首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aspergillus nidulans possesses three pmt genes encoding protein O-d-mannosyltransferases (Pmt). Previously, we reported that PmtA, a member of the PMT2 subfamily, is involved in the proper maintenance of fungal morphology and formation of conidia (T. Oka, T. Hamaguchi, Y. Sameshima, M. Goto, and K. Furukawa, Microbiology 150:1973-1982, 2004). In the present paper, we describe the characterization of the pmtA paralogues pmtB and pmtC. PmtB and PmtC were classified as members of the PMT1 and PMT4 subfamilies, respectively. A pmtB disruptant showed wild-type (wt) colony formation at 30°C but slightly repressed growth at 42°C. Conidiation of the pmtB disruptant was reduced to approximately 50% of that of the wt strain; in addition, hyperbranching of hyphae indicated that PmtB is involved in polarity maintenance. A pmtA and pmtB double disruptant was viable but very slow growing, with morphological characteristics that were cumulative with respect to either single disruptant. Of the three single pmt mutants, the pmtC disruptant showed the highest growth repression; the hyphae were swollen and frequently branched, and the ability to form conidia under normal growth conditions was lost. Recovery from the aberrant hyphal structures occurred in the presence of osmotic stabilizer, implying that PmtC is responsible for the maintenance of cell wall integrity. Osmotic stabilization at 42°C further enabled the pmtC disruptant to form conidiophores and conidia, but they were abnormal and much fewer than those of the wt strain. Apart from the different, abnormal phenotypes, the three pmt disruptants exhibited differences in their sensitivities to antifungal reagents, mannosylation activities, and glycoprotein profiles, indicating that PmtA, PmtB, and PmtC perform unique functions during cell growth.Protein glycosylation, which is a major posttranslational modification, plays essential roles in eukaryotic cells from fungi to mammals (19). N-linked oligosaccharides in glycoproteins that share relatively common structures are structurally classified into high-mannose, complex, and hybrid types (3). O-linked oligosaccharides in glycoproteins are diverse with respect to their sugar components and the mode of sugar linkages among the eukaryotic organisms (8, 19). O mannosylation, which is commonly found in the glycoproteins of fungi, has been extensively studied in the budding yeast Saccharomyces cerevisiae (4, 21, 35). The initial reaction of mannose transfer to serine and threonine residues in proteins is catalyzed by protein O-d-mannosyltransferase (Pmt) in the endoplasmic reticulum (ER), where dolichyl phosphate-mannose is required as an immediate sugar donor (4). In the Golgi complex, O mannosylation in S. cerevisiae is linearly elongated by up to five mannose residues by mannosyltransferases (Mnt) that utilize GDP-mannose as the mannosyl donor. At least six Pmt-encoding genes (PMT1 to -6), three α-1,2-Mnt-encoding genes (KRE2, KTR1, and KTR3), and three α-1,3-Mnt-encoding genes (MNN1, MNT2, and MNT3) are known to be involved in O mannosylation in S. cerevisiae (21, 31, 45).The Pmt family of proteins can be classified into the PMT1, PMT2, and PMT4 subfamilies based on phylogeny (6). Proteins of the PMT1 subfamily form a heteromeric complex with proteins belonging to the PMT2 subfamily, and PMT4 subfamily proteins form a homomeric complex (7). Simultaneous disruptions of three different types of PMT genes were lethal (4), suggesting that each class provided a unique function for O mannosylation. Yeasts other than S. cerevisiae, such as Schizosaccharomyces pombe (38, 41), Candida albicans (29), and Cryptococcus neoformans (28), possess three to five pmt genes, which have been characterized. Several studies provide evidence that protein O mannosylation modulates the functions and stability of secretory proteins and thereby affects the growth and morphology of these yeasts. O mannosylation by Pmt2 in S. cerevisiae (ScPmt2) provides protection from ER-associated degradation and also functions as a fail-safe mechanism for ER-associated degradation (11, 13, 23). Likewise, in C. albicans, CaPmt1- and CaPmt4-mediated O mannosylation specifically protects CaSec20 from proteolytic degradation in the ER (40). Cell wall integrity is maintained in S. cerevisiae by