首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial bc(1) complex catalyzes the oxidation of ubiquinol and the reduction of cytochrome (cyt) c. The cyt b mutation A144F has been introduced in yeast by the biolistic method. This residue is located in the cyt b cd(1) amphipathic helix in the quinol-oxidizing (Q(O)) site. The resulting mutant was respiration-deficient and was affected in the quinol binding and electron transfer rates at the Q(O) site. An intragenic suppressor mutation was selected (A144F+F179L) that partially alleviated the defect of quinol oxidation of the original mutant A144F. The suppressor mutation F179L, located at less than 4 A from A144F, is likely to compensate directly the steric hindrance caused by phenylalanine at position 144. A second set of suppressor mutations was obtained, which also partially restored the quinol oxidation activity of the bc(1) complex. They were located about 20 A from A144F in the hinge region of the iron-sulfur protein (ISP) between residues 85 and 92. This flexible region is crucial for the movement of the ISP between cyt b and cyt c(1) during enzyme turnover. Our results suggested that the compensatory effect of the mutations in ISP was due to the repositioning of this subunit on cyt b during quinol oxidation. This genetic and biochemical study thus revealed the close interaction between the cyt b cd(1) helix in the quinol-oxidizing Q(O) site and the ISP via the flexible hinge region and that fine-tuning of the Q(O) site catalysis can be achieved by subtle changes in the linker domain of the ISP.  相似文献   

2.
Rajagukguk S  Yang S  Yu CA  Yu L  Durham B  Millett F 《Biochemistry》2007,46(7):1791-1798
Long-range movement of the Rieske iron-sulfur protein (ISP) between the cytochrome (cyt) b and cyt c1 redox centers plays a key role in electron transfer within the cyt bc1 complex. A series of 21 mutants in the cyt b ef loop of Rhodobacter sphaeroides cyt bc1 were prepared to examine the role of this loop in controlling the capture and release of the ISP from cyt b. Electron transfer in the cyt bc1 complex was studied using a ruthenium dimer to rapidly photo-oxidize cyt c1 within 1 mus and initiate the reaction. The rate constant for electron transfer from the Rieske iron-sulfur center [2Fe2S] to cyt c1 was k1 = 60 000 s-1. Famoxadone binding to the Qo site decreases k1 to 5400 s-1, indicating that a conformational change on the surface of cyt b decreases the rate of release of the ISP from cyt b. The mutation I292A on the surface of the ISP-binding crater decreased k1 to 4400 s-1, while the addition of famoxadone further decreased it to 3000 s-1. The mutation L286A at the tip of the ef loop decreased k1 to 33 000 s-1, but famoxadone binding caused no further decrease, suggesting that this mutation blocked the conformational change induced by famoxadone. Studies of all of the mutants provide further evidence that the ef loop plays an important role in regulating the domain movement of the ISP to facilitate productive electron transfer and prevent short-circuit reactions.  相似文献   

3.
He-Wen Ma 《BBA》2008,1777(3):317-326
Protein domain movement of the Rieske iron-sulfur protein has been speculated to play an essential role in the bifurcated oxidation of ubiquinol catalyzed by the cytochrome bc1 complex. To better understand the electron transfer mechanism of the bifurcated ubiquinol oxidation at Qp site, we fixed the head domain of ISP at the cyt c1 position by creating an intersubunit disulfide bond between two genetically engineered cysteine residues: one at position 141 of ISP and the other at position 180 of the cyt c1 [S141C(ISP)/G180C(cyt c1)]. The formation of a disulfide bond between ISP and cyt c1 in this mutant complex is confirmed by SDS-PAGE and Western blot. In this mutant complex, the disulfide bond formation is concurrent with the loss of the electron transfer activity of the complex. When the disulfide bond is released by treatment with β-mercaptoethanol, the activity is restored. These results further support the hypothesis that the mobility of the head domain of ISP is functionally important in the cytochrome bc1 complex. Formation of the disulfide bond between ISP and cyt c1 shortens the distance between the [2Fe-2S] cluster and heme c1, hence the rate of intersubunit electron transfer between these two redox prosthetic groups induced by pH change is increased. The intersubunit disulfide bond formation also decreases the rate of stigmatellin induced reduction of ISP in the fully oxidized complex, suggesting that an endogenous electron donor comes from the vicinity of the b position in the cytochrome b.  相似文献   

