首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of benthivorous bream and carp on sediment resuspension and the concentrations of nutrients and chlorophyll a were studied in sixteen experimental ponds (mean depth 1m, mean area 0.1 ha, sandy clay/clay sediment), stocked with bream or carp at densities varying from 0 to 500 kg ha?1. Planktivorous perch (Perca fluviatilis L.) were added to some ponds to suppress zooplankton. 2. Suspended sediment concentrations increased linearly with biomass of benthivorous fish. Bream caused an increase of 46 g sediment m?2 day?1 per 100kg bream ha?1 and a reduction of 0.38m?1 in reciprocal Secchi disc depth, corresponding to an increase in the extinction coefficient of 0.34m?1. 3. No relationship was found between size of fish and amount of resuspension, but the effect of bream was twice as great as that of carp. Benthivorous feeding was reduced in May because alternative food (zooplankton) was available. 4. Assuming a linear relationship, chlorophyll a level increased by 9.0 μgI?1, total P by 0.03mgl?1 and Kjeldahl-N by 0.48mgl?1 per 100kg bream ha?1. Silicate, chlorophyll a, total P and total N were all positively correlated with fish biomass, but orthophosphate showed no correlation.  相似文献   

2.
A large-scale biomanipulation trial was carried out on Lake Vesijärvi in Finland during 1989–1993. Following the mass removal of coarse fish the biomass of cyanobacteria collapsed from 1.4 g/m?3 to below 0.4 g/m?3, while total phosphorus concentration declined from 45 μ g/L to 30 μ g/L. No relevant changes in zooplankton communities were observed. The results suggest that the success of food web manipulation as a tool for lake restoration is not necessarily dependent on the grazing rate of zooplankton. The effects of reduced fish-mediated internal loading and recycling of nutrients are in many cases stronger than those of reduced planktivory. Alternative stable states of water quality may also exist in lakes not covered by macrophytes, owing to the changes in the behavior of fish stocks. Year-to-year variation in the littoral zone may cause large oscillations in lake ecosystems—for example, through the recruitment of fish. In addition, the nutrients translocated by fish from the littoral zone may affect the nutrient dynamics of the pelagial plankton community. In terms of phytoplankton species composition and the ratio of phosphorus to chlorophyll a, the water quality in Lake Vesijärvi has improved in a stepwise fashion within the last 10 years. This is probably due to the fact that the five-year mass removal of fish in Enonselkä fulfilled the requirement of sustained management of fish stocks in order to maintain nonequilibrial conditions between alternate stable states. The prediction of the water quality development is obscured, however, by spatial and temporal within-lake variation, which sets high requirements for sampling programs.  相似文献   

3.
1. Freshwater fish can affect aquatic vegetation directly by consuming macrophytes or indirectly by changing water quality. However, most fish in the temperate climate zone have an omnivorous diet. The impact of fish as aquatic herbivores in temperate climates therefore remains unclear and depends on their dietary flexibility. 2. We tested the effects of a flexible omnivore and an herbivore on aquatic vegetation by comparing the effects of rudd (Scardinius erythrophthalmus, the most herbivorous fish in temperate climates) with grass carp (Ctenopharyngodon idella) in a mesocosm pond study. Exclosures distinguished herbivorous effects of fish on submerged macrophytes from indirect effects through changes in water quality, whereas stable isotope food‐web analysis provided information on fish diets. 3. We hypothesised that rudd, with its flexible diet and preference for animal food items, would only indirectly affect macrophytes, whereas grass carp, with its inflexible herbivorous diet, would directly affect macrophyte biomass. 4. Only grass carp significantly reduced macrophyte biomass through consumption. Rudd had no effect. Food‐web analysis indicated that rudd predominantly consumed animal prey, whereas grass carp included more plants in their diet, although they also consumed animal prey. Grass carp significantly affected water quality, resulting in lowered pH and increased N‐NH4 concentrations, whereas more periphyton growth was observed in the presence of rudd. However, the indirect non‐herbivorous effects of both fish species had no effect on macrophyte biomass. 5. Both fish species should be considered as omnivores. Despite the fact that rudd is the most herbivorous fish in the western European climate zone, its effect on submerged macrophyte biomass is not substantial at natural densities and current temperatures.  相似文献   