increased stabilization and correct localization of the sensor proteins ScWsc and ScMid2 due to O mannosylation by ScPmt2 and ScPmt4 (20). Similarly, the stability and localization to the plasma membrane of axial budding factor ScAxl2/Bud10 is enhanced by ScPmt4-mediated O mannosylation, increasing its activity (32). ScPmt4-mediated O glycosylation also functions as a sorting determinant for cell surface delivery of ScFus1 (30). CaPmt4-mediated O glycosylation is required for environment-specific morphogenetic signaling and for the full virulence of C. albicans (29).With respect to filamentous fungi like Aspergillus that develop hyphae in a highly ordered manner, which then differentiate to form conidiospores, little is known about the function and synthetic pathway of the O-mannose-type oligosaccharides. O-Glycans in glycoproteins of Aspergillus include sugars other than mannose, and their structures have been determined (8). The initial mannosylation catalyzed by Pmts is found in Aspergillus and occurs as in yeasts (8).We characterized the pmtA gene of Aspergillus nidulans (AnpmtA), belonging to the PMT2 subfamily, and found that the mutant exhibited a fragile cell wall phenotype and alteration in the carbohydrate composition, with a reduction in the amount of skeletal polysaccharides in the cell wall (26, 33). Recently, the Afpmt1 gene belonging to the PMT1 family of Aspergillus fumigatus, a human pathogen, was characterized. AfPmt1 is crucial for cell wall integrity and conidium morphology (46).In this study, we characterize the pmtB and pmtC genes of A. nidulans to understand their contribution to the cell morphology of this filamentous fungus. We also demonstrate that the PmtA, PmtB, and PmtC proteins have distinct specificities for protein substrates and function differently during cell growth of filamentous fungi.  相似文献   

2.
3.
Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs) in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall and are necessary for sporulation and for the generation of the extracellular matrix. PMTs are also individually required for full virulence in a variety of hosts, with a special role in the penetration of intact plant leaves. The most significant case is that of grapevine leaves, whose penetration requires the three functional PMTs. Furthermore, PMT2 also contributes significantly to fungal adherence on grapevine and tobacco leaves. Analysis of extracellular and membrane proteins showed significant changes in the pattern of protein secretion and glycosylation by the pmt mutants, and allowed the identification of new protein substrates putatively glycosylated by specific PMTs. Since plants do no possess these enzymes, PMTs constitute a promising target in the development of novel control strategies against B. cinerea.  相似文献   

4.
5.
The Ascomycete fungus Aspergillus nidulans reproduces asexually by differentiating conidiophores and conidia. Gene regulation during asexual reproduction was investigated by comparing poly(A) RNA populations derived from somatic hyphae, conidiating cultures and purified conidia. Single-copy and complementary DNA hybridization experiments showed that vegetative cells contained 5600–6000 diverse, average-sized poly(A) RNA sequences distributed into three prevalence classes. cDNA hybridization experiments indicated that a significant proportion of the poly(A) RNA derived from either conidiating cultures or spores consisted of sequences absent from somatic hyphae. To assess accurately the degree to which the poly(A) RNA populations differed, cDNA preparations were isolated which were complementary to sequences present only in conidia or in conidiating cultures. Hybridization of these cDNAs with poly(A) RNA from conidiating cultures showed that approximately 18.5% of the poly(A) RNA mass comprised 1300 diverse sequences not present in somatic cells. Of these, about 300 were present only in conidia. The remainder were accumulated specifically during sporulation, but were absent from spores. Analogous experiments showed that the great majority of the poly(A) RNA sequences accumulated by vegetative hyphae were also present in conidiating cultures. Thus, cell differentiation during A. nidulans asexual reproduction involves the accumulation of many new poly(A) RNA sequences, but not the loss of preexisting ones.  相似文献   

6.
