terminus of the gp41 ectodomain, is conserved and crucial for viral fusion. Three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, 4E10, and Z13e1, are directed against linear epitopes mapped to the MPER, making this conserved region an important potential vaccine target. However, no MPER antibodies have been definitively shown to provide protection against HIV challenge. Here, we show that both MAbs 2F5 and 4E10 can provide complete protection against mucosal simian-human immunodeficiency virus (SHIV) challenge in macaques. MAb 2F5 or 4E10 was administered intravenously at 50 mg/kg to groups of six male Indian rhesus macaques 1 day prior to and again 1 day following intrarectal challenge with SHIVBa-L. In both groups, five out of six animals showed complete protection and sterilizing immunity, while for one animal in each group a low level of viral replication following challenge could not be ruled out. The study confirms the protective potential of 2F5 and 4E10 and supports emphasis on HIV immunogen design based on the MPER region of gp41.Eliciting broadly neutralizing antibodies is an important goal of HIV vaccine design efforts, and the study of broadly neutralizing monoclonal antibodies (bnMAbs) can assist in that goal. Human bnMAbs against both gp120 and gp41 of the HIV-1 envelope spike have been described. Three bnMAbs to gp41, 2F5, 4E10, and Z13e1, have been identified and shown to recognize neighboring linear epitopes on the membrane proximal external (MPER) region of gp41 (3, 24, 25, 37, 47). In a comprehensive cross-clade neutralization study by Binley et al., 2F5 neutralized 67% and 4E10 neutralized 100% of a diverse panel of 90 primary isolates (2). Similar broad neutralization was seen against sexually transmitted isolates cloned from acutely infected patients (22). More recently, a comprehensive study showed that 2F5 neutralized 97 isolates from a 162-virus panel (60%) and that 4E10 neutralized 159 isolates (98%) (41). Although less potent, the monoclonal antibody Z13, isolated from an antibody phage display library derived from a bone marrow donor whose serum was broadly neutralizing (47), has cross-clade neutralizing activity. Z13e1 is an affinity-enhanced variant of the earlier-characterized MAb Z13 that is directed against an access-restricted epitope between and overlapping the epitopes of 2F5 and 4E10. Both MAbs 2F5 and 4E10 were originally obtained as IgG3 antibodies in hybridomas derived from peripheral blood mononuclear blood lymphocytes (PBMCs) of HIV-1-seropositive nonsymptomatic patients and were later class switched to IgG1 to enable large-scale manufacturing and to prolong in vivo half-life (3, 6, 32).Despite the interest in the MPER as a vaccine target, there is limited information on the ability of MPER antibodies to act antivirally in vivo either in established infection or prophylactically. A study using the huPBL-SCID mouse model showed limited impact from 2F5 when the antibody was administered in established infection (31). Passive administration of 2G12, 2F5, and 4E10 to a cohort of acutely and chronically infected HIV-1 patients provided little direct evidence of 2F5 or 4E10 antiviral activity, whereas the emergence of escape variants indicated unequivocally the ability of 2G12 to act antivirally (18, 39). Indirect evidence did, however, suggest that the MPER MAbs may have affected virus replication, as indicated by viral rebound suppression in a patient known to have a 2G12-resistant virus prior to passive immunization (39). Another study of 10 individuals passively administered 2G12, 2F5, and 4E10 before and after cessation of combination antiretroviral therapy (ART) showed similarly that 2G12 treatment could delay viral rebound, but antiviral activity by 2F5 and 4E10 was not clearly demonstrated (21). In prophylaxis, an early 2F5 passive transfer study with chimpanzees suggested that the antibody could delay or lower the magnitude of primary viremia following HIV-1 challenge (7). A study using gene transfer of 2F5 in a humanized SCID mouse model suggested that continuous plasma levels of approximately 1 μg/ml of 2F5 may significantly reduce viral loads in LAI- and MN-challenged mice (34). Protection studies of rhesus macaques using simian-human immunodeficiency virus SHIV89.6PD challenge did not provide definitive direct evidence for MPER antibody-mediated protection. One of three animals was protected against intravenous (i.v.) challenge when 2F5 was administered in a cocktail with HIVIG and 2G12 (19), but all three animals treated with 2F5 alone at high concentration became infected. In a vaginal challenge study with SHIV89.6PD (20), four of five animals were protected with a cocktail of HIVIG, 2F5, and 2G12, but a 2F5/2G12 combination protected only two of five animals. Further protection studies have used MPER MAbs in combination with other MAbs, leaving the individual contributions of these antibodies uncertain (1, 8).In our previous studies, we successfully used the SHIV/macaque model to demonstrate neutralizing antibody protection against mucosal challenge, and we have begun to explore how that protection is achieved (12, 30). Here, we conducted a protection study with the two broadly neutralizing MPER-directed antibodies 2F5 and 4E10. We show that the antibodies can prevent viral infection and thereby support the MPER as a vaccine target.  相似文献   

2.
The membrane-proximal external region (MPER) of the human immunodeficiency virus (HIV) envelope glycoprotein (gp41) is critical for viral fusion and infectivity and is the target of three of the five known broadly neutralizing HIV type 1 (HIV-1) antibodies, 2F5, Z13, and 4E10. Here, we report the crystal structure of the Fab fragment of Z13e1, an affinity-enhanced variant of monoclonal antibody Z13, in complex with a 12-residue peptide corresponding to the core epitope (W670NWFDITN677) at 1.8-Å resolution. The bound peptide adopts an S-shaped conformation composed of two tandem, perpendicular helical turns. This conformation differs strikingly from the α-helical structure adopted by an overlapping MPER peptide bound to 4E10. Z13e1 binds to an elbow in the MPER at the membrane interface, making relatively few interactions with conserved aromatics (Trp672 and Phe673) that are critical for 4E10 recognition. The comparison of the Z13e1 and 4E10 epitope structures reveals a conformational switch such that neutralization can occur by the recognition of the different conformations and faces of the largely amphipathic MPER. The Z13e1 structure provides significant new insights into the dynamic nature of the MPER, which likely is critical for membrane fusion, and it has significant implications for mechanisms of HIV-1 neutralization by MPER antibodies and for the design of HIV-1 immunogens.The continued spread of human immunodeficiency virus (HIV) worldwide and, in particular, in sub-Saharan Africa, where an estimated 22 million people currently are living with HIV/AIDS, underscores the urgent need for a preventative vaccine. However, despite nearly 25 years of intense international research, a vaccine is not yet available. Passive immunization with broadly neutralizing antibodies can confer sterilizing protection against infection in animal models (4, 12, 39-41, 51, 64), providing encouragement for the development of an antibody-inducing component of an HIV type 1 (HIV-1) vaccine. Such a vaccine should elicit neutralizing antibodies with activity against the broadest range of primary circulating isolates. However, a lack of understanding of how to raise potent, cross-reactive antibodies by immunization, the so-called neutralizing antibody problem, is a major hurdle in this effort (6, 24, 72). Thus, an understanding of the structure and presentation of neutralizing epitopes on the virus and the antibodies that recognize them is vital for vaccine development.The targets of antibody neutralization are the surface envelope (Env) glycoprotein trimers (gp120/gp41) that mediate the fusion of the viral membrane with that of the host. The majority of antibodies elicited during natural infection or immunization show limited or no cross-reactivity against diverse isolates. However, a few rare, broadly neutralizing, monoclonal antibodies have been isolated from HIV-1-infected individuals and exhibit activity against a wide range of isolates by binding to functionally conserved epitopes exposed on native gp120/gp41 trimers. These epitopes include the CD4 binding site, recognized by antibody b12, and a relatively well-conserved cluster of N-linked glycans, located on the outer domain of gp120, that is recognized by antibody 2G12 (12, 13, 71, 76). V3-directed antibodies, which are common in natural infection, also are able to sporadically neutralize across clades, as exemplified by 447-52D and F425-B4e8 (7, 16, 49, 66). The identification of three broadly neutralizing antibodies, 2F5, Z13, and 4E10, that target the conserved tryptophan-rich membrane-proximal external region (MPER) of gp41 has implicated this region as a highly promising vaccine target and has, therefore, spurred interest in its structural characterization (15, 35, 45, 47, 48, 50, 80).The MPER plays a critical, but not fully understood, role in membrane fusion and is situated between the C-terminal heptad repeat (CHR) and the transmembrane domain (TM) of gp41 (Fig. (Fig.1).1). Following the binding of gp120 to the cell surface receptors CD4 and CXCR4/CCR5, the gp41 glycoprotein undergoes a series of conformational changes that trigger the membrane fusion activity. Notably, a relatively long-lived prehairpin intermediate of gp41 is formed, in which the coiled-coil of the N-terminal heptad repeats (NHR) extends so as to enable the fusion peptides to embed into the target membrane. In the postfusion or fusogenic state, the CHR and NHR reassemble into an antiparallel 6-helix bundle in a process that drives membrane fusion (18). The MPER contains several functionally conserved tryptophan residues that are critical for membrane fusion and viral entry, although the structural basis for their specific role has not been firmly established (22, 44, 58). Their mutation to alanine leads to the attenuation of viral infectivity, which is most pronounced for Trp666 and Trp672 (numbered according to the HXB2 isolate) (46, 58, 78). In addition, peptides based on the MPER can induce membrane leakage (68). Such membrane-disrupting properties of the MPER have been suggested to be functionally important in the expansion of the fusion pore created after receptor engagement (42, 44, 58, 68, 77).Open in a separate windowFIG. 