4.
Knuuttila  S.  Pietiläinen  O. P.  Kauppi  L. 《Hydrobiologia》1994,275(1):359-369
The impact of agriculture was estimated on two shallow, eutrophic lakes, Lake Kotojärvi and Lake Villikkalanjärvi in southern Finland. The main emphasis was on phosphorus and nitrogen budgets and on the phytoplankton dynamics. Special attention was paid to internal P loading and blue-green algal blooms. The mean Tot-P load from agricultural land was 1.2 kg ha-1 a-1 in both basins and Tot-N loads were 19 kg ha-1 a-1 in L. Villikkalanjärvi and 12 kg ha-1 a-1 in L. Kotojärvi. The Tot-P input to L. Kotojärvi was on an average 0.62 g m-2 a-1 (per lake surface area), and the Tot-N input 9.1 g m-2 a-1. The corresponding inputs to L. Villikkalanjärvi were 3.1 and 57 g m-2 a-1, respectively. The annual variation followed the runoff volumes. About half of the Tot-P and one third of the Tot-N load was retained in L. Kotojärvi. In L. Villikkalanjärvi the retention was only 24% for Tot-P and 19% for Tot-N. The difference was very probably due to a longer theoretical retention time in L. Kotojärvi. In L. Villikkalanjärvi the mean concentration of Tot-P was 120 µg 1-1 and that of Tot-N 1700 µg 1-1 and the corresponding figures in L. Kotojärvi 67 and 990 µg 1-1, respectively. The mean chlorophyll a concentration was, however, higher in L. Kotojärvi (26 µg 1-1) than in L. Villikkalanjärvi (20 µg 1-1). This was probably due to an internal P load in L. Kotojärvi: in 1988 the internal load of dissolved P was estimated to be as much as twofold the external load. In L. Villikkalanjärvi the internal dissolved P load was only up to 50% of the external input. In L. Kotojärvi the high internal P load coupled with a low DIN:DIP ratio resulted in a strong blue-green algal bloom in the summer of 1988. In L. Villikkalanjärvi blue-green algae were observed only in small amounts. Even in August 1990, when the DIN:DIP ratio was low enough to favor the occurrence of blue-green algae, they contributed only up to 10–15% of the total phytoplankton biomass.  相似文献   

5.
Whole-lake food-web manipulation was carried out in the hypertrophic Lake Zwemlust (The Netherlands), with the aim of studying the effects on the lake's trophic status and to gain an insight into complex interactions among lake communities. Before manipulation this small (1.5 ha) and shallow (1.5 m) lake was characterized byMicrocystis blooms in summer and high chlorophyll-a concentrations were common (ca. 250 μg 1−1). In March 1987 the planktivorous and benthivorous fish species in the lake were completely removed (ca. 1000 kg ha−1), a new simple fish community (pike and rudd) was introduced and artificial refuges were created. The effects of this manipulation on the light climate, nutrient concentrations, phytoplankton, zooplankton, fish, macrophytes, and macrofauna were monitored during 1987, 1988 and 1989. Community interactions were investigated in phytoplankton bioassays and zooplankton grazing experiments. After the manipulation, despite the still high P and N loads to the lake (ca. 2.2 g P m−2 y−1 andca. 5.3 g N m−2 y−1), the phytoplankton density was low (Chl-a<5μg l−1), due to control by large-sized zooplankton in spring and N-limitation in summer and autumn. A marked increase in the abundance of macrophytes and filamentous green algae in 1988 and 1989, as well as N loss due to denitrification, contributed to the N limitation of the phytoplankton. Before manipulation no submerged macro-vegetation was present but in 1988, the second year after manipulation, about 50% of the lake bottom was covered by macrophytes increasing to 80% in 1989. This led to substantial accumulation of both N and P, namely 76% and 73% respectively of the total nutrients in the lake in particulate matter. Undesirable features of the increase in macrophytes were: 1) direct nuisance to swimmers; and, 2) the large scale development of snails, especiallyL. peregra, which may harbour the parasite causing ‘swimmers' itch’. But harvesting of only about 3% of the total macrophyte biomass from the swimmers' area, twice a year, reduced the nuisance for swimmers without adversely affecting the water clarity.  相似文献   

