首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpLM, an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpLM and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of β-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpLM is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impLM mutants with substitutions or deletions in the Walker A motif failed to complement the impLM deletion mutant for Hcp secretion, which provided evidence that ImpLM may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpLM and another essential T6SS component, ImpKL. Topology and biochemical fractionation analyses suggested that ImpKL is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpLM-ImpKL interaction domains suggested that ImpLM interacts with ImpKL via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpLM interacts with ImpKL, and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.Many pathogenic gram-negative bacteria employ protein secretion systems formed by macromolecular complexes to deliver proteins or protein-DNA complexes across the bacterial membrane. In addition to the general secretory (Sec) pathway (18, 52) and twin-arginine translocation (Tat) pathway (7, 34), which transport proteins across the inner membrane into the periplasm, at least six distinct protein secretion systems occur in gram-negative bacteria (28, 46, 66). These systems are able to secrete proteins from the cytoplasm or periplasm to the external environment or the host cell and include the well-documented type I to type V secretion systems (T1SS to T5SS) (10, 15, 23, 26, 30) and a recently discovered type VI secretion system (T6SS) (4, 8, 22, 41, 48, 49). These systems use ATPase or a proton motive force to energize assembly of the protein secretion machinery and/or substrate translocation (2, 6, 41, 44, 60).Agrobacterium tumefaciens is a soilborne pathogenic gram-negative bacterium that causes crown gall disease in a wide range of plants. Using an archetypal T4SS (9), A. tumefaciens translocates oncogenic transferred DNA and effector proteins to the host and ultimately integrates transferred DNA into the host genome. Because of its unique interkingdom DNA transfer, this bacterium has been extensively studied and used to transform foreign DNA into plants and fungi (11, 24, 40, 67). In addition to the T4SS, A. tumefaciens encodes several other secretion systems, including the Sec pathway, the Tat pathway, T1SS, T5SS, and the recently identified T6SS (72). T6SS is highly conserved and widely distributed in animal- and plant-associated Proteobacteria and plays an important role in the virulence of several human and animal pathogens (14, 19, 41, 48, 56, 63, 74). However, T6SS seems to play only a minor role or even a negative role in infection or virulence of the plant-associated pathogens or symbionts studied to date (5, 37-39, 72).T6SS was initially designated IAHP (IcmF-associated homologous protein) clusters (13). Before T6SS was documented by Pukatzki et al. in Vibrio cholerae (48), mutations in this gene cluster in the plant symbiont Rhizobium leguminosarum (5) and the fish pathogen Edwardsiella tarda (51) caused defects in protein secretion. In V. cholerae, T6SS was responsible for the loss of cytotoxicity for amoebae and for secretion of two proteins lacking a signal peptide, hemolysin-coregulated protein (Hcp) and valine-glycine repeat protein (VgrG). Secretion of Hcp is the hallmark of T6SS. Interestingly, mutation of hcp blocks the secretion of VgrG proteins (VgrG-1, VgrG-2, and VgrG-3), and, conversely, vgrG-1 and vgrG-2 are both required for secretion of the Hcp and VgrG proteins from V. cholerae (47, 48). Similarly, a requirement of Hcp for VgrG secretion and a requirement of VgrG for Hcp secretion have also been shown for E. tarda (74). Because Hcp forms a hexameric ring (41) stacked in a tube-like structure in vitro (3, 35) and VgrG has a predicted trimeric phage tail spike-like structure similar to that of the T4 phage gp5-gp27 complex (47), Hcp and VgrG have been postulated to form an extracellular translocon. This model is further supported by two recent crystallography studies showing that Hcp, VgrG, and a T4 phage gp25-like protein resembled membrane penetration tails of bacteriophages (35, 45).Little is known about the topology and structure of T6SS machinery subunits and the distinction between genes encoding machinery subunits and genes encoding regulatory proteins. Posttranslational regulation via the phosphorylation of Fha1 by a serine-threonine kinase (PpkA) is required for Hcp secretion from Pseudomonas aeruginosa (42). Genetic evidence for P. aeruginosa suggested that the T6SS may utilize a ClpV-like AAA+ ATPase to provide the energy for machinery assembly or substrate translocation (41). A recent study of V. cholerae suggested that ClpV ATPase activity is responsible for remodeling the VipA/VipB tubules which are crucial for type VI substrate secretion (6). An outer membrane lipoprotein, SciN, is an essential T6SS component for mediating Hcp secretion from enteroaggregative Escherichia coli (1). A systematic study of the T6SS machinery in E. tarda revealed that 13 of 16 genes in the evp gene cluster are essential for secretion of T6S substrates (74), which suggests the core components of the T6SS. Interestingly, most of the core components conserved in T6SS are predicted soluble proteins without recognizable signal peptide and transmembrane (TM) domains.The intracellular multiplication F (IcmF) and H (IcmH) proteins are among the few core components with obvious TM domains (8). In Legionella pneumophila Dot/Icm T4SSb, IcmF and IcmH are both membrane localized and partially required for L. pneumophila replication in macrophages (58, 70, 75). IcmF and IcmH are thought to interact with each other in stabilizing the T4SS complex in L. pneumophila (58). In T6SS, IcmF is one of the essential components required for secretion of Hcp from several animal pathogens, including V. cholerae (48), Aeromonas hydrophila (63), E. tarda (74), and P. aeruginosa (41), as well as the plant pathogens A. tumefaciens (72) and Pectobacterium atrosepticum (39). In E. tarda, IcmF (EvpO) interacted with IcmH (EvpN), EvpL, and EvpA in a yeast two-hybrid assay, and its putative nucleotide-binding site (Walker A motif) was not essential for secretion of T6SS substrates (74).In this study, we characterized the topology and interactions of the IcmF and IcmH family proteins ImpLM and ImpKL, which are two essential components of the T6SS of A. tumefaciens. We adapted the nomenclature proposed by Cascales (8), using the annotated gene designation followed by the letter indicated by Shalom et al. (59). Our data indicate that ImpLM and ImpKL are both integral inner membrane proteins and interact with each other via their N-terminal domains residing in the cytoplasm. We also provide genetic evidence showing that ImpLM may function as a nucleoside triphosphate (NTP)-binding protein or nucleoside triphosphatase to mediate T6S machinery assembly and/or substrate secretion.  相似文献   

2.