1.Major features of gp41 include the fusion peptide (FP), NHR, CHR, TM, and cytoplasmic domain (CD). The MPER is located between the CHR and TM regions of gp41. The core epitopes of 2F5 (green), Z13e1 (yellow), and 4E10 (orange) are indicated. The epitope of Z13e1 is located between those of 2F5 and 4E10, but it overlaps more closely with 4E10.From initial explorations using solution nuclear magnetic resonance, the structure of a 19-residue MPER peptide (residues 665 to 683) was found to be helical in dodecylphosphocholine micelles, with the hydrophobic and hydrophilic residues distributed evenly around the helix axis (62). Another study found that an MPER peptide comprising residues 659 to 671 adopts a 310-helix in water (10). More recently, the structure of an MPER peptide (residues 662 to 683) in liposomes was elucidated by a combination of nuclear magnetic resonance and spin-label electron paramagnetic resonance (69), and it was found to adopt a kinked, amphipathic structure composed of two helices connected by a short hinge (Phe673 and Asn674). Crystal structures of Fab 2F5 in complex with a 7-mer (E662LDKWAS668) and 17-mer encompassing residues 654 to 670 previously had revealed a mostly extended conformation characterized by a central β-turn involving Asp664, Lys665, and Trp666 (47, 48). This motif is the key recognition determinant for 2F5 and becomes deeply buried in the antibody combining site, suggesting that it is exposed at some stage in viral entry (45, 47, 78). The crystal structure of Fab 4E10 in complex with peptide-spanning residues W670NWFDITNW678 revealed an amphipathic α-helical structure with a narrow hydrophilic face (15). The N terminus of the 4E10 epitope forms a 310-helix that transitions into a regular α-helix at residue Asp674 and continues to Lys683, which constitutes the end of the gp41 ectodomain (14). Thus, while the structure of the MPER within functional, membrane-embedded Env trimers is not known, the observation that unconstrained peptides are able to adopt more than one defined structure suggests an inherent degree of flexibility.Like 4E10, Z13 was identified from an HIV-1-infected individual, the former being isolated from an immortalized B-cell line and the latter from a bone marrow RNA phage display library (80). The epitope of MAb Z13 spans residues S668LWNWFDITN677, as determined by peptide mapping, scanning mutagenesis, and antibody competition studies (46, 80). This region lies between the 2F5 and 4E10 epitopes but overlaps more closely with 4E10 (Fig. (Fig.1).1). 4E10 and Z13 are both able to neutralize primary as well as laboratory-adapted isolates; nevertheless, Z13 is not as broadly neutralizing as 4E10, which has the greatest breadth of any HIV-1 antibody described to date (9). Z13e1 is an affinity-enhanced variant of Z13 and was evolved by randomizing the complementarity determining region (CDR) L3 loop sequence to identify tighter-binding mutants using phage display (46). Z13e1 displays higher affinity for both peptide and recombinant gp41 substrates, as well as increased neutralization potency, suggesting that the L3 mutations optimize binding to the linear MPER epitope. The neutralization breadth of Z13e1 is limited by the requirement for Asn671 and Asp674 in the MPER, which are approximately 71 and 58% conserved, respectively, among sequences in the Los Alamos HIV sequence database (80). Based on the clear relationship between Env trimer binding and neutralization, the neutralizing activity of Z13e1 derives from binding to a functional trimer (8, 20, 25, 43, 52, 55, 60, 73, 74). While Z13e1 and 4E10 have identical affinities for optimized linear peptides, Z13e1 is still about an order of magnitude less potent than 4E10 against a variety of primary isolates. Although the occlusion of the Z13e1 epitope on virion-associated trimers is thought to be the major limitation (46), the structural basis for the lower potency of Z13e1 relative to those of 2F5 and 4E10 is unclear.Whereas neutralization by 4E10 depends critically on Trp672 and Phe673, Z13e1 instead requires the flanking Asn671 and Asp674 residues (46). Based on a helical model of the MPER, it was predicted that Z13e1 binds the narrow hydrophilic face that displays Asn671, Asp674, and Asn677 that is opposite that recognized by 4E10. As Z13e1 and 4E10 bind to functional trimers, both epitopes must be exposed at some stage before membrane fusion (20). To examine how Z13e1 recognizes its MPER epitope, we determined the crystal structure of Fab Z13e1 in complex with a 12-residue peptide corresponding to the core epitope with C-terminal flanking lysines to aid peptide solubility (W670NWFDITN677KKKK). The crystal structure at 1.8-Å resolution uncovers a conformation of the MPER that is distinct from that visualized in complex with 4E10. Our findings show that Z13e1 and 4E10 recognize different conformers of the MPER and reveal a novel conformational switch that is relevant for HIV-1 neutralization and membrane fusion.  相似文献   

3.
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab′. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate''s negative charge, the hydrophobic alkyl-π stacking arrangement between the β-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.Eliciting broadly neutralizing antibodies (bnAbs) against primary isolates of human immunodeficiency virus type I (HIV-1) has been identified as a major milestone to attain in the quest for a vaccine in the fight against AIDS (12, 28). These antibodies would need to interact with HIV-1 envelope glycoproteins gp41 and/or gp120 (Env), target conserved regions and functional conformations of gp41/gp120 trimeric complexes, and prevent new HIV-1 fusion events with target cells (21, 57, 70, 71). Although a humoral response generating neutralizing antibodies against HIV-1 can be detected in HIV-1-positive individuals, the titers are often very low, and virus control is seldom achieved by these neutralizing antibodies (22, 51, 52, 66, 67). The difficulty in eliciting a broad and potent neutralizing antibody response against HIV-1 is thought to reside in the high degree of genetic diversity of the virus, in the heterogeneity of Env on the surface of HIV-1, and in the masking of functional regions by conformational covering, by an extensive glycan shield, or by the ability of some conserved domains to partition to the viral membrane (24, 25, 29, 30, 38, 39, 56, 68, 69). So far, vaccine trials using as immunogens mimics of Env in different conformations have primarily elicited antibodies with only limited neutralization potency across different HIV-1 clades although recent work has demonstrated more encouraging results (4, 12, 61).The use of conserved regions on gp41 and gp120 Env as targets for vaccine design has been mostly characterized by the very few anti-HIV-1 broadly neutralizing monoclonal antibodies (bnMAbs) that recognize them: the CD4 binding-site on gp120 (bnMAb b12), a CD4-induced gp120 coreceptor binding site (bnMAbs 17b and X5), a mannose cluster on the outer face of gp120 (bnMAb 2G12), and the membrane proximal external region (MPER) of gp41 (bnMAbs 2F5, Z13 and 4E10) (13, 29, 44, 58, 73). The gp41 MPER region is a particularly conserved part of Env that spans residues 659 to 683 (HXB2 numbering) (37, 75). Substitution and deletion studies have linked this unusually tryptophan-rich region to the fusion process of HIV-1, possibly involving a series of conformational changes (5, 37, 41, 49, 54, 74). Additionally, the gp41 MPER has been implicated in gp41 oligomerization, membrane leakage ability facilitating pore formation, and binding to the galactosyl ceramide receptor on epithelial cells for initial mucosal infection mediated by transcytosis (2, 3, 40, 53, 63, 64, 72). This wide array of roles for the gp41 MPER will put considerable pressure on sequence conservation, and any change will certainly lead to a high cost in viral fitness.Monoclonal antibody 2F5 is a broadly neutralizing monoclonal anti-HIV-1 antibody isolated from a panel of sera from naturally infected asymptomatic individuals. It reacts with a core gp41 MPER epitope spanning residues 662 to 668 with the linear sequence ELDKWAS (6, 11, 42, 62, 75). 2F5 immunoglobulin G binding studies and screening of phage display libraries demonstrated that the DKW core is essential for 2F5 recognition and binding (15, 36, 50). Crystal structures of 2F5 with peptides representing its core gp41 epitope reveal a β-turn conformation involving the central DKW residues, flanked by an extended conformation and a canonical α-helical turn for residues located at the N terminus and C terminus of the core, respectively (9, 27, 45, 47). In addition to binding to its primary epitope, evidence is accumulating that 2F5 also undergoes secondary interactions: multiple reports have demonstrated affinity of 2F5 for membrane components, possibly through its partly hydrophobic flexible elongated complementarity-determining region (CDR) H3 loop, and it has also been suggested that 2F5 might interact in a secondary manner with other regions of gp41 (1, 10, 23, 32, 33, 55). Altogether, even though the characteristics of 2F5 interaction with its linear MPER consensus epitope have been described extensively, a number of questions persist about the exact mechanism of 2F5 neutralization at a molecular level.One such ambiguous area of the neutralization mechanism of 2F5 is investigated in this study. Indeed, compared to bnMAb 4E10, 2F5 is the more potent neutralizing antibody although its breadth across different HIV-1 isolates is more limited (6, 35). In an attempt to shed light on the exact molecular requirements for 2F5 recognition of its primary gp41 MPER epitope, we performed structural studies of 2F5 Fab′ with a variety of peptides. The remarkable breadth of possible 2F5 interactions reveals a somewhat surprising promiscuity of the 2F5 binding site. Furthermore, we link our structural observations with the natural variation observed within the gp41 MPER and discuss possible routes of 2F5 escape from a molecular standpoint. Finally, our discovery of 2F5''s ability to tolerate a rather broad spectrum of amino acids in its binding, a spectrum that even includes nonnatural amino acids, opens the door to new ways to design small-molecule immunogens potentially capable of eliciting 2F5-like neutralizing antibodies.  相似文献   

4.
Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon.The generation of an antibody response capable of neutralizing a broad range of viruses remains an important goal of human immunodeficiency virus type 1 (HIV-1) vaccine development. Despite multiple efforts in the design of immunogens capable of inducing such humoral responses, little progress has been made (18, 20, 39). The sequence variability of the virus, as well as masking mechanisms exhibited by the envelope glycoprotein, has further hindered this pursuit (6, 22). It is known that while the majority of HIV-infected individuals mount a strong neutralization response against their own virus within the first 6 to 12 months of infection, breadth is observed in only a few individuals years later (5, 10, 15, 26, 33, 40, 41). However, very little is known about the specificities of the antibodies that confer this broad cross-neutralization. It is plausible that broadly cross-neutralizing (BCN) plasmas contain antibodies that target conserved regions of the envelope glycoprotein, as exemplified by a number of well-characterized broadly neutralizing monoclonal antibodies (MAbs). The b12 MAb recognizes the CD4 binding site (CD4bs), and 2G12 binds to surface glycans (7, 42, 44, 56). The 447-52D MAb recognizes the V3 loop, and 17b, E51, and 412d bind to CD4-induced (CD4i) epitopes that form part of the coreceptor binding site (13, 21, 51, 54). Finally, the MAbs 2F5, 4E10, and Z13e1 recognize distinct linear sequences in the gp41 membrane-proximal external region (MPER) (36, 57). The targets of these neutralizing MAbs provide a rational starting point for examining the complex nature of polyclonal plasma samples.Several groups have addressed the need to develop methodologies to elucidate the presence of certain neutralizing-antibody specificities (1, 8, 9, 29, 30, 43, 55). A number of these studies reported that the BCN antibodies in plasma can in some cases be adsorbed using gp120 immobilized on beads (1, 9, 29, 30, 43). Furthermore, the activities of some of these anti-gp120 neutralizing antibodies could be mapped to the CD4bs, as the D368R mutant gp120 failed to adsorb them (1, 29, 30, 43).Antibodies to CD4i epitopes are frequently found in HIV-1-infected individuals and are thought to primarily target the coreceptor binding site, which includes the bridging sheet and possibly parts of the V3 region. Decker and colleagues (8) showed that MAbs to HIV-1 CD4i epitopes can neutralize HIV-2 when pretreated with soluble CD4 (sCD4), indicating that the CD4i epitope is highly conserved among different HIV lineages. The poor accessibility of CD4i epitopes, however, has precluded this site from being a major neutralizing-antibody target (24), although a recent study suggested that some of the cross-neutralizing activity in polyclonal sera mapped to a CD4i epitope (30).Another site that has attracted considerable attention as a target for cross-neutralizing antibodies is the MPER, a linear stretch of 34 amino acids in gp41. Anti-MPER antibodies have been detected in the plasma of HIV-infected individuals by using chimeric viruses with HIV-1 MPER grafted into a simian immunodeficiency virus or an HIV-2 envelope glycoprotein (15, 55). These studies concluded that 2F5- and 4E10-like antibodies were rarely found in HIV-1-infected plasmas; however, other specificities within the MPER were recognized by around one-third of HIV-1-infected individuals (15). More recently, 4E10-like and 2F5-like antibodies (30, 43), as well as antibodies to novel epitopes within the MPER (1), have been shown to be responsible for neutralization breadth in a small number of plasma samples. The anti-MPER MAb 4E10 has been shown to react to autoantigens, leading to the suggestion that their rarity in human infection is due to the selective deletion of B cells with these specificities (17, 35). Furthermore, a recent study found an association between anti-MPER and anti-cardiolipin (CL) antibodies, although an association with neutralization was not examined (31).A recent study by Binley and coworkers used an array of methodologies to determine the antibody specificities present in subtype B and subtype C plasma samples with neutralization breadth (1). While antibodies to gp120, some of which mapped to the CD4bs, and to MPER were identified, most of the neutralizing activity in the BCN plasma could not be attributed to any of the known conserved envelope epitopes. Furthermore, it is not clear how common these specificities are among HIV-1-positive plasmas and whether they are only associated with BCN activity.In this study, we investigated a large collection of HIV-1-infected plasmas obtained from the South African National Blood Services. We aimed to determine if there is a relationship between the presence of certain antibody specificities, such as those against CD4i epitopes, MPER, or the CD4bs, and the neutralizing activities present in these plasmas. Furthermore, we evaluated the presence of various autoreactive antibodies and analyzed whether they might be associated with neutralization breadth.  相似文献   

5.
The membrane-proximal external region (MPER) of the HIV-1 gp41 transmembrane glycoprotein is the target of the broadly neutralizing antibody 2F5. Prior studies have suggested a two-component mechanism for 2F5-mediated neutralization involving both structure-specific recognition of a gp41 protein epitope and nonspecific interaction with the viral lipid membrane. Here, we mutationally alter a hydrophobic patch on the third complementarity-determining region of the heavy chain (CDR H3) of the 2F5 antibody and assess the abilities of altered 2F5 variants to bind gp41 and to neutralize diverse strains of HIV-1. CDR H3 alterations had little effect on the affinity of 2F5 variants for a peptide corresponding to its gp41 epitope. In contrast, strong effects and a high degree of correlation (P < 0.0001) were found between virus neutralization and CDR H3 hydrophobicity, as defined by predicted free energies of transfer from water to a lipid bilayer interface or to octanol. The effect of CDR H3 hydrophobicity on neutralization was independent of isolate sensitivity to 2F5, and CDR H3 variants with tryptophan substitutions were able to neutralize HIV-1 ∼10-fold more potently than unmodified 2F5. A threshold was observed for increased hydrophobicity of the 2F5 CDR H3 loop beyond which effects on 2F5-mediated neutralization leveled off. Together, the results provide a more complete understanding of the 2F5 mechanism of HIV-1 neutralization and indicate ways to enhance the potency of MPER-directed antibodies.The membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 (HIV-1) gp41 transmembrane glycoprotein is the target of three broadly neutralizing anti-HIV-1 antibodies, 2F5, Z13e, and 4E10, and is thus a potential site of HIV-1 vulnerability to the humoral immune response (21, 24, 27, 48). The MPER encompasses ∼25 residues at the carboxyl-terminal end of the predicted gp41 ectodomain, just before the transmembrane region, and is rich in aromatic residues, typical of bilayer-interfacial regions of membrane proteins (26, 36, 40). Mutation of selected MPER tryptophans abrogates gp41-mediated fusion of the viral and target cell membranes, indicating that this region is crucial for HIV-1 infectivity (23, 28). Structural studies of unbound forms of the gp41 MPER both in solution and in lipid contexts have demonstrated that it adopts a number of conformations, many of which are α-helical, and electron-paramagnetic resonance measurements have indicated lipid bilayer immersion depths for MPER residues that range from acyl to phospholipid headgroup regions (4, 7, 8, 19, 32, 37). The binding of neutralizing antibodies, such as 2F5, to the MPER must therefore account for the membrane milieu in which the epitope is found.The 2F5 antibody has been shown to exhibit ∼100-fold-enhanced binding to its epitope on uncleaved gp140s when presented in the context of lipid proteoliposomes (11, 25), and other studies have shown that 2F5 can contact phospholipids directly in the absence of gp41 (1, 3, 12, 22, 29, 30). The latter finding has led to the suggestion that 2F5 might be autoreactive (12), although passive transfusion of 2F5 does not appear to have deleterious effects (38) and 2F5 failed to react in some clinically based assays for autoreactive lipid antibodies (31, 39). The crystal structures of the 2F5 antibody in complex with its gp41 MPER epitope revealed that, despite the 22-residue length of the 2F5 heavy chain third complementarity-determining region (CDR H3) loop, contacts with the gp41 MPER peptide are made predominantly at the loop base. In some crystal structures, the tip of the loop protrudes away from gp41, while in others, it is disordered (9, 14, 25). A unique feature of the tip of the CDR H3 loop is that it contains a patch of hydrophobic residues, including residues L100A, F100B, V100D, and I100F (Kabat numbering), which, with the exception of I100F, do not contact gp41 (9, 10, 14, 25) (Fig. (Fig.1).1). While a prior study revealed the importance of residue F100B of the CDR H3 loop in 2F5-neutralizing activity, nonconservative residue substitutions at this position also appeared to diminish 2F5 binding to the immobilized MPER peptide and gp41 in enzyme-linked immunosorbent assay (ELISA) formats (47). Conversely, a more recent study has shown that alanine mutations in the 2F5 CDR H3 loop can affect neutralization without affecting gp41 binding (2).Open in a separate windowFIG. 1.2F5 CDR H3 loop mutagenesis. (A) Structure of 2F5 Fab (blue and gray) in complex with a gp41 peptide (red). The 2F5 CDR H3 (purple) contacts gp41 only at its base, while the tip extends away from the peptide. (B) Close-up view of the 2F5 CDR H3 loop, with hydrophobic residues at the loop tip shown in stick representation and colored green. (C) Mutations introduced into the tip of the 2F5 CDR H3 (100A to 100F) are defined, along with a plot of the Wimley-White predicted free energies of transfer to a lipid bilayer interface (black) or to octanol (gray) for each of the mutations.In this study, we sought to examine the role of the chemical nature of residues at the tip of the 2F5 CDR H3 loop in neutralization of HIV-1. Mutations were introduced into the 2F5 CDR H3 loop that altered its hydrophobicity, and the resulting 2F5 mutants were tested both for binding to a gp41 epitope peptide and for neutralization of HIV-1. The results showed that the tip of the 2F5 CDR H3 loop, and specifically its hydrophobic nature, is required for 2F5-mediated neutralization of HIV-1 by means that appear to be independent both of gp41 affinity and of isolate-specific sensitivity to neutralization by 2F5.  相似文献   

6.