4.
ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the cluster 9 group of ATP-binding cassette-type periplasmic Zn- and Mn-binding proteins. In Gram-negative bacteria, the ZnuABC system is essential for zinc uptake and homeostasis and is an important determinant of bacterial resistance to the host defense mechanisms. The cluster 9 members share a two (α/β)4 domain architecture with a long α-helix connecting the two domains. In the Zn-specific proteins, the so-called α3c and the α4 helices are separated by an insert of variable length, rich in histidine and negatively charged residues. This distinctive His-rich loop is proposed to play a role in the management of zinc also due to its location at the entrance of the metal binding site located at the domain interface. The known Synechocystis 6803 and Escherichia coli ZnuA structures show the same metal coordination involving three conserved histidines and a glutamic acid or a water molecule as fourth ligand. The structures of Salmonella enterica ZnuA, with a partially or fully occupied zinc binding site, and of a deletion mutant missing a large part of the His-rich loop revealed unexpected differences in the metal-coordinating ligands, as histidine 140 from the mobile (at the C-terminal) part of the loop substitutes the conserved histidine 60. This unforeseen coordination is rendered possible by the “open conformation” of the two domains. The possible structural determinants of these peculiarities and their functional relevance are discussed.  相似文献   

5.
Roberts AG  Bowman MK  Kramer DM 《Biochemistry》2004,43(24):7707-7716
Previously [Roberts, A. G., and Kramer, D. M. (2001) Biochemistry 40, 13407-13412], we showed that 2 equiv of the quinone analogue 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) could occupy the Q(o) site of the cytochrome (cyt) b(6)f complex simultaneously. In this work, a study of electron paramagnetic resonance (EPR) spectra from the oriented cyt b(6)f complex shows that the Rieske iron-sulfur protein (ISP) is in distinct orientations, depending on the stoichiometry of the inhibitor at the Q(o) site. With a single DBMIB at the Q(o) site, the ISP is oriented with the 2Fe-2S cluster toward cyt f, which is similar to the orientation of the ISP in the X-ray crystal structure of the cyt b(6)f complex from thermophilic cyanobacterium Mastigocladus laminosus in the presence of DBMIB, as well as that of the chicken mitochondrial cyt bc(1) complex in the presence of the class II inhibitor myxothiazol, which binds in the so-called "proximal niche", near the cyt b(L) heme. These data suggest that the high-affinity DBMIB site is at the proximal niche Q(o) pocket. With >or=2 equiv of DBMIB bound, the Rieske ISP is in a position that resembles the ISP(B) position of the chicken mitochondrial cyt bc(1) complex in the presence of stigmatellin and the Chlamydomonas reinhardtii cyt b(6)f complex in the presence of tridecylstigmatellin (TDS), which suggests that the low-affinity DBMIB site is at the distal niche. The close interaction of DBMIB bound at the distal niche with the ISP induced the well-known effects on the 2Fe-2S EPR spectrum and redox potential. To further test the effects of DBMIB on the ISP, the extents of cyt f oxidation after flash excitation in the presence of photosystem II inhibitor DCMU were measured as a function of DBMIB concentration in thylakoids. Addition of DBMIB concentrations at which a single binding was expected did not markedly affect the extent of cyt f oxidation, whereas higher concentrations, at which double occupancy was expected, increased the extent of cyt f oxidation to levels similar to that of cyt f oxidation in the presence of a saturating concentration of stigmatellin. Simulations of the EPR g-tensor orientations of the 2Fe-2S cluster versus the physical orientations based on single-crystal studies of the cyt bc(1) complex suggest that the soluble ISP domain of the spinach cyt b(6)f complex can rotate by at least 53 degrees, which is consistent with long-range ISP domain movement. Implications of these results are discussed in the context of the X-ray crystal structures of the chicken mitochondrial cyt bc(1) complex and the M. laminosus and C. reinhardtii cyt b(6)f complexes.  相似文献   