3.
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium relies on its Salmonella pathogenicity island 2 (SPI2) type III secretion system (T3SS) for intracellular replication and virulence. We report that the oxidoreductase thioredoxin 1 (TrxA) and SPI2 are coinduced for expression under in vitro conditions that mimic an intravacuolar environment, that TrxA is needed for proper SPI2 activity under these conditions, and that TrxA is indispensable for SPI2 activity in both phagocytic and epithelial cells. Infection experiments in mice demonstrated that SPI2 strongly contributed to virulence in a TrxA-proficient background whereas SPI2 did not affect virulence in a trxA mutant. Complementation analyses using wild-type trxA or a genetically engineered trxA coding for noncatalytic TrxA showed that the catalytic activity of TrxA is essential for SPI2 activity in phagocytic cells whereas a noncatalytic variant of TrxA partially sustained SPI2 activity in epithelial cells and virulence in mice. These results show that TrxA is needed for the intracellular induction of SPI2 and provide new insights into the functional integration between catalytic and noncatalytic activities of TrxA and a bacterial T3SS in different settings of intracellular infections.In Escherichia coli, thioredoxin 1 (TrxA, encoded by trxA) is an evolutionary conserved 11-kDa cytosolic highly potent reductase that supports the activities of various oxidoreductases and ribonucleotide reductases (1, 29) and interacts with a number of additional cytoplasmic proteins through the formation of temporary covalent intermolecular disulphide bonds (32). Consequently, as trxA mutants of E. coli (51), Helicobacter pylori (13), and Rhodobacter sphaeroides (34) show increased sensitivity to hydrogen peroxide, TrxA has been defined as a significant oxidoprotectant. In addition, TrxA possess a protein chaperone function that is disconnected from cysteine interactions (30, 32).Salmonella enterica serovar Typhimurium is closely related to E. coli. During divergent evolution, the Salmonella genome acquired a number of virulence-associated genes (20). Many of these genes are clustered on genetic regions termed Salmonella pathogenicity islands (or SPIs). Of these, SPI1 and SPI2 code for separate type III secretion systems (T3SSs). T3SSs are supramolecular virulence-associated machineries that, in several pathogenic gram-negative bacterial species, enable injection of effector proteins from the bacteria into host cells (22, 57). The effector proteins, in turn, manipulate intrinsic host cell functions to facilitate the infection.The SPI1 T3SS of S. serovar Typhimurium is activated for expression in the intestine in response to increased osmolarity and decreased oxygen tension (22, 57). SPI1 effector proteins are primarily secreted into cells that constitute the epithelial layer and interfere with host cell Cdc42 and Rac-1 signaling and actin polymerization. This enables the bacteria to orchestrate their own actin-dependent uptake into nonphagocytic cells (57). SPI1 effector proteins also induce inflammatory signaling and release of interleukin-1β from infected cells (25, 26).Subsequent systemic progression of S. serovar Typhimurium from the intestinal tissue relies heavily on an ability to survive and replicate in phagocytic cells (18, 46, 53, 54). S. serovar Typhimurium uses an additional set of effector proteins secreted by the SPI2 T3SS for replication inside host cells and for coping with phagocyte innate responses to the infection (10, 11, 54). The functions of SPI2 effectors include diversion of vesicular trafficking, induction of apoptotic responses, and manipulation of ubiquitination of host proteins (28, 40, 45, 53). Hence, SPI2 effector proteins create a vacuolar environment that sustains intracellular replication of S. serovar Typhimurium (28).In addition to pathogenicity islands, the in vivo fitness of Salmonella spp. relies on selected functions shared with other enterobacteria. Thus, many virulence genes are integrated into “housekeeping” gene regulatory networks, coded for by a core genome, which steer bacterial stress responses (12, 17, 27, 55). Selected anabolic pathways also contribute to virulence of S. serovar Typhimurium (18, 27), evidently by providing biochemical building blocks for bacterial replication (36).In S. serovar Typhimurium, TrxA is a housekeeping protein that strongly contributes to virulence in cell culture and mouse infection models (8). However, the mechanism by which TrxA activity adds to virulence has not been defined. Here we show that the contribution of TrxA to virulence of S. serovar Typhimurium associates with its functional integration with the SPI2 T3SS under conditions that prevail in the intracellular vacuolar compartment of the host cell. These findings ascribe a novel role to TrxA in bridging environmental adaptations with virulence gene expression and illuminate a new aspect of the interaction between evolutionary conserved and horizontally acquired gene functions in bacteria.  相似文献   

4.