The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls.Plant cell walls are multifunctional viscoelastic networks mainly composed of polysaccharides. Many of these polysaccharides, including xylans, (gluco)mannans, xyloglucans (XyGs), and pectins, have various degrees and patterns of acetyl esterification (Gille and Pauly, 2012; Pawar et al., 2013). The biological role of cell wall acetylation is not well understood, but it is believed to be important for pathogen resistance and plant development, and the acetylation of pectin also impacts upon the mechanical properties of cell walls (Manabe et al., 2011; Orfila et al., 2012; Pogorelko et al., 2013). In vitro, acetyl groups influence susceptibility to enzymatic degradation of pectin and xylan (Selig et al., 2009; Chen et al., 2012; Gou et al., 2012; Orfila et al., 2012; Pogorelko et al., 2013), and therefore acetylation may constitute a barrier to cell wall deconstruction. Alkali treatment of wall materials, which hydrolyzes the ester bonds, is broadly used to make polysaccharides more extractable. The treatment does not only facilitate the degradation of xylan and pectins, but also improves the deconstruction of cellulose, as the depolymerization of noncellulosic polymers results in a better accessibility to cellulose by degrading enzymes (Selig et al., 2009). Low levels of acetylated polysaccharides in plant feedstocks would be desirable for downstream processing in biorefineries, firstly, because the cell wall material of plant feedstocks with low level of acetylation is expected to be more easily extracted and, secondly, because less acetate, which is highly toxic to microorganisms such as yeast (Saccharomyces cerevisiae), would be released during extraction (Manabe et al., 2011; Gille and Pauly, 2012; Pawar et al., 2013). However, although reducing the O-acetylation level of xylan by approximately 60%, as observed in the walls of the Arabidopsis (Arabidopsis thaliana) eskimo1 mutant, enhances enzymatic degradation of isolated xylan (Yuan et al., 2013), enzymatic hydrolysis yields of whole wall materials have been reported to actually be decreased (Xiong et al., 2013). This presumably results from a tighter association between these now lowly substituted xylan polymers and cellulose (Xiong et al., 2013).Recently, we reported REDUCED WALL ACETYLATION2 (RWA2), the first protein to be involved in cell wall acetylation in planta (Manabe et al., 2011). RWA2 is a member of a small family consisting of four proteins in Arabidopsis, and its loss-of-function mutants display 20% reduction of acetylation in a range of polysaccharides that include XyG and pectins. We have hypothesized, based on phylogenetic analysis, expression pattern, moderate reduction in acetylation, and the absence of morphological phenotype, that RWA proteins have redundant functions in a biochemical reaction that occurs prior to the actual acetylation of specific polysaccharides. Independently to our research, a quadruple mutant of RWA has been reported to display reduction in xylan acetylation, secondary cell wall thickness, and mechanical strength of the stem (Lee et al., 2011). Meanwhile, Gille et al. (2011) have discovered a new family of proteins involved in the acetylation of specific polysaccharides: the plant-specific DOMAIN OF UNKNOWN FUNCTION (DUF) 231 family (also known as TRICHOME BIREFRINGENCE-LIKE [TBL] family). The loss-of-function mutants altered xyloglucan4 (axy4)/tbl27 and axy4L/tbl22 lack O-acetylation specifically of XyG in certain tissues, while eskimo1/tbl29 mutants contain reduced O-acetylation of xylan (Xiong et al., 2013; Yuan et al., 2013). The TBL/DUF231 family proteins and the RWA proteins have sequence similarity to the N-terminal and C-terminal regions of the fungal protein Cas1p, respectively (Anantharaman and Aravind, 2010). This could suggest that the TBL and RWA proteins function in protein complexes where the determinants of substrate specificity reside in the TBL partner (Manabe et al., 2011). However, because there are many more TBL proteins than RWA proteins (e.g. 46 TBL proteins versus four RWA proteins in the genome of Arabidopsis), it is likely that they do not form discrete and invariable complexes. Crossing of rwa2-3 and a leaky allele of axy4, axy4-1, resulted in a double mutant with partially additive phenotype (Gille et al., 2011). Its XyG acetylation is lower compared with either single mutant. From this analysis, RWA2 and AXY4 have been hypothesized to work in synergy, although the function of RWA2 might be substituted by other RWAs (Gille et al., 2011). Here, we have generated all the combinations of double, triple, and quadruple mutants of all four members of RWA family to further investigate the functional diversity and redundancy and to explore the function of cell wall acetylation and the role of RWAs in the network of acetylation-related enzymes. The triple and quadruple mutants we have obtained displayed severe and distinct phenotypes such as extreme dwarfism. This contrasts with the very mild phenotypes reported by Lee et al. (2011). Taken together, RWAs have partially redundant functions in the process of cell wall acetylation and show distinct impacts upon different cell wall polysaccharides.  相似文献   

7.
