共查询到20条相似文献,搜索用时 0 毫秒
1.
Martin Frenkel Carsten Külheim Hanna Johansson Jänkänpää Oskar Skogström Luca Dall'Osto Jon Ågren Roberto Bassi Thomas Moritz Jon Moen Stefan Jansson 《BMC plant biology》2009,9(1):12-16
Background
Plant performance is affected by the level of expression of PsbS, a key photoprotective protein involved in the process of feedback de-excitation (FDE), or the qE component of non-photochemical quenching, NPQ. 相似文献2.
Amyloplasts are hypothesized to play a key role in the cellular mechanisms of gravity perception in plants. While previous studies have examined the effects of starch deficiency on gravitropic sensitivity, in this paper, we report on gravitropism in plants with a greater amount of starch relative to the normal wild type. Thus, we have studied the sex1 (starch excess) mutant of Arabidopsis thaliana, which accumulates extra starch because it is defective in a protein involved in the regulation of starch mobilization. Compared to the wild type (WT), sex1 seedlings contained excess starch in cotyledons, hypocotyls, the root-hypocotyl transition zone, the body of the root, root hairs, and in peripheral rootcap cells. Sedimented amyloplasts were found in both the WT and in sex1 in the rootcap columella and in the endodermis of stems, hypocotyls, and petioles. In roots, the starch content and amyloplast sedimentation in central columella cells and the gravitropic sensitivity were comparable in sex1 and the WT. However, in hypocotyls, the sex1 mutant was much more sensitive to gravity during light-grown conditions compared to the WT. This difference was correlated to a major difference in size of plastids in gravity-perceiving endodermal cells between the two genotypes (i.e., sex1 amyloplasts were twice as big). These results are consistent with the hypothesis that only very large changes in starch content relative to the WT affect gravitropic sensitivity, thus indicating that wild-type sensing is not saturated. 相似文献
3.
Four Arabidopsis thaliana ecotypes were grown at 14 degrees C and 22 degrees C under two light conditions (300 microE m-2 s-1 or 150 microE m-2 s-1) and the effect of temperature on their growth and flowering time was studied. Flowering occurred within 31 days (experimental period) at 22 degrees C, whereas a decrease in growth temperature resulted in a delay in flowering (63 days) under both light conditions. At 14 degrees C, membrane-bound APX (tAPX) activity decreased and total chlorophyll (Chl) content increased with growth under both light conditions. However, at 22 degrees C, the tAPX activity increased and total Chl content decreased with growth under both light conditions. These results suggest that at 22 degrees C oxidative stress was high under both light conditions and consequently Chl content decreased under stressful conditions or vice versa for all the four A. thaliana ecotypes studied. Under both the temperature and light conditions, soluble APX activity showed an irregular pattern of growth. The increase in tAPX activity, with growth only at 22 degrees C but not at 14 degrees C, suggests increased H2O2 formation in flowering plants at 22 degrees C for all the four A. thaliana ecotypes studied. Before flowering, the tAPX activity showed a significantly negative correlation with flowering time. Higher oxidative stress in the lower-latitude ecotypes might induce earlier flowering than the higher-latitude ecotypes. From these results, we propose a hypothesis that H2O2 is one of the possible factors in flower induction. 相似文献
4.
5.
Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions 下载免费PDF全文
Renata Szymańska Beatrycze Nowicka Michał Gabruk Sława Glińska Sylwia Michlewska Jolanta Dłużewska Anna Sawicka Jerzy Kruk Roosa Laitinen 《Physiologia plantarum》2015,154(2):194-209
During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik‐5 (Lov‐5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high‐light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non‐photochemical quenching than Lov‐5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)‐pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions. 相似文献
6.
Hypocotyl cell elongation has been studied as a model to understand how cellular expansion contributes to plant organ growth. Hypocotyl elongation is affected by multiple environmental factors, including light quantity and light quality. Red light inhibits hypocotyl growth via the phytochrome signaling pathways. Proteins of the FLAVIN-BINDING KELCH REPEAT F-BOX 1 / LOV KELCH PROTEIN 2 / ZEITLUPE family are positive regulators of hypocotyl elongation under red light in Arabidopsis. These proteins were suggested to reduce phytochrome-mediated inhibition of hypocotyl elongation. Here, we show that ZEITLUPE also functions as a positive regulator in warmth-induced hypocotyl elongation under light in Arabidopsis. 相似文献
7.