6.
Perennial grasses may provide a renewable source of biomass for energy production. Biomass yield, nutrient concentrations, and nutrient removal rates of switchgrass (Panicum virgatum L.), giant miscanthus (Miscanthus x giganteus), giant reed (Arundo donax L.), weeping lovegrass [Eragrostis curvula (Shrad.) Nees], kleingrass (Panicum coloratum L.), and Johnsongrass (Sorghum halepense (L.) Pers.) were evaluated at four N fertilizer rates (0, 56, 112, or 168?kg?N?ha?1) on a Minco fine sandy loam soil in southern Oklahoma. Species were established in 2008 and harvested for biomass in winter of 2009 and 2010. Biomass yield (dry matter basis) did not show a strong relationship with N fertilizer rate (p?=?0.08), but was affected by year and species interactions (p?<?0.01). Weeping lovegrass and kleingrass produced 29.0 and 16.0?Mg?ha?1 in 2009, but only 13.0?Mg?ha?1 and 9.8?Mg?ha?1 in 2010, respectively. Biomass yields of giant reed, switchgrass, and Johnsongrass averaged 23.3, 17.8, and 6.0?Mg?ha?1, respectively. Giant miscanthus established poorly, producing only 4.7?Mg?ha?1. Across years, giant reed had the highest biomass yield, 33.2?Mg?ha?1 at 168?kg?N?ha?1, and the highest nutrient concentrations and removal rates (162 to 228?kg?N?ha?1, 23 to 25?kg?P?ha?1, and 121 to 149?kg?K?ha?1) among the grasses. Although giant reed demonstrated tremendous biomass production, its higher nutrient removal rates indicate a potential for increased fertilization requirements over time. Switchgrass had consistently high biomass yields and relatively low nutrient removal rates (40 to 75?kg?N?ha?1, 5 to 12?kg?P?ha?1, and 44 to 110?kg?K?ha?1) across years, demonstrating its merits as a low-input bioenergy crop.  相似文献   

7.
We examined the biomass-dependent effects of common carp (Cyprinus carpio) on water quality in 10 ponds at the Eagle Mountain Fish Hatchery, Fort Worth, Texas, USA. Ponds contained 0–465 kg ha−1 of common carp. We measured limnological variables at weekly intervals for four weeks in early summer, after which ponds were drained and the biomass of fish and macrophytes was determined. Common carp biomass was significantly positively correlated with chlorophyll a, total phosphorus, total nitrogen, and Keratella spp. density and negatively correlated to bushy pondweed (Najas guadalupensis) biomass. In addition, we combined our data with data from comparable studies to develop more robust regression models that predict the biomass-dependent effects of common carp on water quality variables across a wide range of systems.  相似文献   

8.
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N‐ or P‐limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large‐scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl‐a)] were carried out in 45 mid‐lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl‐a. In separate nutrient–chl‐a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl‐a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl‐a : TP was not influenced by TN : TP, while chl‐a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a ‘cut‐off’ TN : TP ratio to identify a limiting nutrient for a multi‐species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) >100 kg ha?1 had significantly higher chl‐a and lower Secchi depth than those with yields <100 kg ha?1. TP–chl‐a and TP–Secchi depth relationships are not significantly different between lakes with yields >100 kg ha?1 or <100 kg ha?1. These results indicate that the fish failed to decrease chl‐a yield or enhance ZSD. Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.  相似文献   