Pericentrin is a large coiled-coil protein in mammalian centrosomes that serves as a multifunctional scaffold for anchoring numerous proteins. Recent studies have linked numerous human disorders with mutated or elevated levels of pericentrin, suggesting unrecognized contributions of pericentrin-related proteins to the development of these disorders. In this study, we characterized AnPcpA, a putative homolog of pericentrin-related protein in the model filamentous fungus Aspergillus nidulans, and found that it is essential for conidial germination and hyphal development. Compared to the hyphal apex localization pattern of calmodulin (CaM), which has been identified as an interactive partner of the pericentrin homolog, GFP-AnPcpA fluorescence dots are associated mainly with nuclei, while the accumulation of CaM at the hyphal apex depends on the function of AnPcpA. In addition, the depletion of AnPcpA by an inducible alcA promoter repression results in severe growth defects and abnormal nuclear segregation. Most interestingly, in mature hyphal cells, knockdown of pericentrin was able to significantly induce changes in cell shape and cytoskeletal remodeling; it resulted in some enlarged compartments with condensed nuclei and anucleate small compartments as well. Moreover, defects in AnPcpA significantly disrupted the microtubule organization and nucleation, suggesting that AnPcpA may affect nucleus positioning by influencing microtubule organization.  相似文献   

8.
Autolysis is a natural event that occurs in most filamentous fungi. Such self-degradation of fungal cells becomes a predominant phenomenon in the absence of the regulator of G protein signaling FlbA in Aspergillus nidulans. Among a number of potential hydrolytic enzymes in the A. nidulans genome, the secreted endochitinase ChiB was shown to play a major role in autolysis. In this report, we investigate the roles of ChiB in fungal autolysis and cell death processes through genetic, biochemical, and cellular analyses using a set of critical mutants. Determination of mycelial mass revealed that, while the flbA deletion (ΔflbA) mutant autolyzed completely after a 3-day incubation, the ΔflbA ΔchiB double mutant escaped from hyphal disintegration. These results indicate that ChiB is necessary for the ΔflbA-induced autolysis. However, importantly, both ΔflbA and ΔflbA ΔchiB strains displayed dramatically reduced cell viability compared to the wild type. These imply that ChiB is dispensable for cell death and that autolysis and cell death are separate processes. Liquid chromatography-tandem mass spectrometry analyses of the proteins that accumulate at high levels in the ΔflbA and ΔflbA ΔchiB mutants identify chitinase (ChiB), dipeptidyl peptidase V (DppV), O-glycosyl compound hydrolase, β-N-acetylhexosaminidase (NagA), and myo-inositol-1-phosphate synthase (InoB). Functional characterization of these four genes reveals that the deletion of nagA results in reduced cell death. A working model bridging G protein signaling and players in autolysis/cell death is proposed.Autolysis can be described as enzymatic self-degradation of the cells. It involves the activation of several key enzyme classes, resulting in the catabolism of macromolecules within the cell (11, 12, 23). Autolysis is observed in most filamentous fungi at the late stages of cultures and is affected by aging, programmed cell death, development, nutrient limitation, and numerous other factors (39). Despite its fundamental importance in growth, differentiation, secondary metabolism, and heterologous protein production, autolysis is a poorly understood feature of fungal biology (26, 39). It is anticipated that the elucidation of the molecular mechanisms governing fungal autolysis would have great impacts on both fundamental and applied aspects of filamentous fungi.The Aspergillus