7.
8.
Human papillomavirus (PV) (HPV) types 2, 27, and 57 are closely related and, hence, represent a promising model system to study the correlation of phylogenetic relationship and immunological distinctiveness of PVs. These HPV types cause a large fraction of cutaneous warts occurring in immunocompromised patients. Therefore, they constitute a target for the development of virus-like particle (VLP)-based vaccines. However, the immunogenic structure of HPV type 2, 27, and 57 capsids has not been studied yet. Here we provide, for the first time, a characterization of the B-cell epitopes on VLPs of cutaneous alpha-HPVs using a panel of 94 monoclonal antibodies (MAbs) generated upon immunization with capsids from HPV types 2, 27, and 57. The MAbs generated were characterized regarding their reactivities with glutathione S-transferase-L1 fusion proteins from 18 different PV types, the nature of their recognized epitopes, their isotypes, and their ability to neutralize HPV type 2, 27, 57, or 16. In total, 33 of the 94 MAbs (35%) showed type-specific reactivity. All type-specific MAbs recognize linear epitopes, most of which map to the hypervariable surface loop regions of the L1 amino acid sequence. Four of the generated MAbs neutralized pseudovirions of the inoculated HPV type efficiently. All four MAbs recognized epitopes within the BC loop, which is required and sufficient for their neutralizing activity. Our data highlight the immunological distinctiveness of individual HPV types, even in comparison to their closest relatives, and they provide a basis for the development of VLP-based vaccines against cutaneous alpha-HPVs.Recently licensed prophylactic vaccines confer efficient protection against infections by human papillomavirus (PV) (HPV) types 16 and 18, thereby aiming to prevent approximately 70% of all cervical cancer cases (17, 39). These vaccines are composed of virus-like particles (VLPs), which spontaneously assemble from the major capsid protein L1 via 72 pentamers (capsomeres) as subunits (2, 23, 26).In the process of vaccine development, monoclonal antibodies (MAbs) proved to be valuable tools for the immunological analysis of recombinantly produced capsids and capsomeres (51) as well as for serological studies (25, 49, 56). Moreover, the identification and characterization of many neutralizing epitopes of HPV types 11 and 16 have been facilitated by the employment of MAbs (6, 11, 30-32, 41, 42, 55). Such epitopes to neutralizing antibodies are mostly conformation dependent, but a few neutralizing MAbs that recognize linear epitopes have also been generated (16, 18). Most neutralizing MAbs are HPV type specific due to the hypervariable nature of their respective epitopes, which typically reside in the surface-exposed loop regions of the L1 protein (10). In contrast, cross-reactive MAbs targeting rather conserved L1 epitopes are generally nonneutralizing.HPV types 2, 27, and 57 are the three members of Alphapapillomavirus species 4 (20). They are very closely related, and HPV types 2 and 27 hardly fulfill the requirement of more than 10% nucleotide variation in the L1 open reading frame to be classified as distinct types (8). Therefore, they represent a promising model system to study the immunological distinctiveness of closely related HPV types. Pathologically, HPV types 2, 27, and 57 infect primarily the cutaneous epithelia, thereby causing common skin warts, which often occur ubiquitously and confluently in immunocompromised patients (1, 24, 28). It is our long-term goal to develop a prophylactic L1 VLP-based vaccine to alleviate the burden provoked by HPV-induced skin lesions in these patients. However, to date, neither the structure nor the immunogenicity of HPV type 2, 27, and 57 capsids has been elucidated.The purpose of the present study was twofold. First, we sought to generate MAbs specific for HPV types 2, 27, and 57 as tools for type-specific diagnostic assays. Second, we aimed to exploit the generated MAbs for an investigation of the B-cell epitopes on capsids of HPV types 2, 27, and 57.  相似文献   

9.
In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.The development of an AIDS vaccine is an ongoing and urgent challenge. One of the major hurdles is that the specific correlates of protection against human immunodeficiency virus (HIV) are still largely unknown. Nonetheless, most agree that the full complement of cellular and humoral components of the immune system will be needed to combat this virus. This is especially true given that the virus resides permanently in its host, infects the very cells needed to direct effective immune responses, and evades the immune system, either by changing in appearance or hiding in subcellular compartments.A broadly reactive neutralizing antibody response is likely to be critical as a first line of defense upon initial HIV exposure by aiding in the clearance of cell-free virions, targeting infected cells for destruction, and preventing viral spread through cell-to-cell transmission. The presence of inhibitory antibodies in highly exposed persistently seronegative individuals testifies to the importance of the humoral response (9, 37). Additionally, broadly neutralizing serum has been associated with healthier prognoses for infected individuals (27, 65) and may be vital for protecting offspring from their infected mothers (7, 79) and preventing superinfection by heterologous HIV strains (23, 84). Even if complete protection cannot be achieved by vaccine-derived antibodies, an early, well-poised and effective neutralizing antibody repertoire may be able to lower the set point of the viral load following the initial burst of viremia, an outcome that has been reported to translate into improved disease outcomes and reduced transmission of HIV (66, 74). Further benefits of neutralizing antibodies have been seen with passive immunization studies in macaques, in which administration of broadly neutralizing monoclonal antibodies (MAbs) has demonstrated that it is possible to provide protection from—and even sterilizing immunity against—HIV infection (5, 51, 66). There is also evidence that such antibodies may provide therapeutic benefits for chronically infected individuals, analogous to benefits realized with anti-HIV drug treatment regimens (87).Despite the promising potential of broadly neutralizing MAbs, designing immunogens that can elicit such cross-reactive neutralizing responses against HIV has been a surprisingly difficult task. Since the majority of the host''s B-cell response is directed against the envelope (Env) glycoproteins, gp120 and gp41, vaccine efforts have concentrated on these proteins and derivatives thereof in approaches ranging from the use of Env-based peptide cocktails to recombinant proteins and DNAs made with varied or consensus sequences and diverse, heterologous prime/protein boost regimens (reviewed in references 36, 58, and 70). These iterative studies have shown notable improvements in the potency and breadth of neutralizing responses induced. However, concerns exist regarding immunogens containing extraneous epitopes, as is the case with intact subunits of Env, and the nature of the immune responses they may elicit. A polyclonal burst of antibodies against a multitude of nonfunctional epitopes may include a predominance of antibodies that are (i) low affinity and/or nonfunctional (reviewed in reference 72); (ii) isolate specific (25); (iii) able to interfere with the neutralizing capabilities of otherwise-effective antibodies (via steric hindrance or by inducing various forms of B-cell pathology) (67); or (iv) directed against irrelevant epitopes instead of more conserved (and sometimes concealed) epitopes that might be able to elicit more potent and cross-reactive neutralizing responses (28, 71, 91).We have developed a system that can be used to present essentially any chosen epitope in a stable, well-exposed manner on the surface of the cold-causing human rhinovirus (HRV). HRV is itself a powerful immunogen and is able to elicit T-cell as well as serum and mucosal B-cell responses (reviewed by Couch [22]) and has minimal immunologic similarity to HIV (data not shown). Chimeric viruses displaying optimal epitopes should be able to serve as valuable components in an effective vaccine cocktail or as part of a heterologous prime/boost protocol. We have shown previously that HRV chimeric viruses displaying HIV-1 gp120 V3 loop sequences are able to elicit neutralizing responses against HIV-1 (75, 82, 83).In this study, we focused our attention on presenting part of the membrane-proximal external region (MPER) of the transmembrane glycoprotein gp41, a region of approximately 30 amino acids adjacent to the transmembrane domain (reviewed in references 59 and 97). The MPER plays an important role in the process of HIV fusion to the host cell membrane (60, 78). This region is also involved in binding to galactosylceramide, an important component of cell membranes, thus permitting CD4-independent transcytosis of the virus across epithelial cells at mucosal surfaces (1, 2). These functions likely explain this region''s sequence conservation and the efficacy of antibodies directed against the MPER (97), particularly given that an estimated 80% of HIV-1 infections are sexually transmitted at mucosal membranes. In fact, potent responses against the MPER are associated with stronger and broader neutralizing capabilities in infected individuals (68). A conserved, contiguous sequence of the MPER, the ELDKWA epitope (HIV-1 HxB2 gp41 residues 662 to 668), is recognized by the particularly broadly neutralizing human MAb 2F5 (11, 62, 85) and is highly resistant to escape mutation in the presence of 2F5 (49). 