5.
6.
7.
8.
Bioreactor cultures of Escherichia coli recombinants carrying phaBAC and phaP of Azotobacter sp. FA8 grown on glycerol under low-agitation conditions accumulated more poly(3-hydroxybutyrate) (PHB) and ethanol than at high agitation, while in glucose cultures, low agitation led to a decrease in PHB formation. Cells produced smaller amounts of acids from glycerol than from glucose. Glycerol batch cultures stirred at 125 rpm accumulated, in 24 h, 30.1% (wt/wt) PHB with a relative molecular mass of 1.9 MDa, close to that of PHB obtained using glucose.Polyhydroxyalkanoates (PHAs), accumulated as intracellular granules by many bacteria under unfavorable conditions (5, 8), are carbon and energy reserves and also act as electron sinks, enhancing the fitness of bacteria and contributing to redox balance (9, 11, 19). PHAs have thermoplastic properties, are totally biodegradable by microorganisms present in most environments, and can be produced from different renewable carbon sources (8).Poly(3-hydroxybutyrate) (PHB) is the best known PHA, and its accumulation in recombinant Escherichia coli from several carbon sources has been studied (1, 13). In the last few years, increasing production of biodiesel has caused a sharp fall in the cost of its main by-product, glycerol (22). Its use for microbial PHA synthesis has been analyzed for natural PHA producers, such as Methylobacterium rhodesianum, Cupriavidus necator (formerly called Ralstonia eutropha) (3), several Pseudomonas strains (22), the recently described bacterium Zobellella denitrificans (7), and a Bacillus sp. (18), among others. Glycerol has also been used for PHB synthesis in recombinant E. coli (12, 15). PHAs obtained from glycerol were reported to have a significantly lower molecular weight than polymer synthesized from other substrates, such as glucose or lactose (10, 23).Apart from the genes that catalyze polymer biosynthesis, natural PHA producers have several genes that are involved in granule formation and/or have regulatory functions, such as phasins, granule-associated proteins that have been shown to enhance polymer synthesis and the number and size of PHA granules (17, 24). The phasin PhaP has been shown to exert a beneficial effect on bacterial growth and PHB accumulation from glycerol in bioreactor cultures of strain K24KP, a recombinant E. coli that carries phaBAC and phaP of Azotobacter sp. FA8 (6).Because the redox state of the cells is known to affect the synthesis of PHB (1, 4, 14), the present study investigates the behavior of this recombinant strain under different aeration conditions, by using two substrates, glucose and glycerol, with different oxidation states.  相似文献   

9.
10.
A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.The division of an Escherichia coli cell into two daughter cells requires a complex of proteins, the divisome, to coordinate the constriction of the three layers of the Gram-negative cell envelope. In E. coli, there are 10 proteins known to be essential for cell division; in the absence of any one of these proteins, cells continue to elongate and to replicate and segregate their chromosomes but fail to divide (29). Numerous additional nonessential proteins have been identified that localize to midcell and assist in cell division (7-9, 20, 25, 34, 56, 59).A localization dependency pathway has been determined for the 10 essential division proteins (FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the divisome assembles in a hierarchical manner (29). Based on this pathway, a given protein depends on the presence of all upstream proteins (to the left) for its localization and that protein is then required for the localization of the downstream division proteins (to the right). While the localization dependency pathway of cell division proteins suggests that a sequence of interactions is necessary for divisome formation, recent work using a variety of techniques reveals that a more complex web of interactions among these proteins is necessary for a functionally stable complex (6, 10, 19, 23, 24, 30-32, 40). While numerous interactions have been identified between division proteins, further work is needed to define which domains are involved and which interactions are necessary for assembly of the divisome.One subcomplex of the divisome, composed of the bitopic membrane proteins FtsB, FtsL, and FtsQ, appears to be the bridge between the predominantly cytoplasmic cell division proteins and the predominantly periplasmic cell division proteins (10). FtsB, FtsL, and FtsQ share a similar topology: short amino-terminal cytoplasmic domains and larger carboxy-terminal periplasmic domains. This tripartite complex can be divided further into a subcomplex of FtsB and FtsL, which forms in the absence of FtsQ and interacts with the downstream division proteins FtsW and FtsI in the absence of FtsQ (30). The presence of an FtsB/FtsL/FtsQ subcomplex appears to be evolutionarily conserved, as there is evidence that the homologs of FtsB, FtsL, and FtsQ in the Gram-positive bacteria Bacillus subtilis and Streptococcus pneumoniae also assemble into complexes (18, 52, 55).The assembly of the FtsB/FtsL/FtsQ complex is important for the stabilization and localization of one or more of its component proteins in both E. coli and B. subtilis (11, 16, 18, 33). In E. coli, FtsB and FtsL are codependent for their stabilization and for localization to midcell, while FtsQ does not require either FtsB or FtsL for its stabilization or localization to midcell (11, 33). Both FtsL and FtsB require FtsQ for localization to midcell, and in the absence of FtsQ the levels of full-length FtsB are significantly reduced (11, 33). The observed reduction in full-length FtsB levels that occurs in the absence of FtsQ or FtsL results