nidulans ΔflbA mutant exhibits autolysis as a predominant phenotype (18). FlbA is a regulator of G protein signaling (RGS) that negatively controls vegetative growth signaling, primarily mediated by a heterotrimeric G protein composed of FadA (Gα) and SfaD::GpgA (Gβγ) (31, 33, 34, 42, 43). Loss of flbA function causes prolonged activation of G protein signaling, which results in uncontrolled proliferation of hyphal mass, the blockage of sporulation, and hyphal disintegration (autolysis). Because nearly the entire mycelium disappears during autolysis of ΔflbA mutant strains, some component of this phenomenon is hypothesized to involve enzymatic degradation as observed during autolysis of aging fungal cultures (11, 12, 23).In A. nidulans, the last step of autolysis is thought to be the degradation of the cell wall of empty hyphae, which is associated with increased proteinase and chitinase activities (10). There are 15 potential chitinase open reading frames (ORFs) in the genome of A. nidulans. Among these, the class V endochitinase ChiB was shown to play an important role in autolysis. The deletion of chiB considerably reduced the intracellular and extracellular chitinase activities, and the levels of ChiB significantly increased when the fungal cells were starved for carbon sources, an induced condition for hyphal autolysis of A. nidulans (41).In the present study we addressed two primary questions: (i) does ChiB function in the accelerated autolysis and/or cell death caused by loss of FlbA and (ii) are there other hydrolytic enzymes involved in autolysis and/or cell death in A. nidulans? In order to investigate a hypothetical connection between FlbA-controlled autolysis and the ChiB activity, we carried out genetic, biochemical, and cellular studies using the ΔchiB, ΔflbA, ΔflbA ΔchiB (double deletion), and chiB overexpression mutants. We found that, while ChiB plays a crucial role in ΔflbA-induced autolysis, ChiB is dispensable for cell death, corroborating the idea that cell death and autolysis are independent processes in A. nidulans (8). We further present the identification and partial functional characterization of four gene encoding the proteins accumulate at high level in ΔflbA and/or ΔflbA ΔchiB strains and propose a working model linking G protein signaling and autolysis.  相似文献   

9.
Eukaryotic cells can sense a wide variety of environmental stresses, including changes in temperature, pH, osmolarity and nutrient availability. They respond to these changes through a variety of signal-transduction mechanisms, including activation of Ca2+-dependent signaling pathways. This research has discovered important implications in the function(s) of polycystic kidney disease (PKD) channels and the mechanisms through which they act in the control of cell growth and cell polarity in Schizosaccharomyces pombe by ion channel-mediated Ca2+ signaling. Pkd2 was expressed maximally during the exponential growth phase. At the cell surface pkd2 was localized at the cell tip during the G2 phase of the cell cycle, although following cell wall damage, the cell surface-expressed protein relocalized to the whole plasma membrane. Pkd2 depletion affected Golgi trafficking, resulting in a buildup of vesicles at the cell poles, and strongly affected plasma membrane protein delivery. Surface-localized pkd2 was present in the plasma membrane for a very short time and was rapidly internalized. Internalization was dependent on Ca2+, enhanced by amphipaths and inhibited by gadolinium. The pkd2 protein was in a complex with a yeast synaptotagmin homologue and myosin V. Depletion of pkd2 severely affected the localization of glucan synthase. A role for pkd2 in a cell polarity and cell wall synthesis signaling complex with a synaptotagmin homologue, myosin V and glucan synthase is proposed.  相似文献   

10.