6.
Roberts AG  Bowman MK  Kramer DM 《Biochemistry》2002,41(12):4070-4079
Many current models of the Q cycle for the cytochrome (cyt) b6f and the cyt bc1 complexes incorporate 'Rieske' iron-sulfur protein (ISP) domain movements to gate electron transfer and to ensure high yields of proton shuttling. It was previously proposed that copper ions, which bind at a site distant from the quinol oxidase (Q(o)) site, inhibit plastoquinol (PQH2) binding by restraining the hydrophilic head domain of the ISP [Rao B. K., S., Tyryshkin, A. M., Roberts, A. G., Bowman, M. K., and Kramer, D. M. (1999) Biochemistry 38, 3285-3296]. The present work presents evidence that this is indeed the case for both copper ions and Zn2+, which appear to inhibit by similar mechanisms. Electron paramagnetic resonance (EPR) spectra show that Cu2+ and Zn2+ binding to the cyt b6f complex displaces the Q(o) site inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). At high concentrations, both DBMIB and Cu2+ or Zn2+ can bind simultaneously, altering the Rieske 2Fe2S cluster and Cu2+ EPR spectra, suggesting perturbations in their respective binding sites. Both Zn2+ and Cu1+ altered the orientations of the Rieske 2Fe2S cluster with respect to the membrane plane, but had no effect on that of the cyt b6 hemes. Cu2+ was found to change the orientation of the cyt f heme plane, consistent with binding on the cyt f protein. Within conservative constraints, the data suggest that the ISP is shifted into a position intermediate between the ISP(C) position, when the Q(o) site is unoccupied, and the ISP(B) position, when the Q(o) site is occupied by inhibitors such as DBMIB or stigmatellin. These results support the role of ISP domain movements in Q(o) site catalysis.  相似文献   

7.
The functional role of cytochrome (cyt) b559 in photosystem II (PSII) was investigated in H22Kα and Y18Sα cyt b559 mutants of the cyanobacterium Synechocystis sp. PCC6803. H22Kα and Y18Sα cyt b559 mutant carries one amino acid substitution on and near one of heme axial ligands of cyt b559 in PSII, respectively. Both mutants grew photoautotrophically, assembled stable PSII, and exhibited the normal period-four oscillation in oxygen yield. However, both mutants showed several distinct chlorophyll a fluorescence properties and were more susceptible to photoinhibition than wild type. EPR results indicated the displacement of one of the two axial ligands to the heme of cyt b559 in H22Kα mutant reaction centers, at least in isolated reaction centers. The maximum absorption of cyt b559 in Y18Sα mutant PSII core complexes was shifted to 561 nm. Y18Sα and H22Kα mutant PSII core complexes contained predominately the low potential form of cyt b559. The findings lend support to the concept that the redox properties of cyt b559 are strongly influenced by the hydrophobicity and ligation environment of the heme. When the cyt b559 mutations placed in a D1-D170A genetic background that prevents assembly of the manganese cluster, accumulation of PSII is almost completely abolished. Overall, our data support a functional role of cyt b559 in protection of PSII under photoinhibition conditions in vivo.  相似文献   

8.
Chitinases are known to hydrolyze chitin polymers into smaller chitooligosaccharides. Chitinase from bacterium Serratia proteamaculans (SpChiD) is found to exhibit both hydrolysis and transglycosylation activities. SpChiD belongs to family 18 of glycosyl hydrolases (GH-18). The recombinant SpChiD was crystallized and its three-dimensional structure was determined at 1.49 Å resolution. The structure was refined to an R-factor of 16.2%. SpChiD consists of 406 amino acid residues. The polypeptide chain of SpChiD adopts a (β/α)8 triosephosphate isomerase (TIM) barrel structure. SpChiD contains three acidic residues, Asp149, Asp151 and Glu153 as part of its catalytic scheme. While both Asp149 and Glu153 adopt single conformations, Asp151 is observed in two conformations. The substrate binding cleft is partially obstructed by a protruding loop, Asn30 - Asp42 causing a considerable reduction in the number of available subsites in the substrate binding site. The positioning of loop, Asn30 - Asp42 appears to be responsible for the transglycosylation activity. The structure determination indicated the presence of sulfone Met89 (SMet89). The sulfone methionine residue is located on the surface of the protein at a site where extra domain is attached in other chitinases. This is the first structure of a single domain chitinase with hydrolytic and transglycosylation activities.  相似文献   