from the degradation of the FtsB C terminus (33). However, the C-terminally degraded FtsB generated upon depletion of FtsQ can still interact with and stabilize FtsL (33).While a portion of the FtsB C terminus is dispensable for interaction with FtsL and for the recruitment of the downstream division proteins FtsW and FtsI, it is required for interaction with FtsQ (33). Correspondingly, the FtsQ C terminus also appears to be important for interaction with FtsB and FtsL (32, 61). The interaction between FtsB and FtsL appears to be mediated by the predicted coiled-coil motifs within the periplasmic domains of the two proteins, although only the membrane-proximal half of the FtsB coiled coil is necessary for interaction with FtsL (10, 32, 33). Additionally, the transmembrane domains of FtsB and FtsL are important for their interaction with each other, while the cytoplasmic domain of FtsL is not necessary for interaction with FtsB, which has only a short 3-amino-acid cytoplasmic domain (10, 33).In this study, we focused on the interaction domains of FtsL. We find that, as with FtsB, the C terminus of FtsL is required for the interaction of FtsQ with the FtsB/FtsL subcomplex while the cytoplasmic domain of FtsL is involved in recruitment of the downstream division proteins. Finally, we provide a comprehensive analysis of the presence of FtsB, FtsL, and FtsQ homologs among bacteria and find that the proteins of this complex are likely more widely distributed among bacteria than was previously thought.  相似文献   

11.
12.
Chromosomal replication initiation requires the regulated formation of dynamic higher order complexes. Escherichia coli ATP-DnaA forms a specific multimer on oriC, resulting in DNA unwinding and DnaB helicase loading. DiaA, a DnaA-binding protein, directly stimulates the formation of ATP-DnaA multimers on oriC and ensures timely replication initiation. In this study, DnaA Phe-46 was identified as the crucial DiaA-binding site required for DiaA-stimulated ATP-DnaA assembly on oriC. Moreover, we show that DiaA stimulation requires only a subgroup of DnaA molecules binding to oriC, that DnaA Phe-46 is also important in the loading of DnaB helicase onto the oriC-DnaA complexes, and that this process also requires only a subgroup of DnaA molecules. Despite the use of only a DnaA subgroup, DiaA inhibited DnaB loading on oriC-DnaA complexes, suggesting that DiaA and DnaB bind to a common DnaA subgroup. A cellular factor can relieve the DiaA inhibition, allowing DnaB loading. Consistently, DnaA F46A caused retarded initiations in vivo in a DiaA-independent manner. It is therefore likely that DiaA dynamics are crucial in the regulated sequential progress of DnaA assembly and DnaB loading. We accordingly propose a model for dynamic structural changes of initial oriC complexes loading DiaA or DnaB helicase.In many cellular organisms, multiple proteins form dynamic complexes on the chromosomal origin for the initiation of DNA replication. In Escherichia coli, ATP-DnaA forms a specific multimeric complex on the origin (oriC), resulting in an initiation complex that is competent in the replicational initiation (13). ATP-DnaA complexes, but not ADP-DnaA complexes, unwind the DNA duplex within the oriC DNA unwinding element (DUE)2 with the aid of superhelicity of oriC DNA and heat energy, resulting in the formation of open complexes (4, 5). At the unwound region, the loading of a DnaB replicative helicase is mediated by a DnaC helicase loader, resulting in the formation of the prepriming complex (6, 7). DnaG primase then complexes with DnaB loaded on the single-stranded (ss) region, which leads to primer synthesis and the loading of DNA polymerase III holoenzyme (8). The cellular ATP-DnaA level fluctuates during the replication cycle with a peak around the time of initiation (9). At the post-initiation stage, DnaA-ATP is hydrolyzed in a manner depending on ADP-Hda protein and the DNA-loaded form of the β-clamp subunit of the polymerase III holoenzyme, yielding inactive ADP-DnaA (1013). This DnaA inactivation system is called RIDA (regulatory inactivation of DnaA). Hda consists of a short N-terminal region bearing a clamp-binding motif and a C-terminal AAA+ domain. This protein is activated by ADP binding, which allows interaction with ATP-DnaA in a DNA-loaded β-clamp-dependent manner. RIDA decreases the level of cellular ATP-DnaA in a replication-coordinated manner and represses extra initiation events (911).The timing of chromosomal replication initiation is strictly regulated and needs to be linked to the regulation of the dynamic conformational changes in the DnaA-oriC complexes, as well as to the cellular ATP-DnaA levels. DiaA is a DnaA-binding protein that stimulates ATP-DnaA assembly on oriC and thus the initiation of replication (14, 15). DiaA mutants show delayed initiation and even asynchronous initiations of multiple origins when cells are rapidly growing and multiple rounds of replication are progressing simultaneously. DiaA is a homotetramer, and each protomer has a DnaA-binding site, which allows the simultaneous binding of multiple DnaA molecules to the homotetramer and the stimulation of cooperative binding of ATP-DnaA molecules on oriC.DnaA consists of four functional domains as follows: the C-terminal domain IV has a DNA-binding helix-turn-helix structure (16) and domain III is an AAA+ domain that contains ATP-interacting motifs, homomultimer formation sites, and specific residues, termed B/H motifs, that can interact with ssDNA of the unwound DUE (1721). Domain III forms a head-to-tail homomultimer whose overall structure is altered by ATP binding. It is possible that this multimer forms a spiral shape, in which one round of the spiral contains approximately seven protomers, and the