2F5 was also used in the MAb cocktails reported to confer passive, protective immunity in macaques (5, 51). In addition, infected individuals producing neutralizing antibodies directed against the ELDKWA epitope have been seen to exhibit better health (16, 29), including persistent seronegativity (8), and reduced transmission of HIV to offspring (89). While none of the vaccine-induced immune responses generated against this region has been effective thus far (19, 24, 26, 33, 35, 38, 40, 42, 44-48, 50, 53, 54, 56, 57, 61, 63, 69, 93, 96) (see Table S1 in the supplemental material), more appropriate presentations of MPER epitopes should produce valuable immunogens that can contribute to a successful vaccine.In this study, we have grafted the ELDKWA epitope onto a surface loop of HRV connected via linkers of variable lengths and sequences and selected for viruses well recognized and neutralized by MAb 2F5. In so doing, we have been able to create immunogens capable of eliciting antibodies whose activities mimic some of those of 2F5. The combinatorial libraries produced were designed to encode a large set of possible sequences and, hence, structures from which we could search for valuable conformations. This work illustrates that HRV chimeras have the potential to present selected HIV epitopes in a focused and immunogenic manner.  相似文献   

10.
Dengue viruses (DENV) comprise a family of related positive-strand RNA viruses that infect up to 100 million people annually. Currently, there is no approved vaccine or therapy to prevent infection or diminish disease severity. Protection against DENV is associated with the development of neutralizing antibodies that recognize the viral envelope (E) protein. Here, with the goal of identifying monoclonal antibodies (MAbs) that can function as postexposure therapy, we generated a panel of 82 new MAbs against DENV-3, including 24 highly neutralizing MAbs. Using yeast surface display, we localized the epitopes of the most strongly neutralizing MAbs to the lateral ridge of domain III (DIII) of the DENV type 3 (DENV-3) E protein. While several MAbs functioned prophylactically to prevent DENV-3-induced lethality in a stringent intracranial-challenge model of mice, only three MAbs exhibited therapeutic activity against a homologous strain when administered 2 days after infection. Remarkably, no MAb in our panel protected prophylactically against challenge by a strain from a heterologous DENV-3 genotype. Consistent with this, no single MAb neutralized efficiently the nine different DENV-3 strains used in this study, likely because of the sequence variation in DIII within and between genotypes. Our studies suggest that strain diversity may limit the efficacy of MAb therapy or tetravalent vaccines against DENV, as neutralization potency generally correlated with a narrowed genotype specificity.Dengue viruses (DENV) cause the most common arthropod-borne viral infection in humans worldwide, with ∼50 million to 100 million people infected annually and ∼2.5 billion people at risk (13, 61). Infection by four closely related but serologically distinct viruses of the Flavivirus genus (DENV serotypes 1, 2, 3, and 4 [DENV-1 to -4, respectively]) cause dengue fever (DF), an acute, self-limiting, yet severe, febrile illness, or dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), a potentially fatal syndrome characterized by vascular leakage and a bleeding diathesis. Specific treatment or prevention of dengue disease is supportive, as there is no approved antiviral therapy or vaccine available.DENV has an ∼11-kb, single-stranded, positive-sense RNA genome that is translated into a polyprotein and is cleaved posttranslationally into three structural (envelope [E], pre/membrane [prM], and capsid [C]) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. The three structural proteins encapsidate a single infectious RNA of the DENV genome, whereas the nonstructural proteins have key enzymatic or regulatory functions that promote replication. Additionally, several DENV proteins are multifunctional and modulate cell-intrinsic and cell-extrinsic host immune responses (10).Most flavivirus-neutralizing antibodies recognize the structural E protein (reviewed in reference 40). Based on X-ray crystallographic analysis (32, 33), the DENV E protein is divided into three domains: domain I (DI), which is an 8-stranded β-barrel, domain II (DII), which consists of 12 β-strands, and domain III (DIII), which adopts an immunoglobulin-like fold. Mature DENV virions are covered by 90 antiparallel E protein homodimers, arranged flat along the surface of the virus with quasi-icosahedral symmetry (25). Studies with mouse monoclonal antibodies (MAbs) against DENV-1 and DENV-2 have shown that highly neutralizing anti-DENV antibodies are serotype specific and recognize primarily the lateral-ridge epitope on DIII (15, 49, 53). Additionally, subcomplex-specific MAbs, which recognize some but not all DENV serotypes, recognize a distinct, adjacent epitope on the A β-strand of DIII and also may be inhibitory (16, 28, 42, 53, 56). Complex-specific or flavivirus cross-reactive MAbs recognize epitopes in both DII and DIII and are generally less strongly neutralizing (8, 53).Beyond having genetic complexity (the E proteins of the four distinct serotypes are 72 to 80% identical at the amino acid level), viruses of each serotype can be further divided into closely related genotypes (43, 44, 57). DENV-3 is divided into 4 or 5 distinct genotypes (depending on the study), with up to 4% amino acid variation between genotypes and up to 2% amino acid variation within a genotype (26, 58, 62). The individual genotypes of DENV-3 are separated temporally and geographically (1), with genotype I (gI) strains located in Indonesia, gII strains in Thailand, and gIII strains in Sri Lanka and the Americas. Few examples of strains of gIV and gV exist from samples isolated after 1980 (26, 62). Infection with one DENV serotype is believed to confer long-term durable immunity against strains of the homologous but not heterologous DENV serotypes due to the specificity of neutralizing antibodies and protective CD8+ T cells (45). Indeed, epidemiological studies suggest that a preexisting cross-reactive antibody (7, 24) and/or T cells (34, 35, 64) can enhance the risk of DHF/DSS during challenge with a distinct DENV serotype. Nonetheless, few reports have examined how intergenotypic or even strain variation within a serotype affects the protective efficacy of neutralizing antibodies. This concept is important because the development of tetravalent DENV vaccines with attenuated prototype strains assumes that neutralizing antibody responses, which are lower during vaccination than during natural infection, will protect completely against all genotypes within a given serotype (60). However, a recent study showed markedly disparate neutralizing activities and levels of protection of individual anti-DENV-1 MAbs against different DENV-1 genotypes (49).Herein, we developed a panel of 82 new DENV-3 MAbs and examined their cross-reactivities, epitope specificities, neutralization potential at the genotype level in cell culture, and protective capacities in vivo. The majority of strongly neutralizing MAbs in this panel mapped to specific sites in DIII of the E protein. Remarkably, because of the scale of the sequence variation of DENV-3 strains, most of the protective antibodies showed significant strain specificity in their functional profiles.  相似文献   

11.