9.
SUMMARY 1. Macrophyte loss from Sites of Special Scientific Interest in England has become widespread over the last 20 years. One reason for this may be changing trends in angling, a multimillion pound industry that has an enormous impact on aquatic ecosystems. Stocking with cyprinid fish is a common angling management practice but the particular fish species and distribution of their biomass may be crucial to the ecosystem. 2. Carp (Cyprinus carpio), roach (Rutilus rutilus), bream (Abramis brama) and tench (Tinca tinca) at biomasses ranging from 0 to 800 kg ha?1 and at various sizes were placed into experimental mesocosms in Little Mere, a shallow, fertile lake in Cheshire, U.K. The effects these treatments had on the aquatic ecosystem were studied over two summers. Specifically the effects of the treatments on macrophyte growth, benthic and macrophytic macro‐invertebrate populations, water chemistry, epiphyton production and plankton survival were investigated. 3. Carp had a greater detrimental effect on the macrophytes than bream, tench and in particular roach. A biomass of fish > 200 kg ha?1 adversely affected the extent of macrophyte growth. 4. The decline in macrophyte growth was most likely as a result of increased epiphyton growth that probably reduced the amount of light and carbon dioxide available to the plant. There were no observed direct fish impacts on macrophytes. 5. The chemical data suggested that inorganic nitrogen levels were low and it is possible that release of nitrogen, from fish excreta, followed by immediate uptake, could have been a major factor stimulating epiphyton growth and subsequently macrophyte loss. Phosphorus concentrations increased even in the controls and substantial amounts were available. Phosphorus stimulation can therefore be discounted. Macrophyte‐associated macro‐invertebrates were positively correlated with epiphyton load but had no impact on the extent of epiphytic growth. Shading from disturbed sediment or phytoplankton was also unimportant.  相似文献   

10.
Classification of waters using biological quality elements and determination of the degree of deviation from reference levels is a key issue in the Water Framework Directive of EU. Lakes in reference conditions with sufficient biological data are available for several boreal lake types with the exception of naturally eutrophic lakes. An empirical approach is one alternative for estimating the reference conditions of such lakes. We used the water transparency of the naturally eutrophic Lake Tuusulanjärvi recorded in August in the early 1910s to estimate reference values for phytoplankton biomass and chlorophyll a concentrations. Three phytoplankton samples during August 2000–2001 corresponded to the estimated reference values for total biomass (<5.6 mg l?1) and chlorophyll a (<28 μg l?1), as did the simultaneous Secchi depths. The phytoplankton assemblage in these samples with 24 eutrophy indicators (17% of the total taxa number) corresponded in general the species list from the early 1900s, which as such could be regarded as reference assemblage. Furthermore, in August 2000, 3 years after intensive fish removal a prominent decrease in cyanobacterial biomass and toxin concentration was observed. The costs of the measures and studies in Lake Tuusulanjärvi during 1989–2003 have been approximately 2.5 million euros.  相似文献   

11.
SUMMARY 1. The development of bream populations, water transparency, chlorophyll‐a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the bream population was reduced from c. 100 to 20 kg ha?1 after 5 years of fishing. The mortality caused by the fishery was estimated at 38% of bream >15 cm in addition to a 13% natural mortality of bream >17 cm. The decline was followed by an expansion of the Chara beds present in the shallow parts, an increase in water transparency in the open‐water zone, an increase in the density of zebra mussels and a decrease in chlorophyll‐a concentrations. 3. The newly created Lake Volkerak showed trends opposite to those in Lake Veluwemeer. Bream colonised the lake in 1988 and reached a biomass of c. 140 kg ha?1 in 1998. The water transparency decreased from a maximum of 3 m to c. 1 m and the chlorophyll‐a concentration increased from 5 to 45 μg L?1. Submerged vegetation colonised up to 20% of the total lake area in the first 5 years after creation of the lake in 1987 but decreased to 10% as turbidity increased. 4. Seine fishery in the Frisian lake system did not appear to affect the bream population despite annual catches as high as 40–50 kg ha?1. The estimated natural mortality of fish >15 cm was 15% and mortality by fishery was 26%. The high loss was apparently compensated by good recruitment and high growth rates resulting from a c. 1 °C higher water temperature during the years when bream were removed by fishing. There was only a slight decrease in chlorophyll‐a concentrations and a slight increase in water transparency. 5. The results of this study suggest that the effects of bream exploitation in eutrophic lakes can vary depending on the efficiency of the fishery, recruitment success and temperature regime. In the absence of fishery, bream dominated the fish community in the study lakes and apparently prevented D. polymorpha and submerged vegetation from establishing because of physical disturbance, enhanced internal P‐loading and resettling of resuspended sediments.  相似文献   