resultant central pore carries the B/H motifs on the surface (21, 22). Domain II is a flexible, unstructured linker (23, 24), and domain I has a compactly folded structure, which interacts with several proteins including domain I per se, DiaA, and DnaB helicase (14, 15, 23, 25, 26). Domain I most likely forms homodimers in a head-to-head manner, which would line up the DnaB-interacting sites within this domain, thereby promoting DnaB loading (23).E. coli oriC carries a dozen DnaA-binding sites, including the high affinity 9-mer DnaA boxes (R1 and R4 sites) and ATP-DnaA-preferential low affinity sites (ADLAS), which include the I and τ sites (20, 27). The interaction of ATP-DnaA with ADLAS is specifically important for the activation of DnaA-oriC complexes. DiaA stimulates the cooperative binding of ATP-DnaA on oriC, especially on ADLAS, resulting in the formation of open complexes (15). DnaB helicase stably complexes with DnaC, and the resulting DnaBC complexes can interact with open complexes, loading DnaB onto ssDNA of the unwound DUE. We have previously determined the tertiary structure of the DnaA domain I and found that DnaA Glu-21, within this domain, is a DnaB interaction site, specifically required for DnaB loading onto open complexes (23). The fundamental complex structure, the spatial organization of oriC-DnaA multimers complexed with DiaA, and those involved in the loading of DnaB onto oriC complexes have yet to be revealed.In this study, our first step was the determination of a crucial DiaA-binding site, Phe-46, on DnaA domain I, using NMR and mutant analyses. Next we found that this site is required for DiaA-dependent stimulation of initiation complex formation and that only a subgroup of DnaA molecules, assembled on oriC, is sufficient for DiaA stimulation. Furthermore, we revealed that DnaA Phe-46 is also important for interactions with DnaB helicase. Like the DiaA stimulation, the stimulation of DnaB loading requires only a subgroup of DnaA molecules assembled on oriC. Competition analyses suggested that DiaA and DnaB interact with a common DnaA subgroup on oriC. Only a specific DnaA subgroup in an initiation complex might expose domain I to a position available for the protein loading. Cells might contain a modulator for the inhibition of DnaB loading by DiaA. Thus we infer that DiaA can regulate the initiation of replication both positively and negatively, i.e. it promotes ATP-DnaA assembly and inhibits DnaB loading, thereby ensuring the sequential and regulated progress of initiation reactions. In addition we propose a novel model for the structure of initiation complexes that includes DiaA and suggest possible modes of interactions for DiaA and DnaB on the initial complexes.  相似文献   

13.
We describe a modification of the most probable number (MPN) method for rapid enumeration of antimicrobial-resistant Escherichia coli bacteria in aqueous environmental samples. E. coli (total and antimicrobial-resistant) bacteria were enumerated in effluent samples from a hospital (n = 17) and municipal sewers upstream (n = 5) and downstream (n = 5) from the hospital, effluent samples from throughout the treatment process (n = 4), and treated effluent samples (n = 13). Effluent downstream from the hospital contained a higher proportion of antimicrobial-resistant E. coli than that upstream from the hospital. Wastewater treatment reduced the numbers of E. coli bacteria (total and antimicrobial resistant); however, antimicrobial-resistant E. coli was not eliminated, and E. coli resistant to cefotaxime (including extended-spectrum beta-lactamase [ESBL] producers), ciprofloxacin, and cefoxitin was present in treated effluent samples.The emergence and dissemination of antimicrobial resistance are well established as clinical problems that affect human and animal health. Escherichia coli is an important element of the flora of the human and animal intestine and a significant pathogen associated with gastrointestinal infection, urinary tract infections, and a variety of other extraintestinal infections (4). E. coli shed into the environment can survive for significant periods (7, 14, 23). Detection of E. coli in water and food is widely used as a microbiological indication of fecal contamination.Data on the significance of environmental contamination with antimicrobial-resistant E. coli for human health are limited. Previous reports have shown that antimicrobial-resistant strains of bacteria are present in various effluents, such as hospital effluent discharge (8, 10, 16, 21), inflow effluent to a wastewater treatment plant (WWTP) (15), and outflow-treated effluent from a wastewater treatment plant (2, 12, 13, 18, 27). A wastewater treatment plant treating effluent from hospitals may be associated with discharge of relatively high levels of antimicrobial-resistant E. coli compared with those of a plant treating municipal effluent that does not include hospital effluent discharge (22). There are few reports of quantitative data on antimicrobial-resistant E. coli bacteria in effluent, reflecting the lack of a convenient method for their enumeration (12, 15, 22). Previous methods available for the detection of antimicrobial-resistant E. coli in a water sample have generally involved the isolation of E. coli and the selection of some isolates for susceptibility testing. In such cases, the proportions of antimicrobial-resistant organisms are based only on those isolates selected and are therefore not representative of the entire population. By adding the antimicrobial agent of interest to the water sample before testing, we have adapted a commercial most probable number (MPN) method (the Colilert system) for enumerating the total number of E. coli isolates resistant to that agent in a sample.  相似文献   

14.
