首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virus surveillance in vector insects is potentially of great benefit to public health. Large-scale sequencing of small and long RNAs has previously been used to detect viruses, but without any formal comparison of different strategies. Furthermore, the identification of viral sequences largely depends on similarity searches against reference databases. Here, we developed a sequence-independent strategy based on virus-derived small RNAs produced by the host response, such as the RNA interference pathway. In insects, we compared sequences of small and long RNAs, demonstrating that viral sequences are enriched in the small RNA fraction. We also noted that the small RNA size profile is a unique signature for each virus and can be used to identify novel viral sequences without known relatives in reference databases. Using this strategy, we characterized six novel viruses in the viromes of laboratory fruit flies and wild populations of two insect vectors: mosquitoes and sandflies. We also show that the small RNA profile could be used to infer viral tropism for ovaries among other aspects of virus biology. Additionally, our results suggest that virus detection utilizing small RNAs can also be applied to vertebrates, although not as efficiently as to plants and insects.  相似文献   

2.
The alphaviruses: gene expression, replication, and evolution.   总被引:41,自引:0,他引:41       下载免费PDF全文
The alphaviruses are a genus of 26 enveloped viruses that cause disease in humans and domestic animals. Mosquitoes or other hematophagous arthropods serve as vectors for these viruses. The complete sequences of the +/- 11.7-kb plus-strand RNA genomes of eight alphaviruses have been determined, and partial sequences are known for several others; this has made possible evolutionary comparisons between different alphaviruses as well as comparisons of this group of viruses with other animal and plant viruses. Full-length cDNA clones from which infectious RNA can be recovered have been constructed for four alphaviruses; these clones have facilitated many molecular genetic studies as well as the development of these viruses as expression vectors. From these and studies involving biochemical approaches, many details of the replication cycle of the alphaviruses are known. The interactions of the viruses with host cells and host organisms have been exclusively studied, and the molecular basis of virulence and recovery from viral infection have been addressed in a large number of recent papers. The structure of the viruses has been determined to about 2.5 nm, making them the best-characterized enveloped virus to date. Because of the wealth of data that has appeared, these viruses represent a well-characterized system that tell us much about the evolution of RNA viruses, their replication, and their interactions with their hosts. This review summarizes our current knowledge of this group of viruses.  相似文献   

3.
The human gut is known to be a reservoir of a wide variety of microbes, including viruses. Many RNA viruses are known to be associated with gastroenteritis; however, the enteric RNA viral community present in healthy humans has not been described. Here, we present a comparative metagenomic analysis of the RNA viruses found in three fecal samples from two healthy human individuals. For this study, uncultured viruses were concentrated by tangential flow filtration, and viral RNA was extracted and cloned into shotgun viral cDNA libraries for sequencing analysis. The vast majority of the 36,769 viral sequences obtained were similar to plant pathogenic RNA viruses. The most abundant fecal virus in this study was pepper mild mottle virus (PMMV), which was found in high concentrations—up to 109 virions per gram of dry weight fecal matter. PMMV was also detected in 12 (66.7%) of 18 fecal samples collected from healthy individuals on two continents, indicating that this plant virus is prevalent in the human population. A number of pepper-based foods tested positive for PMMV, suggesting dietary origins for this virus. Intriguingly, the fecal PMMV was infectious to host plants, suggesting that humans might act as a vehicle for the dissemination of certain plant viruses.  相似文献   

4.
Many viral pathogens cycle between humans and insects. These viruses must have evolved strategies for rapid adaptation to different host environments. However, the mechanistic basis for the adaptation process remains poorly understood. To study the mosquito-human adaptation cycle, we examined changes in RNA structures of the dengue virus genome during host adaptation. Deep sequencing and RNA structure analysis, together with fitness evaluation, revealed a process of host specialization of RNA elements of the viral 3’UTR. Adaptation to mosquito or mammalian cells involved selection of different viral populations harvesting mutations in a single stem-loop structure. The host specialization of the identified RNA structure resulted in a significant viral fitness cost in the non-specialized host, posing a constraint during host switching. Sequence conservation analysis indicated that the identified host adaptable stem loop structure is duplicated in dengue and other mosquito-borne viruses. Interestingly, functional studies using recombinant viruses with single or double stem loops revealed that duplication of the RNA structure allows the virus to accommodate mutations beneficial in one host and deleterious in the other. Our findings reveal new concepts in adaptation of RNA viruses, in which host specialization of RNA structures results in high fitness in the adapted host, while RNA duplication confers robustness during host switching.  相似文献   