12.
Biomanipulation was carried out in order to improve the water quality of the small hypertrophic Lake Zwemlust (1.5 ha; mean depth 1.5 m). In March 1987 the lake was drained to facilitate the elimination of fish. Fish populations were dominated by planktivorous and benthivorous species (total stock c. 1500 kg) and were collected by seine- and electro-fishing. The lake was subsequently re-stocked with 1500 northern pike fingerlings (Esox lucius L.) and a low density of adult rudd (Scardinius erythrophthalmus). The offspring of the rudd served as food for the predator pike. Stacks of Salix twigs, roots of Nuphar lutea and plantlets of Chara globularis were brought in as refuge and spawning grounds for the pike, as well as shelter for the zooplankton.The impact of this biomanipulation on the light penetration, phytoplankton density, macrophytes, zooplankton and fish communities and on nutrient concentrations was monitored from March 1987 onwards. This paper presents the results in the first year after biomanipulation.The abundance of phytoplankton in the first summer (1987) after this biomanipulation was very low, and consequently accompanied by increase of Secchi-disc transparency and drastic decline of chlorophyll a concentration.The submerged vegetation remained scarce, with only 5 % of the bottom covered by macrophytes at the end of the season.Zooplankters became more abundant and there was a shift from rotifers to cladocerans, comprised mainly of Daphnia and Bosmina species, the former including at least 3 species.The offspring of the stocked rudd was present in the lake from the end of August 1987. Only 19% of the stocked pike survived the first year.Bioassays and experiments with zooplankton community grazing showed that the grazing pressure imposed by the zooplankton community was able to keep chlorophyll a concentrations and algal abundance to low levels, even in the presence of very high concentrations of inorganic N and P. The total nutrient level increased after biomanipulation, probably due to increased release from the sediment by bioturbation, the biomass of chironomids being high.At the end of 1987 Lake Zwemlust was still in an unstable stage. A new fish population dominated by piscivores, intended to control the planktivorous and benthivorous fish, and the submerged macrophytes did not yet stabilize.  相似文献   

13.
Mean biomass (153-1) and production (P) of fish in two small tributaries of the Paraná River (Paraná, Brazil) were 61 kg ha–1 and 48 kg ha–1 yr–1 in the Caracu River and 29 kg ha–1 and 26 kg ha–1 yr–1 in the Agua do Rancho River, respectively. Matrix correlation analysis revealed high positive correlations of both 153-2 and P to maximum depth and hiding places and, at a lower level of significance, to mean depth, pH and oxygen level. Lower 153-3 and P values were found in the Agua do Rancho River, whose valley has retained a more natural character, rich canopy and scarcity of macrophytes, but also lower conductivity and nitrogen and phosphate levels than those in the Caracu River.Address for correspondence  相似文献   

