首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Rhesus rhadinovirus (RRV) is a gammaherpesvirus closely related to Kaposi''s sarcoma-associated herpesvirus (KSHV), an oncogenic virus linked to the development of Kaposi''s sarcoma and several other lymphoproliferative diseases, including primary effusion lymphoma and multicentric Castleman''s disease. RRV naturally infects rhesus macaques and induces lymphoproliferative diseases under experimental conditions, making it an excellent model for the study of KSHV. Unlike KSHV, which grows poorly in cell culture, RRV replicates efficiently in rhesus fibroblasts (RFs). In this study, we have characterized the entry pathway of RRV in RFs. Using a luciferase-expressing recombinant RRV (RRV-luciferase), we show that the infectivity of RRV is reduced by inhibitors of endosomal acidification. RRV infectivity is also reduced by inhibitors of clathrin-mediated but not caveola-mediated endocytosis, indicating that RRV enters into RFs via clathrin-mediated endocytosis. Using a red fluorescent protein (RFP)-expressing recombinant RRV (RRV-RFP), we show that RRV particles are colocalized with markers of endocytosis (early endosome antigen 1) and clathrin-mediated endocytosis (clathrin heavy chain) during entry into RFs. RRV particles are also colocalized with transferrin, which enters cells by clathrin-mediated endocytosis, but not with cholera toxin B, which enters cells by caveola-mediated endocytosis. Inhibition of clathrin-mediated endocytosis with a dominant-negative construct of EPS15, an essential component of clathrin-coated pits, blocked the entry of RRV into RFs. Together, these results indicate that RRV entry into RFs is mediated by clathrin-mediated endocytosis.Kaposi''s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), is a gammaherpesvirus associated with the development of Kaposi''s sarcoma, a malignancy commonly found in AIDS patients (13). KSHV is also associated with the development of multicentric Castleman''s disease (MCD) and primary effusion lymphoma (PEL), two rare lymphoproliferative diseases. KSHV has a restricted host range, making it difficult to study KSHV and its related malignances directly in an animal model (25). Rhesus rhadinovirus (RRV) is closely related to KSHV. RRV infects its natural host and induces lymphoproliferative diseases resembling MCD and PEL; thus, it has been proposed as an animal model for the study of KSHV (19, 26, 39). Two isolates of RRV (26-95 and 17577) have been independently isolated and sequenced so far (3, 7, 32).To establish a successful infection, a virus needs to enter the target cells and release its genome (20). Thus, defining the entry and trafficking pathway of RRV can help us understand its mechanism of infection and replication in vitro and in vivo. Herpesviruses bind to the cell surface through complex interactions between viral glycoproteins and receptor molecules, leading to either plasma membrane fusion or endocytosis (35). Plasma membrane fusion is a pH-independent event between the viral envelope and the host cell plasma membrane (23). Enveloped viruses also take advantage of cellular endocytosis pathways for their internalization (34). Endocytosis leads to fusion between the membrane of the internalized vesicle and the viral envelope at low pHs and to the release of the viral particle into the cytoplasm. Following membrane fusion, the nucleocapsid traffics to the perinuclear space and delivers the viral genome to the nucleus. Thus, endocytosis offers a convenient and fast transit system enabling the virus to enter and traffic across the plasma membrane and cytoplasm of the infected cell.In mammalian cells, there are several endocytic pathways, including clathrin-mediated endocytosis, caveola-mediated endocytosis, clathrin- and caveola-independent endocytosis, and macropinocytosis (34). These endocytic pathways differ in the nature and size of the cargo. The clathrin-mediated pathway is the most commonly observed uptake pathway for viruses (30). A viral particle is internalized into a clathrin-coated vesicle, which then loses the clathrin-coated subunits before fusing with the early endosome. An activation step occurs in the endosome, leading to the fusion of the viral envelope with the endosomal membrane and the delivery of the viral capsid to the cytosol. The acidic pH in the endosome is thought to play an essential role in triggering the fusion event. Therefore, pH sensitivity is often considered an indication that a virus enters the cell by endocytosis (30).KSHV has been shown to use clathrin-mediated endocytosis to enter human foreskin fibroblasts, activated primary human B cells, and primary human umbilical vein endothelial cells (1, 12, 29); however, the macropinocytic pathway and plasma membrane fusion pathway have also been implicated (17, 28). The mechanism of RRV entry into cells has not been defined. In this study, using two recombinant RRVs expressing luciferase (RRV-luciferase) and red fluorescent protein (RRV-RFP), respectively, we have characterized the entry pathway of RRV in rhesus fibroblasts (RFs), a cell type that RRV can infect efficiently and in which it can replicate. The results show that RRV entry into RFs occurs primarily via clathrin-mediated endocytosis.