Although the high affinity Ca2+ channel, Cch1, and its subunit Mid1 have been investigated and evaluated in yeast and some of filamentous fungi, little is known about the function of their homologs in the Aspergilli. Here, we have functionally characterized the yeast homologs, CchA and MidA, in Aspergillus nidulans using conditional and null deletion mutants. CchA and MidA not only have functional benefits of fast growth, which is consistent with Cch1 and Mid1 in yeast, but also have unique and complex roles in regulating conidiation, hyphal polarity and cell wall components in low-calcium environments. The defect of CchA or MidA resulted in a sharp reduction in the number of conidiospores, accompanied by abnormal metulae, and undeveloped-phialides at a higher density of inoculum. Most interestingly, these conidiation defects in mutants can, remarkably, be rescued either by extra-cellular Ca2+ in a calcineurin-dependent way or by osmotic stress in a calcineurin-independent way. Moreover, the fact that the phenotypic defects are not exacerbated by the presence of the double deletion, together with the Y2H assay, indicates that CchA and MidA may form a complex to function together. Our findings suggest that the high-affinity Ca2+ channel may represent a viable and completely unexplored avenue to reduce conidiation in the Aspergilli.  相似文献   

11.
12.
A mutant of Aspergillus nidulans, isolated for inability to form asexual spores (conidia) on complete medium, was found to regain the ability to conidiate if the medium was supplemented with arginine. On minimal medium the mutant required arginine for growth but at a much lower concentration than that required for conidiation. This mutant, designated argB12, thus defines a phase-critical gene, i.e. a gene whose function is in greater demand for development than for growth. In addition to its aconidial phenotype, the mutant also exhibited (depending on the medium) aberrant sexual development and a low efficiency of conidial germination. In crosses, each of these developmental phenotypes segregated with arginine auxotrophy. Genetic and biochemical analyses showed the argB12 mutation to be an allele of the previously described argB locus, mutants of which lack ornithine transcarbamylase. Arginine-requiring mutants at at least two other loci were also found to be defective in asexual sporulation, but the germination defect appears to be specific to argB mutants.  相似文献   

13.
Esterase isozymes were used to detect substrate-preference polymorphism in five strains of Aspergillus nidulans, and to show differential gene expression in developmental mutants in response to 5-azacytidine treatment. The medusa mutants B116, SM23, and M25 were selected in the presence of 5-azacytidine (5AC); also the G839 bristle mutant obtained in the absence of 5AC as well as the UT196 master strain and the normal segregant SM24 were used for the esterase studies. The esterase isozyme patterns of the A. nidulans strains observed with 4-methylumbelliferyl esters and alpha- and beta-naphthyl esters indicated a total of 18 isoesterases. Substrate preference for either 4-methylumbelliferyl esters and alpha- or beta-naphthyl esters was observed. Similarity between the different A. nidulans genotypes was 84.4-100%. The genomic similarity of the B116, SM23, and M25 mutant strains (100%) supports previous observations that specific DNA sequences might be targets for 5AC action in this filamentous fungus, and the differential expression of the Est-4 isozyme in the medusa developmental mutant and the Est-2 isozyme specifically detected in the bristle mutant G839 seems to indicate esterase isozymes as possible markers of biochemical differences among different developmental mutants of A. nidulans.  相似文献   

14.
15.