We successfully substituted Escherichia coli''s origin of replication oriC with the origin region of Vibrio cholerae chromosome I (oriCIVc). Replication from oriCIVc initiated at a similar or slightly reduced cell mass compared to that of normal E. coli oriC. With respect to sequestration-dependent synchrony of initiation and stimulation of initiation by the loss of Hda activity, replication initiation from oriC and oriCIVc were similar. Since Hda is involved in the conversion of DnaAATP (DnaA bound to ATP) to DnaAADP (DnaA bound to ADP), this indicates that DnaA associated with ATP is limiting for V. cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCIVc allowed us to specifically address the role of the Dam methyltransferase and SeqA in replication initiation from oriCIVc. We show that when E. coli''s origin of replication is substituted by oriCIVc, dam, but not seqA, becomes important for growth, arguing that Dam methylation exerts a critical function at the origin of replication itself. We propose that Dam methylation promotes DnaA-assisted successful duplex opening and replisome assembly at oriCIVc in E. coli. In this model, methylation at oriCIVc would ease DNA melting. This is supported by the fact that the requirement for dam can be alleviated by increasing negative supercoiling of the chromosome through oversupply of the DNA gyrase or loss of SeqA activity.The genomes of Vibrio cholerae and several related Vibrio spp. are distributed between two circular chromosomes. Characterization of the origins of replication of V. cholerae chromosomes I and II (oriCIVc and oriCIIVc, respectively) has shown that oriCIVc is similar to the origin of replication of the Escherichia coli chromosome, oriC, whereas oriCIIVc is completely different (20). Like oriC, oriCIVc has five R-type DnaA boxes (53) as well as boxes conforming to the I and τ types (52, 61), and the DnaA protein is the rate-limiting factor in the initiation of replication in both cases (18). In E. coli, DnaA associates with both ATP and ADP, and the ATP-bound form is absolutely required for initiation to take place (reviewed in reference 60). When reaching a critical level, DnaAATP (DnaA bound to ATP) protein is proposed to form a helical filament, anchored at one or more R-boxes (54, 69), in which origin DNA wraps around the outside of the DnaA core (21) or where the DnaA wraps around oriC (61). In both cases, the topology of the DnaA-oriC nucleoprotein complex leads to formation of compensatory negative supercoiling that facilitates unwinding of the adjacent AT-rich region resulting in initiation. In both models, DnaAATP is absolutely required for initiation, and in agreement with this, DnaAATP was found to be the rate-limiting factor for initiation in vivo (69).The V. cholerae oriCIVc also resembles oriC in having many potential sites for methylation by DNA adenine methyltransferase (Dam), although the number and position of the GATC sites differ slightly (see Fig. Fig.1).1). The role of Dam in initiation of chromosome replication has been studied mainly in E. coli. After initiation of DNA replication has occurred on a fully methylated oriC, the newly replicated hemimethylated origins are sequestered from the Dam methyltransferase and from reinitiation for approximately one-third of a doubling time. During this time interval, the activity and amount of DnaA available for initiation are reduced to prevent immediate reinitiation (reviewed in references 57 and 83). The sequestration is carried out by the SeqA protein that binds hemimethylated oriC GATC sequences with high affinity (48). In the absence of Dam methylation or SeqA, the same origin can be reinitiated in the same cell cycle, and initiations become asynchronous (9, 48).Open in a separate windowFIG. 1.Alignment of the E. coli minimal oriC with the corresponding region from V. cholerae chromosome I. The AT-rich sequence and the three 13-mer repeats L, M, and R found in E. coli (5) are indicated above the alignment. The 6-mer (A/T)GATCT boxes (80) are underlined. Other DnaA binding sites, i.e., R-boxes (53), I-boxes (52), and τ-boxes (61), are shown as boxed regions. Dam methylation sites (GATC) are shaded gray. The experimentally defined binding sites for integration host factor (IHF) (22) and factor for inversion stimulation (FIS) (65) in E. coli are indicated, and bases that match the consensus sequence are in boldface type. The single base difference between oriCIVc and oriCIVc* (see Materials and Methods) in the minimal origin region is shown below the two sequences. A gap introduced to maximize alignment of the two sequences is indicated by a dash in the sequence. Nucleotides that are identical in the two sequences are indicated by an asterisk below the two sequences.Genes encoding a Dam homologue and a SeqA homologue are present on Vibrio genomes, but there appear to be some differences between the functions of the proteins in E. coli and V. cholerae. dam has been found to be an essential gene in V. cholerae (33, 15), which is not the case in E. coli (48, 51). Conflicting data exist concerning the essentiality of seqA in V. cholerae (15, 72). The roles of Dam and SeqA in oriCIVc replication have been studied using minichromosomes, i.e., plasmids replicating exclusively from a cloned copy of oriCIVc (20). oriCIVc-based minichromosomes can replicate in wild-type E. coli cells but were unable to replicate in dam, seqA, and seqA dam mutants (20). The extrachromosomal existence of minichromosomes is dependent on their ability to initiate replication in synchrony with the chromosomal origin (46, 75). In E. coli cells mutated in dam or seqA, incompatibility exists between the oriC carried on minichromosomes and that of the chromosome due to origin competition (13), and when minichromosomes are maintained under selective pressure, they integrate into the origin region of the host chromosome (46, 75). Minichromosomes based on oriCIVc may also compete with the E. coli oriC for initiations in dam or seqA mutant cells. However, due to limited sequence identity, they may not be able to integrate into the E. coli chromosome. This could provide an explanation for the failure to introduce oriCIVc minichromosomes into dam and seqA mutant cells (20). Both dam and seqA genes could therefore be required for viability of V. cholerae for reasons not related to chromosome replication. In addition to its role in DNA replication, roles for Dam methylation in gene regulation and DNA repair have also been demonstrated in a number of bacteria (for reviews, see references 11, 45, 47, and 50). For V. cholerae as well as for Salmonella spp. and Yersinia pseudotuberculosis, Dam plays a role in virulence possibly through regulation of virulence gene expression (33). Less is known about the functions of seqA apart from its role in E. coli replication, but it has been suggested that SeqA functions as a nucleoid-organizing protein (for a review, see reference 83), and the E. coli chromosome has been demonstrated to have increased supercoiling in a seqA strain (85).Here we describe the first in vivo evidence that Dam plays an important role in the initiation of replication by facilitating the replication initiation at oriCIVc in E. coli. In addition, we show that SeqA does not carry an essential role in the initiation of replication.  相似文献   

15.