14.
Meijer  M. -L.  de Haan  M. W.  Breukelaar  A. W.  Buiteveld  H. 《Hydrobiologia》1990,200(1):303-315
Experimental reduction of the fish stock in two shallow lakes in The Netherlands shows that such a biomanipulation can lead to a substantial increase in transparency, which is caused not only by a decrease in algal biomass, but also by a decrease in resuspended sediment and detritus. A model was developed to describe transparency in relation to chlorophyll-a and inorganic, suspended solids (resuspended sediment). With the use of this model it is shown that more than 50% of the turbidity in these shallow lakes before biomanipulation was determined by the sediment resuspension, mainly caused by benthivorous fish. Another analysis reveals that the concentration of inorganic suspended solids and the biomass of benthivorous fish are positively correlated, and that even in the absence of algae a benthivorous fish biomass of 600 kg ha−1 can reduce the Secchi depth to 0.4 m in shallow lakes. In addition, it is argued that algal biomass is also indirectly reduced by removal of benthivorous fish. Reduction of benthivorous fish is necessary to get macrophytes and macrophytes seem to be necessary to keep the algal biomass low in nutrient-rich shallow lakes. It is concluded that the impact of benthivorous fish on the turbidity can be large, especially in shallow lakes.  相似文献   

15.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

16.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

17.
1. Many animals that consume freshwater macrophytes are omnivorous (i.e., they include both plant and animal matter in their diet). For invertebrate omnivorous consumers, selection of macrophyte species depends partly on the presence of secondary metabolites in plants, plant carbon/nutrient balances and/or physical structure of plants. However, little is known about the mechanisms influencing consumption of macrophytes in aquatic vertebrates. 2. For two fish species, the omnivorous rudd (Scardinius erythrophthalmus) and herbivorous grass carp (Ctenopharyngodon idella), feeding preferences were determined in three choice experiments. We tested (i) whether the presence of secondary metabolites and macrophyte stoichiometry affects macrophyte species selection by fish, (ii) the importance of macrophyte stoichiometry by manipulating the macrophytes experimentally and (iii) the rate of herbivory when the most palatable macrophyte is offered simultaneously with a common animal prey. 3. In a choice experiment with five species of submerged macrophytes (Callitriche sp., Chara globularis, Elodea nuttallii, Myriophyllum spicatum and Potamogeton pectinatus), Myriophyllum was clearly consumed least by both fishes, which strongly correlated with the highest phenolic concentration of this macrophyte. Additionally, a significant negative relationship was found between consumption and C : N ratio of the five macrophytes. The two most consumed macrophytes also had the lowest dry matter concentration (DMC). 4. In a second choice experiment, the C : N ratio of the least (Myriophyllum) and most (Potamogeton) palatable plants was manipulated by growing the macrophytes under fertilised and unfertilised conditions and subsequently feeding them to rudd. The avoidance of consumption of the chemically defended Myriophyllum by rudd was partly alleviated by the lowered C : N ratio. 5. The third choice experiment showed that both fishes preferred animal prey (the amphipod Gammarus pulex) over the most palatable macrophyte (Potamogeton) when offered simultaneously. The C : N ratio of the amphipods was about half that of the lowest C : N ratio measured in the macrophytes. Consumption by the fishes could not clearly be related to C : P or N : P ratios of prey items in any of the experiments. 6. We conclude that omnivorous fish avoid macrophytes that are chemically defended. However, when these defences are only minor, stoichiometry (C : N ratio) in combination with DMC may be a determining factor for consumption by vertebrate facultative herbivores.  相似文献   