9.
Recognition of the 5′ splice site by group II introns involves pairing between an exon binding sequence (EBS) 1 within the ID3 stem–loop of domain 1 and a complementary sequence at the 3′ end of exon 1 (IBS1). To identify the molecular basis for splice site definition of a group IIB ai5γ intron, we probed the solution structure of the ID3 stem–loop alone and upon binding of its IBS1 target by solution NMR. The ID3 stem was structured. The base of the ID3 loop was stacked but displayed a highly flexible EBS1 region. The flexibility of EBS1 appears to be a general feature of the ai5γ and the smaller Oceanobacillus iheyensis (O.i.) intron and may help in effective search of conformational space and prevent errors in splicing as a result of fortuitous base-pairing. Binding of IBS1 results in formation of a structured seven base pair duplex that terminates at the 5′ splice site in spite of the potential for additional A-U and G•U pairs. Comparison of these data with conformational features of EBS1–IBS1 duplexes extracted from published structures suggests that termination of the duplex and definition of the splice site are governed by constraints of the helical geometry within the ID3 loop. This feature and flexibility of the uncomplexed ID3 loop appear to be common for both the ai5γ and O.i. introns and may help to fine-tune elements of recognition in group II introns.  相似文献   

10.
Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b6f and the yeast bc1 complexes that function, respectively, in photosynthetic and respiratory electron transport. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b6f complex overlap four sites in the Chlamydomonas reinhardtii algal b6f complex and four in the yeast bc1 complex. The proposed lipid functions include: (i) interfacial–interhelix mediation between (a) the two 8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and the six trans membrane helices of the peripheral domain (cyt f, iron–sulphur protein (ISP), and four small subunits in the boundary ‘picket fence’); (ii) stabilization of the ISP domain-swapped trans-membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a ‘latch’ to photosystem I provided by the β-carotene chain protruding through the ‘picket fence’; (v) presence of a lipid and chlorophyll a chlorin ring in b6f in place of the eighth helix in the bc1 cyt b polypeptide. The question is posed of the function of the lipid substitution in relation to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide. On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage of p- to n-side trans membrane signalling functions in b6f, with the lipid either mediating this function or substituting for the trans membrane helix of a signalling protein lost in crystallization.  相似文献   

11.
We have recently observed promising success in a mouse model for treating the metabolic disorder phenylketonuria with phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides and Anabaena variabilis. Both molecules, however, required further optimization in order to overcome problems with protease susceptibility, thermal stability, and aggregation. Previously, we optimized PAL from R. toruloides, and in this case we reduced aggregation of the A. variabilis PAL by mutating two surface cysteine residues (C503 and C565) to serines. Additionally, we report the structural and biochemical characterization of the A. variabilis PAL C503S/C565S double mutant and carefully compare this molecule with the R. toruloides engineered PAL molecule. Unlike previously published PAL structures, significant electron density is observed for the two active-site loops in the A. variabilis C503S/C565S double mutant, yielding a complete view of the active site. Docking studies and N-hydroxysuccinimide-biotin binding studies support a proposed mechanism in which the amino group of the phenylalanine substrate is attacked directly by the 4-methylidene-imidazole-5-one prosthetic group. We propose a helix-to-loop conformational switch in the helices flanking the inner active-site loop that regulates accessibility of the active site. Differences in loop stability among PAL homologs may explain the observed variation in enzyme efficiency, despite the highly conserved structure of the active site. A. variabilis C503S/C565S PAL is shown to be both more thermally stable and more resistant to proteolytic cleavage than R. toruloides PAL. Additional increases in thermal stability and protease resistance upon ligand binding may be due to enhanced interactions among the residues of the active site, possibly locking the active-site structure in place and stabilizing the tetramer. Examination of the A. variabilis C503S/C565S PAL structure, combined with analysis of its physical properties, provides a structural basis for further engineering of residues that could result in a better therapeutic molecule.  相似文献   