Most antibodies are multivalent, with the potential to bind with high avidity. However, neutralizing antibodies commonly bind to virions monovalently. Bivalent binding of a monoclonal antibody (MAb) to a virion has been documented only in a single case. Thus, the role of high avidity in antibody-mediated neutralization of viruses has not been defined clearly. In this study, we demonstrated that when an artificial 2F5 epitope was inserted in the gp120 V4 region so that an HIV-1 envelope glycoprotein (Env) trimer contains a natural 2F5 epitope in the gp41 membrane-proximal envelope region (MPER) and an artificially engineered 2F5 epitope in the gp120 V4 region, bivalent 2F5 IgG achieved greatly enhanced neutralization efficiency, with a 50% inhibitory concentration (IC50) decrease over a 2-log scale. In contrast, the monovalent 2F5 Fab fragment did not exhibit any appreciable change in neutralization efficiency in the same context. These results demonstrate that bivalent binding of 2F5 IgG to a single HIV-1 Env trimer results in dramatic enhancement of neutralization, probably through an increase in binding avidity. Furthermore, we demonstrated that bivalent binding of MAb 2F5 to the V4 region and MPER of an HIV-1 Env trimer can be achieved only in a specific configuration, providing an important insight into the structure of a native/infectious HIV-1 Env trimer. This specific binding configuration also establishes a useful standard that can be applied to evaluate the biological relevance of structural information on the HIV-1 Env trimer.Immunoglobulin molecules have multiple binding paratopes for antigens; for example, those for IgG1 are bivalent and those for IgM are dodecavalent. It is obvious that multivalent binding is required for the distinct mechanism of neutralization by cross-linking multiple virions to form virus aggregates (reviewed in references 7 and 67). Despite the potential of antibodies for multivalent binding, structural evidence indicates that neutralizing antibodies often bind to an individual virion in a monovalent fashion (19, 20, 27, 29, 50, 53; reviewed in references 12 and 22). Bivalent binding of an antibody to a virion has been documented with clear structural evidence in only one case, in which monoclonal antibodies (MAbs) 17-IA and 8F5 bind to virions of human rhinovirus 14 (HRV14) and HRV2 (19, 43). Even in this unique case, binding bivalency appears to contribute to the neutralization potency of 17-IA but not to that of 8F5 (19, 42, 43). Moreover, these MAbs bind to two hydrophobic canyon structures formed by viral proteins VP1 and VP2 and not to antigenic epitopes within individual viral capsid protomers; thus, this case may represent an exception to the common form of antibody/antigen interactions in which the antibodies bind to individual antigens. Therefore, it is not clear what role antibody-binding multivalency plays in antibody-mediated neutralization of viruses at the level of interaction between antibody molecules and individual virions.The binding affinity of an antibody to its target is defined by intrinsic affinity and avidity (reviewed in reference 16). Intrinsic affinity is the force of monovalent binding between an antibody paratope and an antigenic epitope, often measured by binding a Fab fragment to an antigen. Avidity is the additive or synergistic force of engaging multiple antibody paratope/antigen epitope pairs between one antibody and one antigen. In other words, avidity is a functional consequence of antibody-binding multivalency. The effect of avidity on affinity is readily demonstrated in biochemical reactions such as enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), in which high-density antigenic sites are available without distinct spatial restrictions. It is commonly assumed that both affinity and avidity have functional consequences in antibody-mediated neutralization of viruses (reviewed in references 7 and 67). At the level of individual virions, the contribution of antibody-binding avidity to neutralization efficiency is often based on two types of experiments. In one, results from a side-by-side comparison between an antibody and its Fab fragment are often reported as evidence supporting a role of antibody-binding multivalency in virus neutralization. However, the interpretation of this type of experiment is complicated by the size difference between an antibody and a Fab fragment, since steric hindrance is a major mechanism of neutralization (reviewed in references 6 and 23). In a second type of experiment, a correlation between neutralization efficiency and the ability of the antibody/virus complex to resist chemical stress without dissociation in the presence of a high concentration of salt in solution is interpreted to support a contributing effect from antibody-binding avidity to neutralization efficiency (2, 21, 36, 49, 51). Data from this type of experiment are limited mostly to measuring binding affinity that is below the affinity required for virus neutralization. Furthermore, these studies often do not distinguish between avidity effects caused by an antibody binding to two (or more) epitopes on one antigen or to multiple epitopes from different molecules on the virion. Therefore, like the situation with antibody-binding multivalency, it remains unclear whether binding avidity contributes to antibody-mediated neutralization of viruses at the level of individual virions.The envelope glycoproteins (Envs) of human immunodeficiency virus type 1 (HIV-1) exist on the virion or cell surface as trimers of gp120 and gp41 heterodimers (13, 30, 62, 65). High-resolution structural information for a native HIV-1 Env trimer is critically important for understanding the function of HIV-1 Envs as well as for guiding the development of an effective immunogen to elicit broad and potent neutralizing antibody responses. X-ray crystal structures of the gp41 ectodomain fragments in the postfusion conformation have been resolved; however, a high-resolution structure of gp41 in the prefusion conformation is still unavailable and likely will be more informative for understanding the function of HIV-1 Env trimers (9, 47, 52). Two X-ray crystal structures of the gp120 core in both the CD4-liganded and unliganded conformations have been solved, but the biological meanings of these structures, especially how they are related to the native, functional Env trimer, are still being debated (10, 26). Several low-resolution structures of the Env trimers from HIV-1 or the closely related simian immunodeficiency virus (SIV) have been determined using cryoelectron microscopy (cryo-EM) tomography (4, 30, 62, 64, 65, 66). The predicted structures for the Env trimer are in general quite different between the two studies, and the difference is particularly dramatic around the gp41 membrane-proximal external region (MPER). A high-resolution structure of the native HIV-1 Env trimer is needed to resolve these differences. In the meantime, a distinctive standard needs to be developed for evaluating the biological relevance of structural information of an HIV-1 Env trimer.Our previous studies of the stoichiometry of antibody-mediated neutralization of HIV-1 Env indicated that MAbs b12, 2G12, and 2F5 neutralize by a stoichiometry designated T=1, i.e., one antibody binds to and neutralizes one HIV-1 Env trimer (57). Furthermore, when an artificial epitope (FLAG) was inserted in the V4 region of HIV-1 gp120, an epitope-specific anti-FLAG MAb achieved neutralization by the mechanism of steric hindrance (37, 61). Using the well-defined 2F5 neutralizing epitope as a model system (35, 39, 45), we constructed HIV-1 Env proteins carrying one 2F5 epitope in the gp120 V4 region and another 2F5 epitope in the gp41 MPER. Here, we investigated whether binding bivalency leads to enhancement in neutralization efficiency. By studying the detailed requirement for binding bivalency, we also probed the structure of the native, functional HIV-1 Env trimer, aiming to establish a standard that can be employed to evaluate the biological relevance of structural information on the HIV-1 Env trimer.  相似文献   

12.
13.
14.
