首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The flagellar hook is a short, curved, extracellular structure located between the basal body and the filament. The hook is composed of the FlgE protein. In this study, we analyzed flagellum assembly in a temperature-sensitive flgE mutant of Salmonella enterica serovar Typhimurium. When the mutant cells were grown at 30°C, they produced flagella of a normal length (71% of the population) and short hooks without filaments (26%). At 37°C, 70% of the basal bodies lacked hooks, and intact flagella made up only 6% of the population. Mutant cells secreted monomeric FlgE in abundance at 37°C, suggesting that the mutant FlgE protein might be defective in polymerization at higher temperatures. The average length of the hooks in intact filaments was 55 nm, whereas after acid treatment, it was 45 nm. SDS-PAGE analysis of the hook-basal body showed that HAP1 was missing in the mutant but not in the wild type. We concluded that hook length in the mutant is controlled in the same way as in the wild type, but the hook appeared short after acid treatment due to the lack of HAP1. We also learned that the true length of the hook is possibly 45 nm, not 55 nm, as has been believed.  相似文献   

2.
The length of the flagellar hook is controlled by the soluble protein FliK. FliK is structurally divided into two halves with distinct functions; the N-terminal half determines hook length, while the C-terminal half switches the secretion substrate specificity, consequently terminating hook elongation. FliK properly achieves both functions only when it is secreted. In a previous paper, we showed that a temperature-sensitive flgE mutant of Salmonella enterica serovar Typhimurium, SJW2219, produced basal bodies with short hooks (average length, 25 nm) at 37°C. In this study, we show that the mutant cells grown at 37°C secrete FliK but not flagellin (FliC), indicating that FliK is abortively secreted into the medium when the hook is shorter than 30 nm. In contrast, FliK unfailingly switches the gate modes when the hook is longer than 30 nm. Taking the FliC, FliK, and FlgM secretion patterns into account, we conclude that FliK determines the minimal length of the hook. We will discuss how FliK detects the critical switching point of the secretion gate.  相似文献   

3.
4.
The flagellar hook of Salmonella is a filamentous polymer made up of subunits of the protein FlgE. Hook assembly is terminated when the length reaches about 55 nm. After our recent study of the effect of cellular levels of the hook length control protein FliK, we have now analyzed the effect of cellular levels of FlgE itself. When FlgE was overproduced in a wild-type strain, a fliC (flagellin) mutant, or a fliD (hook-associated protein 2 [HAP2], filament capping protein) mutant, the hooks remained at the wild-type length. In a fliK (hook length control protein) mutant, which produces long hooks (polyhooks), the overproduction of FlgE resulted in extraordinarily long hooks (superpolyhooks). In a flgK (HAP1, first hook-filament junction protein) mutant or a flgL (HAP3, second hook-filament junction protein) mutant, the overproduction of FlgE also resulted in longer than normal hooks. Thus, at elevated hook protein levels not only FliK but also FlgK and FlgL are necessary for the proper termination of hook elongation. When FlgE was severely underproduced, basal bodies without hooks were often observed. However, those hooks that were seen were of wild-type length, demonstrating that FlgE underproduction decreases the probability of the initiation of hook assembly but not the extent of hook elongation.  相似文献   

5.
6.
7.
The Salmonella enterica opvAB operon is a horizontally-acquired locus that undergoes phase variation under Dam methylation control. The OpvA and OpvB proteins form intertwining ribbons in the inner membrane. Synthesis of OpvA and OpvB alters lipopolysaccharide O-antigen chain length and confers resistance to bacteriophages 9NA (Siphoviridae), Det7 (Myoviridae), and P22 (Podoviridae). These phages use the O-antigen as receptor. Because opvAB undergoes phase variation, S. enterica cultures contain subpopulations of opvABOFF and opvABON cells. In the presence of a bacteriophage that uses the O-antigen as receptor, the opvABOFF subpopulation is killed and the opvABON subpopulation is selected. Acquisition of phage resistance by phase variation of O-antigen chain length requires a payoff: opvAB expression reduces Salmonella virulence. However, phase variation permits resuscitation of the opvABOFF subpopulation as soon as phage challenge ceases. Phenotypic heterogeneity generated by opvAB phase variation thus preadapts Salmonella to survive phage challenge with a fitness cost that is transient only.  相似文献   

8.
9.
Salmonella enterica serovar Enteritidis (SE) infection in humans is often associated with the consumption of contaminated poultry products. Binding of the bacterium to the intestinal mucosa is a major pathogenic mechanism of Salmonella in poultry. Transposon mutagenesis identified flgC as a potential binding mutant of SE. Therefore, we hypothesize FlgC which plays a significant role in the binding ability of SE to the intestinal mucosa of poultry. To test our hypothesis, we created a mutant of SE in which flgC was deleted. We then tested the in vitro and in vivo binding ability of ?flgC when compared to the wild-type SE strain. Our data showed a significant decrease in the binding ability of ?flgC to intestinal epithelial cells as well as in the small intestine and cecum of poultry. Furthermore, the decrease in binding correlated to a defect in invasion as shown by a cell culture model using intestinal epithelial cells and bacterial recovery from the livers and spleens of chickens. Overall, these studies indicate FlgC is a major factor in the binding ability of Salmonella to the intestinal mucosa of poultry.  相似文献   