12.
13.
Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity.  相似文献   

14.
Cytochrome c (cyt c) family proteins, such as horse cyt c, Pseudomonas aeruginosa cytochrome c 551 (PA cyt c 551), and Hydrogenobacter thermophilus cytochrome c 552 (HT cyt c 552), have been used as model proteins to study the relationship between the protein structure and folding process. We have shown in the past that horse cyt c forms oligomers by domain swapping its C-terminal helix, perturbing the Met–heme coordination significantly compared to the monomer. HT cyt c 552 forms dimers by domain swapping the region containing the N-terminal α-helix and heme, where the heme axial His and Met ligands belong to different protomers. Herein, we show that PA cyt c 551 also forms domain-swapped dimers by swapping the region containing the N-terminal α-helix and heme. The secondary structures of the M61A mutant of PA cyt c 551 were perturbed slightly and its oligomer formation ability decreased compared to that of the wild-type protein, showing that the stability of the protein secondary structures is important for domain swapping. The hinge loop of domain swapping for cyt c family proteins corresponded to the unstable region specified by hydrogen exchange NMR measurements for the monomer, although the swapping region differed among proteins. These results show that the unstable loop region has a tendency to become a hinge loop in domain-swapped proteins.  相似文献   

15.
Yu CA  Cen X  Ma HW  Yin Y  Yu L  Esser L  Xia D 《Biochimica et biophysica acta》2008,1777(7-8):1038-1043
Intensive biochemical, biophysical and structural studies of the cytochrome (cyt) bc(1) complex in the past have led to the formulation of the "protonmotive Q-cycle" mechanism for electron and proton transfer in this vitally important complex. The key step of this mechanism is the separation of electrons during the oxidation of a substrate quinol at the Q(P) site with both electrons transferred simultaneously to ISP and cyt b(L) when the extrinsic domain of ISP (ISP-ED) is located at the b-position. Pre-steady state fast kinetic analysis of bc(1) demonstrates that the reduced ISP-ED moves to the c(1)-position to reduce cyt c(1) only after the reduced cyt b(L) is oxidized by cyt b(H). However, the question of how the conformational switch of ISP-ED is initiated remains unanswered. The results obtained from analysis of inhibitory efficacy and binding affinity of two types of Q(P) site inhibitors, Pm and Pf, under various redox states of the bc(1) complex, suggest that the electron transfer from heme b(L) to b(H) is the driving force for the releasing of the reduced ISP-ED from the b-position to c(1)-position to reduce cyt c(1).  相似文献   

16.
Structural implications of Siglec-5-mediated sialoglycan recognition   总被引:1,自引:0,他引:1  
Sialic acid (Sia) Ig-like binding lectins are important mediators of recognition and signaling events among myeloid cells. To investigate the molecular mechanism underlying sialic acid Ig-like lectin (Siglec) functions, we determined the crystal structure of the two N-terminal extracellular domains of human myeloid cell inhibitory receptor Siglec-5 (CD170) and its complexes with two sialylated carbohydrates. The native structure revealed an unusual conformation of the CC′ ligand specificity loop and a unique interdomain disulfide bond. The α(2,3)- and α(2,6)-sialyllactose complexed structures showed a conserved Sia recognition motif that involves both Arg124 and a portion of the G-strand in the V-set domain forming β-sheet-like hydrogen bonds with the glycerol side chain of the Sia. Only few protein contacts to the subterminal sugars are observed and mediated by the highly variable GG′ linker and CC′ loop. These structural observations, in conjunction with surface plasmon resonance binding assays, provide mechanistic insights into linkage-dependent Siglec carbohydrate recognition and suggest that Siglec-5 and other CD33-related Siglec receptors are more promiscuous in sialoglycan recognition than previously understood.  相似文献   

17.
Phlebotomus ariasi is one of the two sandflies transmitting the causative agent of zoonotic leishmaniasis, Leishmania infantum, in France and Iberia, and provides a rare case study of the postglacial re-colonization of France by a Mediterranean species. Four DNA sequences were analysed—mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and two anonymous nuclear loci—for 14–15 French populations and single populations from northeast Spain, northwest Spain, Portugal and Morocco. The presence of cryptic sibling species was not revealed by phylogenetic analyses and testing for reproductive isolation between sympatric populations defined by the two most divergent cyt b haplogroups. No locus was shown to be under positive directional or balancing selection and, therefore, molecular variation was explained demographically. Each nuclear locus showed shallow isolation by distance from Portugal to the French Pyrenees, but for both cyt b and EF-1α there was then a step change to the upland Massif Central, where leading-edge populations showed low diversity at all loci. Multiple genetic divergences and population expansions were detected by analyses of cyt b and dated to the Pleistocene. Endemicity of one cyt b sub-lineage suggested the presence of a refuge north of the Pyrenees during the last glacial period. Monopolization of the Massif Central by genetically differentiated populations of P. ariasi might possibly hinder the northwards spread of leishmaniasis.  相似文献   