16.
Multiplex PCR analyses of DNAs from genotypically unique Escherichia coli strains isolated from the feces of 138 humans and 376 domesticated animals from Jeonnam Province, South Korea, performed using primers specific for the chuA and yjaA genes and an unknown DNA fragment, TSPE4.C2, indicated that none of the strains belonged to E. coli phylogenetic group B2. In contrast, phylogenetic group B2 strains were detected in about 17% (8 of 48) of isolates from feces of 24 wild geese and in 3% (3 of 96) of isolates obtained from the Yeongsan River in Jeonnam Province, South Korea. The distribution of E. coli strains in phylogenetic groups A, B1, and D varied depending on the host examined, and there was no apparent seasonal variation in the distribution of strains in phylogenetic groups among the Yeongsan River isolates. The distribution of four virulence genes (eaeA, hlyA, stx1, and stx2) in isolates was also examined by using multiplex PCR. Virulence genes were detected in about 5% (38 of 707) of the total group of unique strains examined, with 24, 13, 13, and 9 strains containing hlyA, eaeA, stx2, and stx1, respectively. The virulence genes were most frequently present in phylogenetic group B1 strains isolated from beef cattle. Taken together, results of these studies indicate that E. coli strains in phylogenetic group B2 were rarely found in humans and domesticated animals in Jeonnam Province, South Korea, and that the majority of strains containing virulence genes belonged to phylogenetic group B1 and were isolated from beef cattle. Results of this study also suggest that the relationship between the presence and types of virulence genes and phylogenetic groupings may differ among geographically distinct E. coli populations.Escherichia coli is a normal inhabitant of the lower intestinal tract of warm-blooded animals and humans. While the majority of E. coli strains are commensals, some are known to be pathogenic, causing intestinal and extraintestinal diseases, such as diarrhea and urinary tract infections (42). Phylogenetic studies done using multilocus enzyme electrophoresis and 72 E. coli strains in the E. coli reference collection showed that E. coli strains can be divided into four phylogenetic groups (A, B1, B2, and D) (20, 41, 48). Recently, a potential fifth group (E) has also been proposed (11). Since multiplex PCR was developed for analysis of phylogenetic groups (6), a number of studies have analyzed a variety of E. coli strains for their phylogenetic group association (10, 12, 17, 18, 23, 54). Duriez et al. (10) reported the possible influence of geographic conditions, dietary factors, use of antibiotics, and/or host genetic factors on the distribution of phylogenetic groups among 168 commensal E. coli strains isolated from human stools from three geographically distinct populations in France, Croatia, and Mali. Random-amplified polymorphic DNA analysis of the intraspecies distribution of E. coli in pregnant women and neonates indicated that there was a correlation between the distribution of phylogenetic groups, random-amplified polymorphic DNA groups, and virulence factors (54). Moreover, based on comparisons of the distribution of E. coli phylogenetic groups among humans of different sexes and ages, it has been suggested that E. coli genotypes are likely influenced by morphological, physiological, and dietary differences (18). In addition, climate has also been proposed to influence the distribution of strains within E. coli phylogenetic groups (12). There are now several reports indicating that there is a potential relationship between E. coli phylogenetic groups, age, and disease. For example, E. coli isolates belonging to phylogenetic group B2 have been shown to predominate in infants with neonatal bacterial meningitis (27) and among urinary tract and rectal isolates (55). Also, Nowrouzian et al. (39) and Moreno et al. (37) reported that strains belonging to phylogenetic group B2 persisted among the intestinal microflora of infants and were more likely to cause clinical symptoms.Boyd and Hartl (2) reported that among the E. coli strains in the E. coli reference and the diarrheagenic E. coli collections, strains in phylogenetic group B2 carry the greatest number of virulence factors, followed by those in group D. Virulence factors carried by group B2 strains are thought to contribute to their strong colonizing capacity; a greater number of virulence genes have been detected in resident strains than in transient ones (38). Moreover, a mouse model of extraintestinal virulence showed that phylogenetic group B2 strains killed mice at greater frequency and possessed more virulence determinants than strains in other phylogenetic groups, suggesting a link between phylogeny and virulence genes in E. coli extraintestinal infection (45). In contrast, Johnson and Kuskowski (25) suggested that a group B2 ancestral strain might have simply acquired virulence genes by chance and that these genes were vertically inherited by group members during clonal expansion. However, numerous studies published to date suggest that there is a relationship between the genomic background of phylogenetic group B2 and its association