5.
Zhao  Tingting  Gong  Haiyan  Shen  Xiaojuan  Zhang  Wen  Shan  Tongling  Yu  Xiangqian  Wang  Seong Jin  Cui  Li 《中国病毒学》2020,35(4):398-406
Ticks are involved in the transmission of various arboviruses and some tick-borne viruses pose significant threats to the health of humans or livestock. This study aimed to investigate the geographical distribution of tick species and tickassociated viruses in central and eastern China. Total 573 ticks from domestic animals including dogs, sheep and cattle were collected in 2017. Two genera of ticks were identified including Rhipicephalus and Haemaphysalis. Sequencing was performed on Miseq Illumina platform to characterize the tick viromes from the four different sampling locations.Following trimming, 13,640 reads were obtained and annotated to 19 virus families. From these sequences, above 37.74% of the viral reads were related to the RNA viruses. Virome comparison study revealed that the tick viral diversity was considerably different in the two identified tick genera. The viral diversity of R. microplus was significantly different from that of other Rhipicephalus species. On the other hand, substantial overlap in viral species was observed between the same genera. In addition, we found no evidence that the natural host played a major role in shaping virus diversity based on the comparison of their viromes. Rather, the geographic location seems to significantly influence the viral families. Phylogenetic study indicated that the novel negative-sense RNA viruses identified in this study was closely related to Bole tick virus 1 and 3 viruses. In conclusion, the present study provides a baseline for comparing viruses detected in ticks, according to species, natural hosts, and geographic locations.  相似文献   

6.
Previously, we reported that three double-stranded RNA (dsRNA) segments, designated L-, M-, and S-dsRNAs, were detected in Sclerotinia sclerotiorum strain Ep-1PN. Of these, the M-dsRNA segment was derived from the genomic RNA of a potexvirus-like positive-strand RNA virus, Sclerotinia sclerotiorum debilitation-associated RNA virus. Here, we present the complete nucleotide sequence of the L-dsRNA, which is 6,043 nucleotides in length, excluding the poly(A) tail. Sequence analysis revealed the presence of a single open reading frame (nucleotide positions 42 to 5936) that encodes a protein with significant similarity to the replicases of the “alphavirus-like” supergroup of positive-strand RNA viruses. A sequence comparison of the L-dsRNA-encoded putative replicase protein containing conserved methyltransferase, helicase, and RNA-dependent RNA polymerase motifs showed that it has significant sequence similarity to the replicase of Hepatitis E virus, a virus infecting humans. Furthermore, we present convincing evidence that the virus-like L-dsRNA could replicate independently with only a slight impact on growth and virulence of its host. Our results suggest that the L-dsRNA from strain Ep-1PN is derived from the genomic RNA of a positive-strand RNA virus, which we named Sclerotinia sclerotiorum RNA virus L (SsRV-L). As far as we know, this is the first report of a positive-strand RNA mycovirus that is related to a human virus. Phylogenetic and sequence analyses of the conserved motifs of the RNA replicase of SsRV-L showed that it clustered with the rubi-like viruses and that it is related to the plant clostero-, beny- and tobamoviruses and to the insect omegatetraviruses. Considering the fact that these related alphavirus-like positive-strand RNA viruses infect a wide variety of organisms, these findings suggest that the ancestral positive-strand RNA viruses might be of ancient origin and/or they might have radiated horizontally among vertebrates, insects, plants, and fungi.  相似文献   

7.
Nodamura Virus (NoV) is a nodavirus originally isolated from insects that can replicate in a wide variety of hosts, including mammals. Because of their simplicity and ability to replicate in many diverse hosts, NoV, and the Nodaviridae in general, provide a unique window into the evolution of viruses and host-virus interactions. Here we show that the C-terminus of the viral polymerase exhibits extreme structural and evolutionary flexibility. Indeed, fewer than 10 positively charged residues from the 110 amino acid-long C-terminal region of protein A are required to support RNA1 replication. Strikingly, this region can be replaced by completely unrelated protein sequences, yet still produce a functional replicase. Structure predictions, as well as evolutionary and mutational analyses, indicate that the C-terminal region is structurally disordered and evolves faster than the rest of the viral proteome. Thus, the function of an intrinsically unstructured protein region can be independent of most of its primary sequence, conferring both functional robustness and sequence plasticity on the protein. Our results provide an experimental explanation for rapid evolution of unstructured regions, which enables an effective exploration of the sequence space, and likely function space, available to the virus.  相似文献   

8.
ABSTRACT: BACKGROUND: As a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus), a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda. RESULTS: Application of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV), porcine parvovirus 4 (PPV4), porcine endogenous retrovirus (PERV), a GB Hepatitis C--like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing. CONCLUSIONS: Using a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.  相似文献   

9.
Microbial communities play an important role in organismal and ecosystem health. While high‐throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low‐input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.  相似文献   

10.
Effective prediction of future viral zoonoses requires an in-depth understanding of the heterologous viral population in key animal species that will likely serve as reservoir hosts or intermediates during the next viral epidemic. The importance of bats as natural hosts for several important viral zoonoses, including Ebola, Marburg, Nipah, Hendra, and rabies viruses and severe acute respiratory syndrome-coronavirus (SARS-CoV), has been established; however, the large viral population diversity (virome) of bats has been partially determined for only a few of the ~1,200 bat species. To assess the virome of North American bats, we collected fecal, oral, urine, and tissue samples from individual bats captured at an abandoned railroad tunnel in Maryland that is cohabitated by 7 to 10 different bat species. Here, we present preliminary characterization of the virome of three common North American bat species, including big brown bats (Eptesicus fuscus), tricolored bats (Perimyotis subflavus), and little brown myotis (Myotis lucifugus). In samples derived from these bats, we identified viral sequences that were similar to at least three novel group 1 CoVs, large numbers of insect and plant virus sequences, and nearly full-length genomic sequences of two novel bacteriophages. These observations suggest that bats encounter and disseminate a large assortment of viruses capable of infecting many different animals, insects, and plants in nature.  相似文献   