18.
Famoxadone is a new cytochrome bc(1) Q(o) site inhibitor that immobilizes the iron-sulfur protein (ISP) in the b conformation. The effects of famoxadone on electron transfer between the iron-sulfur center (2Fe-2S) and cyt c(1) were studied using a ruthenium dimer to photoinitiate the reaction. The rate constant for electron transfer in the forward direction from 2Fe-2S to cyt c(1) was found to be 16,000 s(-1) in bovine cyt bc(1). Binding famoxadone decreased this rate constant to 1,480 s(-1), consistent with a decrease in mobility of the ISP. Reverse electron transfer from cyt c(1) to 2Fe-2S was found to be biphasic in bovine cyt bc(1) with rate constants of 90,000 and 7,300 s(-1). In the presence of famoxadone, reverse electron transfer was monophasic with a rate constant of 1,420 s(-1). It appears that the rate constants for the release of the oxidized and reduced ISP from the b conformation are the same in the presence of famoxadone. The effects of famoxadone binding on electron transfer were also studied in a series of Rhodobacter sphaeroides cyt bc(1) mutants involving residues at the interface between the Rieske protein and cyt c(1) and/or cyt b.  相似文献   

19.
The ubihydroquinone:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important enzyme for photosynthesis and respiration. In bacteria like Rhodobacter capsulatus, this membrane complex has three subunits, the iron?sulfur protein (ISP) with its Fe2S2 cluster, cyt c1 and cyt b, forming two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the electron transfer pathways originating from QH2 oxidation are known, but their associated proton release routes are less well defined. Earlier, we demonstrated that the His291 of cyt b is important for this latter process. In this work, using the bacterial cyt bc1 and site directed mutagenesis, we show that Lys329 of cyt b is also critical for electron and proton transfer at the Qo site. Of the mutants examined, Lys329Arg was photosynthesis proficient and had quasi-wild type cyt bc1 activity. In contrast, the Lys329Ala and Lys329Asp were photosynthesis-impaired and contained defective but assembled cyt bc1. In particular, the bifurcated electron transfer and associated proton(s) release reactions occurring during QH2 oxidation were drastically impaired in Lys329Asp mutant. Furthermore, in silico docking studies showed that in this mutant the location and the H-bonding network around the Fe2S2 cluster of ISP on cyt b surface was different than the wild type enzyme. Based on these experimental findings and theoretical considerations, we propose that the presence of a positive charge at position 329 of cyt b is critical for efficient electron transfer and proton release for QH2 oxidation at the Qo site of cyt bc1.  相似文献   

20.
We identified a spontaneously generated mutant from Synechocystis sp. PCC6803 wild-type cells grown in BG-11 agar plates containing 5 mM Glu and 10 μM DCMU. This mutant carries an R7L mutation on the α-subunit of cyt b559 in photosystem II (PSII). In the recent 2.9 Å PSII crystal structural model, the side chain of this arginine residue is in close contact with the heme propionates of cyt b559. We called this mutant WR7Lα cyt b559. This mutant grew at about the same rate as wild-type cells under photoautotrophical conditions but grew faster than wild-type cells under photoheterotrophical conditions. In addition, 77 K fluorescence and 295 K chlorophyll a fluorescence spectral results indicated that the energy delivery from phycobilisomes to PSII reaction centers was partially inhibited or uncoupled in this mutant. Moreover, WR7Lα cyt b559 mutant cells were more susceptible to photoinhibition than wild-type cells under high light conditions. Furthermore, our EPR results indicated that in a significant fraction of mutant reaction centers, the R7Lα cyt b559 mutation induced the displacement of one of the axial histidine ligands to the heme of cyt b559. On the basis of these results, we propose that the Arg7Leu mutation on the α-subunit of cyt b559 alters the interaction between the APC core complex and PSII reaction centers, which reduces energy delivery from the antenna to the reaction center and thus protects mutant cells from DCMU-induced photo-oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号