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Open reading frame 45 (ORF45) of Kaposi''s sarcoma-associated herpesvirus 8 (KSHV) is an immediate-early phosphorylated tegument protein and has been shown to play important roles at both early and late stages of viral infection. Homologues of ORF45 exist only in gammaherpesviruses, and their homology is limited. These homologues differ in their protein lengths and subcellular localizations. We and others have reported that KSHV ORF45 is localized predominantly in the cytoplasm, whereas its homologue in murine herpesvirus 68 is localized exclusively in the nucleus. We observed that ORF45s of rhesus rhadinovirus and herpesvirus saimiri are found exclusively in the nucleus. As a first step toward understanding the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we identified the signals that control its subcellular localization. We found that KSHV ORF45 accumulated rapidly in the nucleus in the presence of leptomycin B, an inhibitor of CRM1 (exportin 1)-dependent nuclear export, suggesting that it could shuttle between the nucleus and cytoplasm. Mutational analysis revealed that KSHV ORF45 contains a CRM1-dependent, leucine-rich-like nuclear export signal and an adjacent nuclear localization signal. Replacement of the key residues with alanines in these motifs of ORF45 disrupts its shuttling between the cytoplasm and nucleus. The resulting ORF45 mutants have restricted subcellular localizations, being found exclusively either in the cytoplasm or in the nucleus. Recombinant viruses were reconstituted by introduction of these mutations into KSHV bacterial artificial chromosome BAC36. The resultant viruses have distinct phenotypes. A mutant virus in which ORF45 is restricted to the cytoplasm behaves as an ORF45-null mutant and produces 5- to 10-fold fewer progeny viruses than the wild type. In contrast, mutants in which the ORF45 protein is mostly restricted to the nucleus produce numbers of progeny viruses similar to those produced by the wild type. These data suggest that the subcellular localization signals of ORF45 have important functional roles in KSHV lytic replication.Kaposi''s sarcoma-associated herpesvirus (KSHV) is a DNA tumor virus and the causative agent of several human cancers, including Kaposi''s sarcoma (KS), primary effusion lymphoma, and multicentric Castleman''s disease (3, 6). Like all herpesviruses, KSHV has two alternative life cycles, a latent and a lytic cycle. During latency, only a few viral genes are expressed, and no progeny viruses are produced. Under appropriate conditions, latent viral genomes are activated, initiate lytic replication, and express a full panel of viral genes, in a process that leads to viral assembly, release of progeny virus particles, and de novo infection of naïve cells (3, 6). KSHV establishes latent infection in the majority of infected cells in cases of KS, primary effusion lymphoma, and multicentric Castleman''s disease, but lytic replications occur in a small fraction. The recurrent and periodic lytic cycles of KSHV are believed to play critical roles in viral pathogenesis (6, 7).Open reading frame 45 (ORF45) is a KSHV-encoded gene product that plays a critical role in the viral lytic cycle. It is an immediate-early protein and is also present in viral particles as tegument protein (26, 27, 30). Disruption of ORF45 has no significant effect on overall viral lytic gene expression or DNA replication in BAC36-reconstituted 293T cells induced with both tetradecanoyl phorbol acetate (TPA) and sodium butyrate together, but the ORF45-null mutant produces 5- to 10-fold fewer progeny viruses than the wild type and the mutant virus has dramatically reduced infectivity, suggesting that ORF45 plays important roles at both early and late stages of viral infection (29). In addition to its roles as a tegument component, which are possibly involved in viral ingress and egress processes, KSHV ORF45 interacts with cellular proteins and modulates the cellular environment. At least two such functions have been described. First, KSHV ORF45 inhibits activation of interferon regulatory factor 7 (IRF-7) and therefore antagonizes the host innate antiviral response (28). Second, KSHV ORF45 interacts with p90 ribosomal kinase 1 and 2 (RSK1/RSK2) and modulates the extracellular signal-regulated kinase/RSK signaling pathway, which is known to play essential roles in KSHV reactivation and lytic replication (12). All of these data suggest that KSHV ORF45 is a multifunctional protein.ORF45 is unique to the gammaherpesviruses; it has no homologue in the alpha- or betaherpesviruses. ORF45 homologues have been identified as virion protein components in other gammaherpesviruses, such as Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), and murine herpesvirus 68 (MHV-68), suggesting that certain tegument functions of ORF45 are conserved (2, 11, 18). ORF45 homologues differ in protein length. KSHV ORF45 is the longest, at 407 amino acids (aa); RRV, EBV, MHV-68, and herpesvirus saimiri (HVS) have proteins of 353, 217, 206, and 257 aa, respectively. The limited homologies lie mostly at the amino- and carboxyl-terminal ends. The middle portion of KSHV ORF45 diverges from those of its homologues. The homologues differ in subcellular localization. We and others have reported previously that KSHV ORF45 is found predominantly in the cytoplasm (1, 21, 28, 30), whereas ORF45 of MHV-68 is found exclusively in the nucleus (9). Recently, we found KSHV ORF45 also present in the nuclei of BCBL-1 cells in what resembled viral replication compartments, suggesting that ORF45 could shuttle into the nucleus (12).Nucleocytoplasmic trafficking of proteins across the nuclear membrane occurs through nuclear pore complexes. Small molecules of up to approximately 9 nm in diameter, corresponding to a globular protein of approximately 40 to 60 kDa, can in principle enter or leave the nucleus by diffusion through nuclear pores (15, 17, 24). Large molecules are transported with the aid of a related family of transport factors, importins and exportins, which recognize nuclear localization sequence (NLS)-containing or nuclear export sequence (NES)-containing proteins (15, 17, 23). CRM1 (exportin 1) has been identified as a common export receptor that recognizes human immunodeficiency virus Rev-like leucine-rich NES sequences and is responsible for the export of such NES-containing proteins (4, 5, 19, 22). CRM1-dependent nuclear export is specifically inhibited by a pharmacological compound, leptomycin B (LMB), that interacts with CRM1 and thus blocks such NES-mediated protein export (4).To understand the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we attempted to locate the signals that control its subcellular localization. In the research reported here, we identified a leucine-rich NES and an adjacent basic NLS in KSHV ORF45. We demonstrated that the regulated intracellular trafficking of ORF45, especially its translocation into the nucleus, is important for KSHV lytic replication.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号