Aina E. Prinzenberg Lucia Campos-Dominguez Willem Kruijer Jeremy Harbinson Mark G. M. Aarts 《Plant, cell & environment》2020,43(8):2000-2013
Low, but non-freezing, temperatures have negative effects on plant growth and development. Despite some molecular signalling pathways being known, the mechanisms causing different responses among genotypes are still poorly understood. Photosynthesis is one of the processes that are affected by low temperatures. Using an automated phenotyping platform for chlorophyll fluorescence imaging the steady state quantum yield of photosystem II (PSII) electron transport (ΦPSII) was measured and used to quantify the effect of moderately low temperature on a population of Arabidopsis thaliana natural accessions. Observations were made over the course of several weeks in standard and low temperature conditions and a strong decrease in ΦPSII upon the cold treatment was found. A genome wide association study identified several quantitative trait loci (QTLs) that are associated with changes in ΦPSII in low temperature. One candidate for a cold specific QTL was validated with a mutant analysis to be one of the genes that is likely involved in the PSII response to the cold treatment. The gene encodes the PSII associated protein PSB27 which has already been implicated in the adaptation to fluctuating light. 相似文献
8.
Differential photosynthetic compensatory mechanisms exist in the immutans mutant of Arabidopsis thaliana 总被引:1,自引:0,他引:1
Jillian N. Baerr Jeremy D. Thomas Brian G. Taylor Steven R. Rodermel Gordon R. Gray 《Physiologia plantarum》2005,124(3):390-402
Variegation in the immutans ( im ) mutant of Arabidopsis is induced by a nuclear recessive gene. The white leaf sectors of im contain abnormal plastids lacking pigments and organized lamellae, whereas the green leaf sectors possess normal-appearing chloroplasts. IMMUTANS codes for a thylakoid membrane terminal oxidase that functions as a safety valve to dissipate excess energy. Previous studies have shown that the green sectors of im , regardless of illumination conditions, have anatomical adaptations that are reminiscent of acclimation to high-light stress. It has been suggested that these adaptations provide a means of enhancing photosynthesis to feed the white sectors and maximize plant growth. We have utilized Chl fluorescence imaging to better understand these compensatory mechanisms using, as our experimental material, im leaves with predominantly green ( img ) or predominantly white ( imw ) tissues. The samples were examined under conditions of normal growth or high-light stress (photoinhibition). Steady-state fluorescence quenching revealed that the green sectors of the imw leaves had lower levels of 1 − q p than the img leaves, and that this was accompanied by increased electron transport rates. In response to short-term high-light exposure, the green sectors of the imw leaves displayed enhanced non-photochemical quenching (NPQ), which correlated with increased xanthophyll pool sizes and increased amounts of several different Lhcb polypeptides and the PsbS protein. In summary, our data show that, compared with primarily green leaves ( img ), the green sectors of predominantly white leaves ( imw ) have elevated rates of electron transport and an enhanced NPQ capacity. We conclude that, in the absence of IM, green sectors develop morphological and biochemical adaptations that allow them to maximize photosynthesis to feed the white sectors, and to protect against photodamage. 相似文献
9.
Krzeszowiec W Rajwa B Dobrucki J Gabryś H 《Biology of the cell / under the auspices of the European Cell Biology Organization》2007,99(5):251-260
BACKGROUND INFORMATION: Actin cytoskeleton is the basis of chloroplast-orientation movements. These movements are activated by blue light in the leaves of terrestrial angiosperms. Red light has been shown to affect the spatial reorganization of F-actin in water plants, where chloroplast movements are closely connected with cytoplasmic streaming. The aim of the present study was to determine whether blue light, which triggers characteristic responses of chloroplasts, i.e. avoidance and accumulation, also influences F-actin organization in the mesophyll cells of Arabidopsis thaliana. Actin filaments in fixed mesophyll tissue were labelled with Alexa Fluor 488-conjugated phalloidin. The configuration of actin filaments, expressed as a form factor (4 pi x area/perimeter(2)), was determined for all actin formations which were measured in fluorescence confocal images. RESULTS: In the present study, we compare form-factor distributions and the median form factors for strong and weak, blue- and red-irradiated tissues. Spatial organization of the F-actin network did not undergo any changes which could be attributed specifically to blue light. Actin patterns were similar in blue-irradiated wild-type plants and phot2 (phototropin 2) mutants which lack the avoidance response of chloroplasts. However, significant differences in the shape and distribution of F-actin formations were observed between mesophyll cells of phot2 mutants irradiated with strong and weak red light. These differences were absent in wild-type leaves. CONCLUSIONS: Actin does not appear to be the main target for the blue-light chloroplast-orientation signal. The modes of actin involvement in chloroplast translocations are different in water and terrestrial angiosperms. The results suggest that co-operation occurs between blue- and red-light photoreceptors in the control of the actin cytoskeleton architecture in Arabidopsis. 相似文献
10.