with virulence factors (12, 28, 35, 39, 45).Both enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC, respectively) strains are among the most important food-borne pathogens worldwide, often causing severe gastrointestinal disease and fatal infections (13). While EPEC strains cause diarrhea and generally do not produce enterotoxin, they possess an adherence factor which is controlled by the chromosomal gene eaeA, encoding intimin (8). Unlike the EPEC strains, however, the EHEC strains typically contain the hlyA, stx1, and stx2 virulence genes, encoding hemolysins and Shiga-like type 1 and 2 toxins, respectively, and eaeA. The ability to detect EHEC has been greatly facilitated by the use of multiplex PCR (13, 44, 53). Several studies have shown that strains producing Shiga-like toxin 2 are more frequently found in cases of hemolytic-uremic syndrome than are those containing Shiga-like toxin 1 (30, 43, 46, 49).In the study reported here, we examined the distribution of phylogenetic groups and the prevalence of virulence genes in 659 genotypically unique E. coli strains isolated from humans and domestic animals in South Korea. In addition, we also tested 48 and 96 nonunique E. coli isolates from wild geese and the Yeongsan River, respectively, for phylogenetic distribution and virulence gene profiles. Here, we report that contrary to what has been previously reported in other parts of the world, no E. coli strains belonging to phylogenetic group B2 were found in domesticated animals and in humans from Jeonnam Province, South Korea. We also report that among the strains we examined, virulence genes were mainly found in phylogenetic group B1 strains isolated from beef cattle. Results of these studies may prove to be useful for the development of risk management strategies to maintain public health.  相似文献   

17.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

18.
19.
A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.Bacterial biofilms are complex communities of bacterial cells living in close association with a surface (17). Bacterial cells in these protected environments are often resistant to multiple factors, including antimicrobials, changes in the pH, oxygen radicals, and host immune defenses (19, 38). Biofilm formation is a property of many bacterial species, and a range of molecular mechanisms that facilitate this process have been described (2, 3, 11, 14, 16, 29, 33, 34). Often, the ability to form a biofilm is dependent on the production of adhesins on the bacterial cell surface. In Escherichia coli, biofilm formation is enhanced by the production of certain types of fimbriae (e.g., type 1 fimbriae, type 3 fimbriae, F1C, F9, curli, and conjugative pili) (14, 23, 25, 29, 33, 39, 46), cell surface adhesins (e.g., autotransporter proteins such as antigen 43, AidA, TibA, EhaA, and UpaG) (21, 34, 35, 40, 43), and flagella (22, 45).The close proximity of bacterial cells in biofilms creates an environment conducive for the exchange of genetic material. Indeed, plasmid-mediated conjugation in monospecific and mixed E. coli biofilms has been demonstrated (6, 18, 24, 31). The F plasmid represents the best-characterized conjugative system for biofilm formation by E. coli. The F pilus mediates adhesion to abiotic surfaces and stabilizes the biofilm structure through cell-cell interactions (16, 30). Many other conjugative plasmids also contribute directly to biofilm formation upon derepression of the conjugative function (16).One example of a conjugative system employed by gram-negative Enterobacteriaceae is the type 4 secretion (T4S) system. The T4S system is a multisubunit structure that spans the cell envelope and contains a secretion channel often linked to a pilus or other surface filament or protein (8). The Agrobacterium tumefaciens VirB-VirD4 system is the archetypical T4S system and is encoded by 11 genes in the virB operon and one gene (virD4) in the virD operon (7, 8). Genes with strong homology to genes in the virB operon have also been identified on other conjugative plasmids. For example, the pilX1 to pilX11 genes on the E. coli R6K IncX plasmid and the virB1 to virB11 genes are highly conserved at the nucleotide level (28).We recently described identification and characterization of the mrk genes encoding type 3 fimbriae in a uropathogenic strain of E. coli isolated from a patient with a nosocomial catheter-associated urinary tract infection (CAUTI) (29). The mrk genes were located on a conjugative plasmid (pMAS2027) and were strongly associated with biofilm formation. In this study we determined the entire sequence of plasmid pMAS2027 and revealed the presence of conjugative transfer genes homologous to the pilX1 to pilX11 genes of E. coli R6K (in addition to the mrk genes). We show here that biofilm formation is driven primarily by type 3 fimbriae and that the T4S apparatus is unable to mediate biofilm growth in the absence of the mrk genes. Finally, we demonstrate that conjugative transfer of pMAS2027 within a mixed biofilm confers biofilm formation properties on recipient cells due to acquisition of the type 3 fimbria-encoding mrk genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号