Polarized growth in filamentous fungi depends on the correct spatial organization of the microtubule (MT) and actin cytoskeleton. In Schizosaccharomyces pombe it was shown that the MT cytoskeleton is required for the delivery of so-called cell end marker proteins, e.g., Tea1 and Tea4, to the cell poles. Subsequently, these markers recruit several proteins required for polarized growth, e.g., a formin, which catalyzes actin cable formation. The latest results suggest that this machinery is conserved from fission yeast to Aspergillus nidulans. Here, we have characterized TeaC, a putative homologue of Tea4. Sequence identity between TeaC and Tea4 is only 12.5%, but they both share an SH3 domain in the N-terminal region. Deletion of teaC affected polarized growth and hyphal directionality. Whereas wild-type hyphae grow straight, hyphae of the mutant grow in a zig-zag way, similar to the hyphae of teaA deletion (tea1) strains. Some small, anucleate compartments were observed. Overexpression of teaC repressed septation and caused abnormal swelling of germinating conidia. In agreement with the two roles in polarized growth and in septation, TeaC localized to hyphal tips and to septa. TeaC interacted with the cell end marker protein TeaA at hyphal tips and with the formin SepA at hyphal tips and at septa.Filamentous fungi represent fascinating model organisms for studying the establishment and maintenance of cell polarity, because cell growth takes place at the tip of the extremely elongated hyphae. Hyphal extension requires the continuous expansion of the membrane and the cell wall and is driven by continuous fusion of secretion vesicles at the tip (8, 12). The transportation of vesicles is probably achieved by the coordinated action of the MT and the actin cytoskeleton. According to one model, vesicles first travel along MTs, are unloaded close to the hyphal tip, where they form a microscopically visible structure the “Spitzenkörper,” which is also called the “vesicle supply center,” referring to the assumed function (24, 25). For the last step, vesicle transportation from the Spitzenkörper to the apical membrane, actin-myosin-dependent movement is used. Anti-cytoskeletal drug experiments have shown that hyphae can grow for some time in the absence of MTs but not in the absence of the actin cytoskeleton (14, 27, 30a).In Schizosaccharomyces pombe it was shown clearly that the polarization of the actin cytoskeleton depends on the MT cytoskeleton (2, 7). In 1994, polarity mutants of S. pombe were isolated and subsequent cloning of one of the genes identified the polarity determinant Tea1 (19, 29). Because this protein labels the growing cell end, this and other subsequently isolated proteins of this class were named cell end markers. It was shown that cell end localization of Tea1 requires the activity of a kinesin motor protein, Tea2, which transports the protein to the MT plus end (3). Together with the growing MT, Tea1 reaches the cortex, where it is unloaded and binds to a prenylated and membrane-anchored receptor protein, Mod5 (28). The formin For3, which catalyzes actin cable formation, is recruited to the tip through binding to another cell end marker protein, Tea4, which confers tethering to Tea1 (7, 18, 33). Tea4 is required for For3 localization at the cell tip, specifically during initiation of bipolar growth (18).Recently, it was shown that components of this polarity determination machinery are conserved in the filamentous fungus A. nidulans (8). The first component identified was the Tea2 homologue, KipA, a kinesin-7 motor protein (16). Deletion of the gene did not affect hyphal tip extension but polarity determination. Instead of growing straight, hyphae grew in curves. KipA moves along MTs and accumulates at the MT plus end. The identification of Tea1 and a Mod5 homologue was more difficult, because the primary structure of these cell end marker proteins is not well conserved in filamentous fungi. A Tea1 homologue, TeaA, only displayed 27% sequence identity. However, the presence of Kelch repeats in both proteins suggested conserved functions (31). A Mod5 homologue was identified by a conserved CAAX prenylation motif at the C terminus. Systematic analyses of proteins with such a motif in the A. nidulans genome led to the identification of TeaR. Like Tea1 and Mod5, TeaA and TeaR localize at or close to the hyphal membrane at the growing cell end (31). However, correct localization of TeaR requires TeaA. In addition, sterol-rich membrane domains define the place of TeaR attachment to the hyphal tip. In contrast to S. pombe, TeaA and TeaR are still transported to the hyphal tip in the absence of the motor protein KipA, but their localization is disturbed in comparison to wild type. This suggests that other proteins are necessary for exact TeaA positioning, whose localization depends on KipA.We characterized a homologue of the S. pombe cell end marker protein, Tea4, and found that the protein is required for the maintenance of straight polar growth but that it also appears to be involved in septation.  相似文献   

16.