Nearly all livers transplanted into hepatitis C virus (HCV)-positive patients become infected with HCV, and 10 to 25% of reinfected livers develop cirrhosis within 5 years. Neutralizing monoclonal antibody could be an effective therapy for the prevention of infection in a transplant setting. To pursue this treatment modality, we developed human monoclonal antibodies (HuMAbs) directed against the HCV E2 envelope glycoprotein and assessed the capacity of these HuMAbs to neutralize a broad panel of HCV genotypes. HuMAb antibodies were generated by immunizing transgenic mice containing human antibody genes (HuMAb mice; Medarex Inc.) with soluble E2 envelope glycoprotein derived from a genotype 1a virus (H77). Two HuMAbs, HCV1 and 95-2, were selected for further study based on initial cross-reactivity with soluble E2 glycoproteins derived from genotypes 1a and 1b, as well as neutralization of lentivirus pseudotyped with HCV 1a and 1b envelope glycoproteins. Additionally, HuMAbs HCV1 and 95-2 potently neutralized pseudoviruses from all genotypes tested (1a, 1b, 2b, 3a, and 4a). Epitope mapping with mammalian and bacterially expressed proteins, as well as synthetic peptides, revealed that HuMAbs HCV1 and 95-2 recognize a highly conserved linear epitope spanning amino acids 412 to 423 of the E2 glycoprotein. The capacity to recognize and neutralize a broad range of genotypes, the highly conserved E2 epitope, and the fully human nature of the antibodies make HuMAbs HCV1 and 95-2 excellent candidates for treatment of HCV-positive individuals undergoing liver transplantation.Hepatitis C virus (HCV) is a major cause of liver failure and infects more than 170 million people worldwide. HCV is a member of the Flaviviridae family and contains a 9.6-kb positive-strand RNA genome. The genome is translated into a single polypeptide that is cleaved by viral and cellular proteases into at least nine different proteins. The major HCV surface glycoproteins, E1 and E2, form a noncovalent heterodimer on the virion surface (23) and are believed to mediate viral entry via a complex set of poorly understood interactions with cellular coreceptors, including CD81 (28), claudin-1 (8), occludin (29), scavenger receptor class B type I (30), and others (38). The E2 glycoprotein has been shown to interact directly with receptors (38); currently, no function has been assigned to E1, although it is known to be required for viral infection. These viral glycoproteins provide an obvious target for neutralizing monoclonal antibodies (MAbs).Isolation of potently neutralizing HCV-specific MAbs has been complicated by the lack of an in vitro cell culture system to study the full infection cycle of the virus. Recently, systems have been developed that allow for the generation of infectious viral particles, highlighting the importance of E1 and E2 in viral binding and entry. A novel in vitro infection system employs HCV pseudotyped viral particles (HCVpp) generated from a lentivirus that are devoid of native glycoproteins and engineered to contain HCV glycoproteins E1 and E2 (4, 15). HCVpp specifically infect cell lines derived from human liver cells and can be neutralized by polyclonal and MAbs directed against the HCV envelope glycoproteins.HCVpp have allowed the identification of antibodies that can neutralize HCV infection in cell culture. E1 has proven to be a difficult target for MAb-mediated neutralization, possibly because it appears to have low immunogenicity (32), has no identified binding proteins on the cell surface, and has an undefined role in cell entry. Despite this challenge, two groups have identified HCV neutralizing MAbs directed to E1: these MAbs are H-111, which has moderate neutralizing activity (17), and the recently isolated IGH505 and IGH526, which neutralize numerous HCV genotypes (1a, 1b, 2a, 4a, 5a, and 6a but not 2b and 3a) (22). Although they are predicted to inhibit viral binding or fusion, the mechanism by which these E1-directed MAbs neutralize HCV infection is unclear.A diverse group of mouse anti-E2 antibodies, recognizing both linear and discontinuous epitopes, has been generated. Many of these MAbs showed broad neutralization of multiple HCV genotypes, but not surprisingly, several HCV isolates were refractory to neutralization. In contrast, AP33, a mouse MAb that largely recognizes a highly conserved linear epitope in the N terminus of E2 (amino acids 412 to 423), was identified as a broadly cross-reactive antibody that neutralized strains from all genotypes tested (1a, 1b, 2a, 2b, 3a, 4, 5, and 6), with the exception of one genotype 5 virus (UKN5.14.4; GenBank accession no. AY894682) (24). Recently, several cross-reactive neutralizing MAbs have been identified that are of human origin and have the capacity to neutralize a significant fraction of the genotypes tested (1, 5, 12, 13, 27, 31) or to neutralize all genotypes tested (16, 20, 25). As with the vast majority of previously described human MAbs (HuMAbs), these MAbs recognize conformation-dependent epitopes of E2. One broadly neutralizing human antibody, AR3B, was tested in a mouse model of infection and showed significant protection from viremia (20). Given the known function of the E2 envelope glycoprotein, the high level of immunogenicity, the surface vulnerability, and the abundance of data pertaining to E2 and HCV neutralization, E2 provides a promising target for the development of fully human neutralizing antibodies.Liver deterioration due to HCV infection is the leading reason for liver transplantation in the United States. Unfortunately, it is highly likely that the transplanted liver will also become infected with HCV, and 10 to 25% of these patients develop cirrhosis within 5 years of transplant (9, 40). Here we describe the characterization of HuMAbs directed against the HCV E2 envelope glycoprotein, generated using transgenic mice. Based on epitope conservation and broad neutralization capacity, HuMAbs HCV1 and 95-2 provide excellent candidates for prevention of graft reinfection of HCV-infected individuals undergoing liver transplantation.  相似文献   

15.
16.
Human 4E10 is one of the broadest-specificity, HIV-1-neutralizing monoclonal antibodies known, recognizing a membrane-proximal linear epitope on gp41. The lipid cross-reactivity of 4E10 has been alternately suggested either to contribute to the apparent rarity of 4E10-like antibody responses in HIV infections, through elimination by B-cell tolerance mechanisms to self-antigens, or to contribute to neutralization potency by virus-specific membrane binding outside of the membrane-proximal external region (MPER). To investigate how 4E10 interacts with membrane and protein components, and whether such interactions contribute to neutralization mechanisms, we introduced two mutations into 4E10 Fv constructs, Trp to Ala at position 100 in the heavy chain [W(H100)A] and Gly to Glu at position 50 in the light chain [G(L50)E], selected to disrupt potential lipid interactions via different mechanisms. Wild-type and mutant Fvs all bound with the same affinity to peptides and monomeric and trimeric gp140s, but the affinities for gp140s were uniformly 10-fold weaker than to peptides. 4E10 Fv binding responses to liposomes in the presence or absence of MPER peptides were weak in absolute terms, consistent with prior observations, and both mutations attenuated interactions even further, as predicted. The W(H100)A mutation reduced neutralization efficiency against four HIV-1 isolates, but the G(L50)E mutation increased potency across the same panel. Electron paramagnetic resonance experiments showed that the W(H100)A mutation, but not the G(L50)E mutation, reduced the ability of 4E10 to extract MPER peptides from membranes. These results show that 4E10 nonspecific membrane binding is separable from neutralization, which is achieved through specific peptide/lipid orientation changes.Few of the hundreds of known neutralizing anti-HIV monoclonal antibodies (MAbs) display broad cross-reactive activities (4). Of those derived from clade B-infected patients, b12 binds to the gp120 subunit of the HIV envelope protein (Env), to an epitope that overlaps the CD4 binding site, and neutralizes approximately 50% of virus isolates tested, including non-clade B viruses (27). 2G12 binds to N-linked carbohydrates on gp120 (32, 34) and neutralizes 41% of isolates tested, although not clade C or E isolates. 447-52D also binds to the gp120 subunit, to an epitope within the V3 loop, and potently neutralizes up to 45% of clade B isolates but rarely non-clade B isolates. 4E10 and 2F5 recognize adjacent epitopes located at the membrane-proximal external region (MPER) of the gp41 Env subunit (9, 22, 24, 28, 42). Two neutralizing antibodies (NAbs) isolated from a clade A-infected patient (PG9 and PG16) show broad and potent neutralizing activity by recognizing epitopes consisting of conserved regions of the V2 and V3 loops of gp120, preferentially on native trimers (40).4E10 is capable of neutralizing all isolates tested at some level (4), although there is evidence for the existence of rare viruses that are resistant to 4E10 neutralization (30). The exact structure of the epitope recognized by 4E10 within the trimeric, functional HIV Env is unknown, but structural studies have shown that an isolated peptide spanning the epitope adopts a helical conformation, a short 310 segment followed by a 413 (or true α-helical) segment, with an extended structure at the N terminus when bound to 4E10 (9). It has also been reported that 4E10 interacts with a variety of lipids and membrane components, particularly the phospholipid cardiolipin (15), suggesting that difficulties in eliciting 4E10-like broadly neutralizing antibodies by immunization and the apparent rarity of 4E10-like antibody responses in HIV-1-infected subjects (19, 33) are linked to this polyspecificity to autoantigens, contributing to their elimination through tolerance mechanisms. However, subsequent studies have shown that the measurable, but quite weak, affinity of 4E10 for certain lipids is comparable to that of some antiphospholipid antibodies elicited during many infections, suggesting that 4E10 is not remarkably autoreactive (35). Therefore, it is still unclear whether lipid binding properties are linked to the rarity of 4E10-like specificities. It has also been proposed that the neutralizing activity of 4E10 may partly depend on lipid binding, either through interactions with viral membrane lipids that disturb the membrane-bound structure of the MPER on the trimeric, virion-associated Env spike (39) or through an encounter model. In the latter, initial interactions with membrane components align 4E10 with its protein epitope or allow 4E10 to gain proximity to its epitope (1), perhaps partially alleviating steric occlusion effects (for example, see reference 17). We sought to determine whether specific interactions exist between 4E10 and membrane lipid components and whether such interactions meaningfully contribute to neutralization by any mechanism.  相似文献   

17.