11.
By correlating the codon usage in four insects (the honeybee, red flour beetle, mosquito and fruit fly) with six honeybee host specific viruses, we found that the codon usage patterns of the bee viruses were strongly related to that of the honeybee and only weakly related to the red flour beetle. The insects shared varying degrees of codon usage similarity which roughly follow the known phylogenetic relatedness. All of the codon usage similarity can be described by relatedness-by-descent except for the high codon usage similarity between the honeybee and honeybee associated viruses. This evidence for the convergent evolution of the honeybee viruses toward the codon usage of the honeybee suggests that small host specific viral genomes have the freedom to quickly optimize codon usage to successfully parasitize their preferred host. The codon usage co-evolution of the six host specific honeybee viruses towards the codon usage of the honeybee described in this paper is the first evidence for codon usage correlation between an insect host and a single stranded RNA virus.  相似文献   

12.
Improved knowledge of the molecular biology of viruses, including recent gains in virus sequence data analysis, has greatly contributed to recent innovations in medical diagnostics, therapeutics, drug development and other related areas. Virus sequences have been used for the development of vaccines and antiviral agents to block the spread of viral infections, as well as to target and battle chronic diseases such as cancer. Virus sequences are now routinely employed in a wide array of RNA silencing technologies. Viruses can also be engineered into expression vectors which in turn can be used as protein production platforms as well as delivery vehicles for gene therapies. This review article outlines a number of patents that have been recently issued with respect to virus sequence data and describes some of their biotechnological applications.  相似文献   

13.
Influenza virus ns1 protein induces apoptosis in cultured cells   总被引:26,自引:0,他引:26       下载免费PDF全文
The importance of influenza viruses as worldwide pathogens in humans, domestic animals, and poultry is well recognized. Discerning how influenza viruses interact with the host at a cellular level is crucial for a better understanding of viral pathogenesis. Influenza viruses induce apoptosis through mechanisms involving the interplay of cellular and viral factors that may depend on the cell type. However, it is unclear which viral genes induce apoptosis. In these studies, we show that the expression of the nonstructural (NS) gene of influenza A virus is sufficient to induce apoptosis in MDCK and HeLa cells. Further studies showed that the multimerization domain of the NS1 protein but not the effector domain is required for apoptosis. However, this mutation is not sufficient to inhibit apoptosis using whole virus.  相似文献   

14.
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.  相似文献   

15.
《Journal of molecular biology》2019,431(21):4217-4228
The influenza A virus (IAV), a respiratory pathogen for humans, poses serious medical and economic challenges to global healthcare systems. The IAV genome, consisting of eight single-stranded viral RNA segments, is incorporated into virions by a complex process known as genome packaging. Specific RNA sequences within the viral RNA segments serve as signals that are necessary for genome packaging. Although efficient packaging is a prerequisite for viral infectivity, many of the mechanistic details about this process are still missing. In this review, we discuss the recent advances toward the understanding of IAV genome packaging and focus on the RNA features that play a role in this process.  相似文献   

16.
The data given testify that picornavirus RNA-dependent RNA-polymerase, RNA-polymerase encoded by the genome of MS2 phage and the certain polypeptides involved in the replication of RNA genomes of alphaviruses, tobamoviruses and tricornaviruses include the homologous stretches of the amino acids. The common sequences are located in the COOH-terminal regions of the viral proteins. These sequences have been found to be conserved also in RNA-replicase MS2 phage. The similarity of the primary structure between the RNA-polymerase phages and proteins of eucaryotic plus-RNA-containing viruses testifies in favour of the hypothesis on possible ancestral relationship of virus RNA-polymerases genes. These data point out that it is possible to localize an indispensable functional domain conserved upon evolutionary divergence of an ancestral RNA-polymerase gene. Such conservative region is recently found in the composition of RNA-dependent DNA-polymerases animals and plants virus. An attention is drawn to the region of protein similarity between conservative domains of viral RNA-dependent DNA-polymerases and RNA-polymerases.  相似文献   

17.
18.
19.
Virus infection initiates a number of cellular stress responses that modulate gene regulation and compartmentalization of RNA. Viruses must control host gene expression and the localization of viral RNAs to be successful parasites. RNA granules such as stress granules and processing bodies (PBs) contain translationally silenced messenger ribonucleoproteins (mRNPs) and serve as extensions of translation regulation in cells, storing transiently repressed mRNAs. New reports show a growing number of virus families modulate RNA granule function to maximize replication efficiency. This review summarizes recent advances in understanding the relationship between viruses and mRNA stress granules in animal cells and will discuss important questions that remain in this emerging field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号