18.
1. High biomass of macrophytes is considered important in the maintenance of a clear‐water state in shallow eutrophic lakes. Therefore, rehabilitation and protection of aquatic vegetation is crucial to the management of shallow lakes. 2. We conducted field mesocosm experiments in 1998 and 1999 to study community responses in the plant‐dominated littoral zone of a lake to nutrient enrichment at different fish densities. We aimed to find the threshold fish biomass for the different nutrient enrichment levels below which large herbivorous zooplankton escapes control by fish. The experiments took place in the littoral of Lake Vesijärvi in southern Finland and were part of a series of parallel studies carried out jointly at six sites across Europe. 3. In 1998, when macrophyte growth was poor, a clear‐water state with low phytoplankton biomass occurred only in unenriched mesocosms without fish or with low fish biomass (4 g fresh mass m?2). Both nutrient enrichment and high fish biomass (20 g fresh mass m?2) provoked a turbid water state with high planktonic and periphytic algal biomass. The zooplankton community was dominated by rotifers and failed to control the biomass of algae in nutrient enriched mesocosms. The littoral community thus had low buffer capacity against nutrient enrichment. 4. In 1999, macrophytes, especially free‐floating Lemna trisulca L., grew well and the zooplankton community was dominated by filter‐feeding cladocerans. The buffer capacity of the littoral community against nutrient enrichment was high; a clear‐water state with low phytoplankton biomass prevailed even under the highest nutrient enrichment. High grazing rates by cladocerans, together with reduced light penetration into the water caused by L. trisulca, were apparently the main mechanisms behind the low algal biomass. 5. Effects of fish manipulations were less pronounced than effects of nutrient enrichment. In 1999, clearance rates of cladocerans were similar in fish‐free and low‐fish treatments but decreased in the high‐fish treatment. This suggests that the threshold fish biomass was between the low‐ and high‐fish treatments. In 1998, such a threshold was found only between fish‐free and low‐fish treatments. 6. The pronounced difference in the observed responses to nutrient enrichment and fish additions in two successive years suggests that under similar nutrient conditions and fish feeding pressure either clear or turbid water may result depending on the initial community structure and on weather.  相似文献   

19.
T. Penczak 《Hydrobiologia》1985,120(2):159-165
Amounts of C, P, and N consumed by all fish populations were estimated at 9 sites in two small lowland rivers. They mainly depended on fish density and were: 151.8 (27.9–453.3) kgC ha–1a–1, 3.1(0.5–8.8) kgP ha–1 a–1, and 30.3 (5.3–89.9) kg N ha–1 a–1. To build one kg of each of these elements into their body the fish consumed 7.9 ± 1.7 (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiEayaara% aaaa!3912!\[{\text{\bar x}}\] ± S.D.) kg of C, 3.1 ± 0.8 kg of P, and 6.6 ± 1.3 kg of N. Thus, phosphorus was assimilated twice more efficiently than carbon and nitrogen. Pools of the three elements, calculated as mean biomass, are: 12.7 (1.2–42.1) kg C ha–1, 0.7(0.1–2.2) kgP ha–1, and 3.0 (0.3–9.7) kgN ha–1 The elements were assimilated especially effectively by young stages of fish.  相似文献   

20.
Mátyás  Kálmán  Oldal  Imre  Korponai  János  Tátrai  István  Paulovits  Gábor 《Hydrobiologia》2003,504(1-3):231-239

Effects of different fish communities on the proportion of different nitrogen and phosphorous forms and the amount of phytoplankton (chlorophyll a) were examined in two consecutive years (1992–1993) in three Hungarian shallow water reservoirs (Cassette and outer reservoir of the Kis–Balaton Water Protection System, and Marcali reservoir). Possible interactions between nutrient concentrations and the amount of phytoplankton in these reservoirs were also examined. Considerable differences in the proportions of different nutrient forms were observed between the three test sites, which could be explained by the presence of different fish stocks in these reservoirs. In the Cassette, the fish biomass necessary for a water quality improvement was around 50 kg ha−1. Phytoplankton biomass was controlled by the zooplankton, consequently chlorophyll a concentrations decreased considerably, while those of dissolved nutrients significantly increased. In the outer reservoir, phytoplankton was controlled bottom-up, since the 250 kg ha−1 fish biomass was larger than the critical value due to the high proportion of planktivorous species. Chlorophyll a concentrations were high, and nutrients were mainly in particulate form (in algal cells). In the Marcali reservoir, the recently introduced silver carp population could not control fully the phytoplankton. The biomass of phytoplankton decreased only slightly, while its composition changed considerably. Although biomanipulation with silver carp is suitable for ceasing cyanobacterial blooms, reduction of the amount of planktivorous fish seems to be a more adequate method for increasing water transparency, rather than introduction of phytoplankton feeding fish.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号