Hyphae of Aspergillus nidulans continued to synthesize all the major polysaccharide components of the cell wall when cycloheximide was added to cultures. In the presence of cycloheximide, hyphae did not elongate, but electron microscopy showed that the walls became thicker around the cell. The conclusion that cycloheximide changed wall synthesis from extension at the apex to subapical thickening was supported by grain distributions on radioautograms of mutant hyphae labeled with galactose. These findings are discussed in relation to the control of hyphal wall synthesis and are compared with the effects of protein synthesis inhibitors on wall formation in gram-positive bacteria.  相似文献   

17.
18.
Cell Wall Integrity Signaling in Saccharomyces cerevisiae   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

19.
DRH. Evans  MJR. Stark 《Genetics》1997,145(2):227-241
Temperature-sensitive mutations were generated in the Saccharomyces cerevisiae PPH22 gene that, together with its homologue PPH21, encode the catalytic subunit of type 2A protein phosphatase (PP2A). At the restrictive temperature (37°), cells dependent solely on pph22(ts) alleles for PP2A function displayed a rapid arrest of proliferation. Ts(-) pph22 mutant cells underwent lysis at 37°, showing an accompanying viability loss that was suppressed by inclusion of 1 M sorbitol in the growth medium. Ts(-) pph22 mutant cells also displayed defects in bud morphogenesis and polarization of the cortical actin cytoskeleton at 37°. PP2A is therefore required for maintenance of cell integrity and polarized growth. On transfer from 24° to 37°, Ts(-) pph22 mutant cells accumulated a 2N DNA content indicating a cell cycle block before completion of mitosis. However, during prolonged incubation at 37°, many Ts(-) pph22 mutant cells progressed through an aberrant nuclear division and accumulated multiple nuclei. Ts(-) pph22 mutant cells also accumulated aberrant microtubule structures at 37°, while under semi-permissive conditions they were sensitive to the microtubule-destabilizing agent benomyl, suggesting that PP2A is required for normal microtubule function. Remarkably, the multiple defects of Ts(-) pph22 mutant cells were suppressed by a viable allele (SSD1-v1) of the polymorphic SSD1 gene.  相似文献   

20.
Deletion or repression of Aspergillus nidulans ugmA (AnugmA), involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA) crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and wall composition in A. nidulans. The complemented (AnugmA::wild type AfugmA) strain had wild type phenotype, indicating these genes had functional homology. Consistent with in vitro studies, AfUgmA residues R182 and R327 were important for its function in vivo, with even conservative amino (RK) substitutions producing AnugmA? phenotype strains. Similarly, the conserved AfUgmA loop III histidine (H63) was important for Galf generation: the H63N strain had a partially rescued phenotype compared to AnugmA▵. Collectively, A. nidulans strains that hosted mutated AfUgmA constructs with low enzyme activity showed increased hyphal surface adhesion as assessed by binding fluorescent latex beads. Consistent with previous qPCR results, immunofluorescence and ELISA indicated that AnugmA▵ and AfugmA-mutated A. nidulans strains had increased α-glucan and decreased β-glucan in their cell walls compared to wild type and AfugmA-complemented strains. Like the AnugmA▵ strain, A. nidulans strains containing mutated AfugmA showed increased sensitivity to antifungal drugs, particularly Caspofungin. Reduced β-glucan content was correlated with increased Caspofungin sensitivity. Aspergillus nidulans wall Galf, α-glucan, and β-glucan content was correlated in A. nidulans hyphal walls, suggesting dynamic coordination between cell wall synthesis and cell wall integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号