11.
The development of pollen and ovules in Arabidopsis thaliana on the space shuttle 'Endeavour' (STS-54) was investigated. Plants were grown on nutrient agar for 14 days prior to loading into closed plant growth chambers that received light and temperature control inside the Plant Growth Unit flight hardware on the shuttle middeck. After 6 days in spaceflight the plants were retrieved and immediately dissected and processed for light and electron microscope observation. Reproductive development aborted at an early stage. Pistils were collapsed and ovules inside were seen to he empty. No viable pollen was observed from STS-54 plants; young microspores were deformed and empty. At a late stage, the cytoplasm of the pollen contracted and became disorganized, but the pollen wall developed and the exine appeared normal. The tapetum in the flight flowers degenerated at early stages. Ovules from STS-54 flight plants stopped growing and the integuments and nucellus collapsed and degenerated. The megasporocytes appeared abnormal and rarely underwent meiosis. Apparently they enlarged, or occasionally produced a dyad or tetrad, to assume the form of a female gametophyte with the single nucleus located in an egglike cell that lacks a cell wall. Synergids, polar nuclei, and antipodals were not observed. The results demonstrate the types of lesions occurring in plant reproductive material under spaceflight conditions. 相似文献
12.
Maya Velitchkova Antoaneta V. Popova Aygyun Faik Milena Gerganova Alexander G. Ivanov 《Physiologia plantarum》2020,170(1):93-108
Arabidopsis thaliana has been recognized as a chilling tolerant species based on analysis of resistance to low temperature stress, however, the mechanisms involved in this tolerance are not yet clarified. The low temperature-induced effects are exacerbated when plants are exposed to low temperatures in the presence of high light irradiance but the experimental data on the impact of light intensity during cold stress and its influence during recovery from stress are rather limited. The main objective of this study was to re-examine the photosynthetic responses of A. thaliana plants to short term (6 days) low temperature stress (12/10°C) under optimal (150 μmol m−2 s−1) and high light (500 μmol m−2 s−1) intensity and the subsequent recovery from the stress. Simultaneous measurements of the in vivo and in vitro functional performance of both photosystem II (PSII) and photosystem I (PSI), as well as, net photosynthesis, low temperature (77 K) chlorophyll fluorescence and immunoblot analysis of the relative abundance of PSII and PSI reaction center proteins were used to evaluate the role of light in the development of possible protective mechanisms during low temperature stress and the consequent recovery from exposure to low temperature and different light intensities. The results presented clearly suggest that Arabidopsis plants can employ a number of highly dynamic photoprotective strategies depending on the light intensity. These strategies include one based on LHCII quenching and two other quenching mechanisms localized within the PSII and PSI reaction centers, which are all expressed to different extent depending on the severity of the photoinhibitory treatments under low temperature stress conditions. 相似文献
13.
Modification of reproductive development in Arabidopsis thaliana under spaceflight conditions 总被引:1,自引:0,他引:1
Reproductive development in Arabidopsis thaliana (L.) Heynh. cv. Columbia plants was investigated under spaceflight conditions on shuttle mission STS-51. Plants launched just prior to initiation of the reproductive phase developed flowers and siliques during the 10-d flight. Approximately 500 flowers were produced in total by the 12 plants in both the ground control and spaceflight material, and there was no significant difference in the number of flowers in each size class. The flower buds and siliques of the spaceflight plants were not morphologically different from the ground controls. Pollen viability tests immediately post-flight using fluorescein diacetate indicated that about 35% of the pollen was viable in the spaceflight material. Light-microscopy observations on this material showed that the female gametophytes also had developed normally to maturity. However, siliques from the spaceflight plants contained empty, shrunken ovules, and no evidence of pollen transfer to stigmatic papillae was found by light microscopy immediately post-flight or by scanning electron microscopy on fixed material. Short stamen length and indehiscent anthers were observed in the spaceflight material, and a film-like substance inside the anther that connected to the tapetum appeared to restrict the release of pollen from the anthers. These observations indicate that given appropriate growing conditions, early reproductive development in A. thaliana can occur normally under spaceflight conditions. On STS-51, reproductive development aborted due to obstacles in pollination or fertilization. 相似文献
14.
Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light 总被引:67,自引:0,他引:67
The signal transduction pathways that lead to chloroplast biogenesis in plants are largely unknown. We describe here the identification and initial characterization of a novel genetic locus which fits the criteria of a regulatory gene located in a central pathway controlling light-mediated development. In the absence of light, these Arabidopsis thaliana mutants, designated det1 (de-etiolated 1), constitutively display many characteristics that are light-dependent in wild-type plants, including leaf and chloroplast development, anthocyanin accumulation, and accumulation of mRNAs for several light-regulated nuclear and chloroplast genes. The switch between dark and light growth modes thus appears to be a programmed step in a developmental pathway that is defined by det1. We suggest a model where the primary role of light on gene expression is mediated by the activation of leaf development. Further, the recessive nature of the det1 mutation implies that there is negative growth control on leaf development in dicotyledonous plants in the absence of light. 相似文献
15.
A. Martínez-Pe?alver E. Gra?a M. J. Reigosa A. M. Sánchez-Moreiras 《Russian Journal of Plant Physiology》2012,59(5):640-647
Temperature changes and salt accumulation are among the most common abiotic factors affecting plants in agricultural and natural ecosystems. The different responses of plants to these factors have been widely investigated in previous works. However, detailed mechanism of the early photosynthetic response (first 24 h) has been poorly studied. The aim of the work was to monitor the early response of adult Arabidopsis thaliana plants exposed to different thermal (cold and heat) and salt conditions. Detailed evaluation of the efficiency of photosystem II was done, and the various routes of energy output as well as measurements of the contents of H2O2, proline, and photosynthetic pigments at different times during the first 24 h of treatment were examined. The conditions used in the study were those that caused a weak stress with time of exposure. Cold-treated plants showed the most continuous inhibitory effect on photosynthetic activity, with a fast metabolic slowdown (reduced PSII efficiency and decreased pigment contents), although they also demonstrated clear acclimation responses (increased heat dissipation and protein content). Heat-treated plants showed a late but stronger effect on photosynthesis with significantly increased quantum yield of nonregulated energy dissipation (??NO) and H2O2 content at the last measurements. Finally, salt-induced oxidative stress (increased H2O2 content), decreased PSII efficiency and pigment content. 相似文献
16.
17.
The effects of light and temperature on photosynthate partitioning in Antarctic freshwater phytoplankton 总被引:1,自引:0,他引:1
The effects of temperature and radiation flux on the partitioningof photosynthetically fixed carbon into four intracellulai metabolicpools was investigated for natural phytoplankton assemblagesfrom an Antarctic freshwater lake. At ambient temperature, proteinsynthesis was saturated at low photon flux densities (3040µmol m2 s1) and above this flux fixed carbonwas increasingly stored as lipid and polysaccharide. Increasingtemperature raised both the saturated rate of protein synthesisand the photon flux at which saturation occurred. There wasa corresponding decline in the accumulation of reserve products,particularly at low radiation fluxes. The consequences of thispattern of uptake for the phytoplankton is discussed. 相似文献
18.
19.
Plants grow in a light/dark cycle. We have investigated how growth is buffered against the resulting changes in the carbon supply. Growth of primary roots of Arabidopsis seedlings was monitored using time‐resolved video imaging. The average daily rate of growth is increased in longer light periods or by addition of sugars. It responds slowly over days when the conditions are changed. The momentary rate of growth exhibits a robust diel oscillation with a minimum 8–9 h after dawn and a maximum towards the end of the night. Analyses with starch metabolism mutants show that starch turnover is required to maintain growth at night. A carbon shortfall leads to an inhibition of growth, which is not immediately reversed when carbon becomes available again. The diel oscillation persists in continuous light and is strongly modified in clock mutants. Central clock functions that depend on CCA1/LHY are required to set an appropriate rate of starch degradation and maintain a supply of carbon to support growth through to dawn, whereas ELF3 acts to decrease growth in the light period and promote growth in the night. Thus, while the overall growth rate depends on the carbon supply, the clock orchestrates diurnal carbon allocation and growth. 相似文献
20.
拟南芥抗盐突变体的RAPD分析 总被引:4,自引:0,他引:4
以筛选得到可以稳定遗传的抗盐单基因突变体2^#和15^#以及野生型拟南芥为材料进行RAPD分析,150条引物中有3条引物在突变体之间扩增出多态性,不仅证明了DNA水平突变的发生,而且表明它们之间遗传背景相似,是一系列抗盐性不同的近似等位基因系。1条引物在突变体的扩增产物比在野生型的扩增产物多出一个大小约为1200bp的片段,初步认为该片段与抗盐的主效基因有关。 相似文献