10.
The bacterial flagellum contains its own type III secretion apparatus that coordinates protein export with assembly at the distal end. While many interactions among export apparatus proteins have been reported, few have been examined with respect to the differential affinities and dynamic relationships that must govern the mechanism of export. FlhB, an integral membrane protein, plays critical roles in both export and the substrate specificity switching that occurs upon hook completion. Reported herein is the quantitative characterization of interactions between the cytoplasmic domain of FlhB (FlhBC) and other export apparatus proteins including FliK, FlhAC and FliI. FliK and FlhAC bound with micromolar affinity. KD for FliI binding in the absence of ATP was 84 nM. ATP-induced oligomerization of FliI induced kinetic changes, stimulating fast-on, fast-off binding and lowering affinity. Full length FlhB purified under solubilizing, nondenaturing conditions formed a stable dimer via its transmembrane domain and stably bound FliH. Together, the present results support the previously hypothesized central role of FlhB and elucidate the dynamics of protein-protein interactions in type III secretion.  相似文献   

11.
Anomalous Homology of Flagellar Phases in Salmonella   总被引:2,自引:0,他引:2       下载免费PDF全文
Tetsuo Iino 《Genetics》1961,46(11):1471-1474
  相似文献   

12.
13.
Flagellar assembly requires coordination between the assembly of axonemal proteins and the assembly of the flagellar membrane and membrane proteins. Fully grown steady-state Chlamydomonas flagella release flagellar vesicles from their tips and failure to resupply membrane should affect flagellar length. To study vesicle release, plasma and flagellar membrane surface proteins were vectorially pulse-labeled and flagella and vesicles were analyzed for biotinylated proteins. Based on the quantity of biotinylated proteins in purified vesicles, steady-state flagella appeared to shed a minimum of 16% of their surface membrane per hour, equivalent to a complete flagellar membrane being released every 6 hrs or less. Brefeldin-A destroyed Chlamydomonas Golgi, inhibited the secretory pathway, inhibited flagellar regeneration, and induced full-length flagella to disassemble within 6 hrs, consistent with flagellar disassembly being induced by a failure to resupply membrane. In contrast to membrane lipids, a pool of biotinylatable membrane proteins was identified that was sufficient to resupply flagella as they released vesicles for 6 hrs in the absence of protein synthesis and to support one and nearly two regenerations of flagella following amputation. These studies reveal the importance of the secretory pathway to assemble and maintain full-length flagella.  相似文献   

14.
Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby strains isolated from different seafood were genotyped by PCR-ribotyping and ERIC-PCR assays. This study has ascertained the genetic relatedness among serovars prevalent in tropical seafood. PCR-ribotyping exhibited genetic variation in both Salmonella serovars, and ribotype profile (II) was most predominant, which was observed in 10/18 of Salmonella enterica subsp. enterica Typhimurium and 7/17 Salmonella enterica subsp. enterica Derby isolates. Cluster analysis of ERIC-PCR for Salmonella enterica subsp. enterica Typhimurium strains exhibited nine different banding patterns and four strains showed >95% genetic homology within the cluster pairs. ERIC-PCR produced more genetic variations in Salmonella enterica subsp. enterica Typhimurium; nevertheless, both methods were found to be comparable for Salmonella enterica subsp. enterica Derby isolates. Discrimination index of PCR-ribotyping for Salmonella enterica subsp. enterica Typhimurium isolates was obtained at 0.674 and index value 0.714 was observed for Salmonella enterica subsp. enterica Derby strains. Molecular fingerprinting investigation highlighted the hypothesis of diverse routes of Salmonella contamination in seafood as multiple clones of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby were detected in same or different seafood throughout the study period.  相似文献   

15.
16.
17.
18.
The methylation of DNA bases plays an important role in numerous biological processes including development, gene expression, and DNA replication. Salmonella is an important foodborne pathogen, and methylation in Salmonella is implicated in virulence. Using single molecule real-time (SMRT) DNA-sequencing, we sequenced and assembled the complete genomes of eleven Salmonella enterica isolates from nine different serovars, and analysed the whole-genome methylation patterns of each genome. We describe 16 distinct N6-methyladenine (m6A) methylated motifs, one N4-methylcytosine (m4C) motif, and one combined m6A-m4C motif. Eight of these motifs are novel, i.e., they have not been previously described. We also identified the methyltransferases (MTases) associated with 13 of the motifs. Some motifs are conserved across all Salmonella serovars tested, while others were found only in a subset of serovars. Eight of the nine serovars contained a unique methylated motif that was not found in any other serovar (most of these motifs were part of Type I restriction modification systems), indicating the high diversity of methylation patterns present in Salmonella.  相似文献   

19.
20.
Bile-induced DNA damage in Salmonella enterica   总被引:4,自引:0,他引:4  
In the absence of DNA adenine methylase, growth of Salmonella enterica serovar Typhimurium is inhibited by bile. Mutations in any of the mutH, mutL, and mutS genes suppress bile sensitivity in a Dam background, indicating that an active MutHLS system renders Dam mutants bile sensitive. However, inactivation of the MutHLS system does not cause bile sensitivity. An analogy with Escherichia coli, in which the MutHLS system sensitizes Dam mutants to DNA-injuring agents, suggested that bile might cause DNA damage. In support of this hypothesis, we show that bile induces the SOS response in S. enterica and increases the frequency of point mutations and chromosomal rearrangements. Mutations in mutH, mutL, or mutS cause partial relief of virulence attenuation in a Dam background (50- to 100-fold by the oral route and 10-fold intraperitoneally), suggesting that an active MutHLS system reduces the ability of Salmonella Dam mutants to cope with DNA-damaging agents (bile and others) encountered during the infection process. The DNA-damaging ability of bile under laboratory conditions raises the possibility that the phenomenon may be relevant in vivo, since high bile concentrations are found in the gallbladder, the niche for chronic Salmonella infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号