Cell culture-adaptive mutations within the hepatitis C virus (HCV) E2 glycoprotein have been widely reported. We identify here a single mutation (N415D) in E2 that arose during long-term passaging of HCV strain JFH1-infected cells. This mutation was located within E2 residues 412 to 423, a highly conserved region that is recognized by several broadly neutralizing antibodies, including the mouse monoclonal antibody (MAb) AP33. Introduction of N415D into the wild-type (WT) JFH1 genome increased the affinity of E2 to the CD81 receptor and made the virus less sensitive to neutralization by an antiserum to another essential entry factor, SR-BI. Unlike JFH1WT, the JFH1N415D was not neutralized by AP33. In contrast, it was highly sensitive to neutralization by patient-derived antibodies, suggesting an increased availability of other neutralizing epitopes on the virus particle. We included in this analysis viruses carrying four other single mutations located within this conserved E2 region: T416A, N417S, and I422L were cell culture-adaptive mutations reported previously, while G418D was generated here by growing JFH1WT under MAb AP33 selective pressure. MAb AP33 neutralized JFH1T416A and JFH1I422L more efficiently than the WT virus, while neutralization of JFH1N417S and JFH1G418D was abrogated. The properties of all of these viruses in terms of receptor reactivity and neutralization by human antibodies were similar to JFH1N415D, highlighting the importance of the E2 412-423 region in virus entry.Hepatitis C virus (HCV), which belongs to the Flaviviridae family, has a positive-sense single-stranded RNA genome encoding a polyprotein that is cleaved by cellular and viral proteases to yield mature structural and nonstructural proteins. The structural proteins consist of core, E1 and E2, while the nonstructural proteins are p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B (42). The hepatitis C virion comprises the RNA genome surrounded by the structural proteins core (nucleocapsid) and E1 and E2 (envelope glycoproteins). The HCV glycoproteins lie within a lipid envelope surrounding the nucleocapsid and play a major role in HCV entry into host cells (21). The development of retrovirus-based HCV pseudoparticles (HCVpp) (3) and the cell culture infectious clone JFH1 (HCVcc) (61) has provided powerful tools to study HCV entry.HCV entry is initiated by the binding of virus particles to attachment factors which are believed to be glycosaminoglycans (2), low-density lipoprotein receptor (41), and C-type lectins such as DC-SIGN and L-SIGN (12, 37, 38). Upon attachment at least four entry factors are important for particle internalization. These include CD81 (50), SR-BI (53) and the tight junction proteins claudin-1 (15) and occludin (6, 36, 51).CD81, a member of the tetraspanin family, is a cell surface protein with various functions including tissue differentiation, cell-cell adhesion and immune cell maturation (34). It consists of a small and a large extracellular loop (LEL) with four transmembrane domains. Viral entry is dependent on HCV E2 binding to the LEL of CD81 (3, 50). The importance of HCV glycoprotein interaction with CD81 is underlined by the fact that many neutralizing antibodies compete with CD81 and act in a CD81-blocking manner (1, 5, 20, 45).SR-BI is a multiligand receptor expressed on liver cells and on steroidogenic tissue. It binds to high-density lipoproteins (HDL), low-density lipoproteins (LDL), and very low-density lipoproteins (VLDL) (31). The SR-BI binding site is mapped to the hypervariable region 1 (HVR-1) of HCV E2 (53). SR-BI ligands, such as HDL and oxidized LDL have been found to affect HCV infectivity (4, 14, 58-60). Indeed, HDL has been shown to enhance HCV infection in an SR-BI-dependent manner (4, 14, 58, 59). Antibodies against SR-BI and knockdown of SR-BI in cells result in a significant inhibition of viral infection in both the HCVpp and the HCVcc systems (5, 25, 32).Although clearly involved in entry and immune recognition, the more downstream function(s) of HCV glycoproteins are poorly understood, as their structure has not yet been solved. Nonetheless, mutational analysis and mapping of neutralizing antibody epitopes have delineated several discontinuous regions of E2 that are essential for HCV particle binding and entry (24, 33, 45, 47). One of these is a highly conserved sequence spanning E2 residues 412 to 423 (QLINTNGSWHIN). Several broadly neutralizing monoclonal antibodies (MAbs) bind to this epitope. These include mouse monoclonal antibody (MAb) AP33, rat MAb 3/11, and the human MAbs e137, HCV1, and 95-2 (8, 16, 44, 45, 49). Of these, MAbs AP33, 3/11, and e137 are known to block the binding of E2 to CD81.Cell culture-adaptive mutations within the HCV glycoproteins are valuable for investigating the virus interaction(s) with cellular receptors (18). In the present study, we characterize an asparagine-to-aspartic acid mutation at residue 415 (N415D) in HCV strain JFH1 E2 that arose during the long-term passaging of infected human hepatoma Huh-7 cells. Alongside N415D, we also characterize three adjacent cell culture adaptive mutations reported previously and a novel substitution generated in the present study by propagating virus under MAb AP33 selective pressure to gain further insight into the function of this region of E2 in viral infection.  相似文献   

18.
19.
West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing mouse monoclonal antibodies (MAbs) recognize an epitope on the lateral ridge of domain III (DIII-lr) of the envelope (E) protein. However, studies with serum from human patients show that antibodies against the DIII-lr epitope comprise, at best, a minor component of the human anti-WNV antibody response. Herein, we characterize in detail two WNV-specific human MAbs, CR4348 and CR4354, that were isolated from B-cell populations of convalescent patients. These MAbs strongly neutralize WNV infection of cultured cells, protect mice against lethal infection in vivo, and yet poorly recognize recombinant forms of the E protein. Instead, CR4348 and CR4354 bind determinants on intact WNV virions and subviral particles in a pH-sensitive manner, and neutralization is altered by mutations at the dimer interface in domain II and the hinge between domains I and II, respectively. CR4348 and CR4354 human MAbs neutralize infection at a postattachment step in the viral life cycle, likely by inhibiting acid-induced fusion within the endosome.West Nile encephalitis virus (WNV) is a positive-polarity, single-stranded RNA virus of the genus Flavivirus within the family Flaviviridae. Other members of this genus that cause significant human disease include dengue virus (DENV), St. Louis encephalitis virus, Japanese encephalitis virus (JEV), yellow fever virus, and tick-borne encephalitis virus (TBEV). Flaviviruses are translated as a single polypeptide, which is then cleaved by host and viral proteases into three structural (capsid [C], premembrane [prM], and envelope [E]) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins (reviewed in references 42 and 43).WNV cycles in nature between several species of birds and Culex mosquitoes, with humans and other mammals as dead-end hosts (25, 62). Infection causes syndromes ranging from a mild febrile illness to severe encephalitis and death (13, 72). WNV has spread globally and causes outbreaks with thousands of severe human cases annually in the United States. An age of greater than 55 years, a compromised immune status, and a CC5Δ32 genotype have been associated with more-severe disease (15, 20). There is currently no approved vaccine or therapy for WNV infection.The mature WNV virion has a ∼500-Å diameter and consists of a single RNA genome surrounded by the capsid protein, a lipid bilayer, and a shell of the prM/M and E proteins (31, 55). X-ray crystallography studies have elucidated the three-domain structure of the flavivirus E protein (30, 48, 50, 58, 67). Domain I (DI) is a central, eight-stranded β-barrel, which contains the only N-linked glycosylation site in WNV E. Domain II (DII) is a long, finger-like protrusion from DI and contains the highly conserved fusion peptide at its distal end. Domain III (DIII) adopts an immunoglobulin-like fold at the opposite end of DI and is believed to contain a site for receptor attachment (6, 8, 40).Within an infected cell, progeny WNV are assembled initially as immature particles. In immature virions, three pairs of E and prM interact as trimers and form 60 spiked projections with icosahedral symmetry (85, 86). Exposure to mildly acidic conditions in the trans-Golgi secretory pathway promotes virus maturation through a structural rearrangement of the E proteins and cleavage of prM to M by a furin-like protease (41, 83). Mature WNV virions are covered by 90 antiparallel E protein homodimers, which are arranged flat along the surface in a herringbone pattern with quasi-icosahedral symmetry (55).Upon binding to poorly characterized cell surface receptors, internalization of WNV is believed to occur through receptor-mediated, clathrin-dependent endocytosis (1, 79, 80). After trafficking to Rab5- and/or Rab7-positive endosomes (38, 79), the mildly acidic pH within the lumen of the endosome induces structural alterations in the flavivirus E protein (7, 49), which includes changes in its oligomeric state (7, 49, 77). During this process, also known as type II fusion, the hydrophobic peptide on the fusion loop of DII of the E protein inserts into the endosomal membrane, thus physically joining the host and viral membranes, which allows the infectious RNA genome to enter the cytoplasm (32, 33).Humoral immunity is an essential component of the protective host response against flaviviruses including WNV (reviewed in references 64 and 68). Studies by several groups have shown that the neutralization of WNV can occur after antibodies bind to a series of discrete epitopes on all three domains of the E protein (3, 12, 22, 59, 61, 71). To date, the most potently neutralizing monoclonal antibodies (MAbs) localize to an epitope on the lateral ridge of DIII (DIII-lr). One well-characterized strongly neutralizing mouse MAb, E16, blocks infection primarily at a postattachment step (57) and requires the engagement of only a fraction of its epitopes on the surface of the virion (66). Studies of the human antibody response to WNV infection reveal that, in contrast to mice, antibodies that bind the DIII-lr epitope comprise a minor component of the neutralizing humoral response in most individuals (60).In this study, we characterized two strongly neutralizing novel human MAbs (CR4348 and CR4354) that were selected from an antibody phage display library constructed from B cells of subjects that survived WNV infection (78). We demonstrate that both MAbs are WNV specific, bind weakly to recombinant or yeast surface-displayed E proteins, exhibit pH-sensitive binding to viral particles, and protect against lethal infection in mice. Our experiments suggest that these human MAbs map to distinct epitopes and neutralize infection at a postattachment stage, likely by inhibiting the acid-catalyzed viral fusion step.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号