共查询到20条相似文献,搜索用时 15 毫秒
1.
Human visual area V6, in the parieto-occipital sulcus, is thought to have an important role in the extraction of optic flow for the monitoring and guidance of self-motion (egomotion) because it responds differentially to egomotion-compatible optic flow when compared to: (a) coherent but egomotion-incompatible flow (Cardin & Smith, 2010), and (b) incoherent motion (Pitzalis et al., 2010). It is not clear, however, whether V6 responds more strongly to egomotion-incompatible global motion than to incoherent motion. This is relevant not only for determining the functional properties of V6, but also in order to choose optimal stimuli for localising V6 accurately with fMRI. Localisation with retinotopic mapping is difficult and there is a need for a simple, reliable method. We conducted an event-related 3T fMRI experiment in which participants viewed a display of dots which either: a) followed a time-varying optic flow trajectory in a single, egomotion-compatible (EC) display; b) formed an egomotion-incompatible (EI) 3×3 array of optic flow patches; or c) moved randomly (RM). Results from V6 show an ordering of response magnitudes: EC > EI > RM. Neighbouring areas V3A and V7 responded more strongly to EC than to RM, but about equally to EC and EI. Our results suggest that although V6 may have a general role in the extraction of global motion, in clear contrast to neighbouring motion areas it is especially concerned with encoding EC stimuli. They suggest two strategies for localising V6: (1) contrasting EC and EI; or (2) contrasting EC and RM, which is more sensitive but carries a risk of including voxels from neighbouring regions that also show a EC > RM preference. 相似文献
2.
3.
The intracellular messenger cAMP is essential for vital processes ranging from ovulation to cognition. There are 10 genes for adenylyl cyclase (AC), the biosynthetic enzyme of cAMP. Nine of these encode membrane-bound proteins and one gives rise to soluble AC. The understanding of the biological significance of this molecular diversity is incomplete. Membrane-bound ACs conform to the same structural blueprint but have markedly different regulatory characteristics. AC mRNAs are differentially distributed in the body suggesting non-redundant physiological functions. The subcellular localisation of AC isoforms has not been examined in detail. Here we discuss the current knowledge on the intracellular targeting of AC isoforms, and highlight the technical problems of AC detection, some of which appear to be caused by the poor quality-control of commercially supplied antibodies. The principal message is that intracellular targeting of ACs may be isoform-specific and also dependent on the cellular context of expression.Invocation: This paper was written to honour one of the founders of chemical neuroanatomy—Professor Miklós Palkovits on his 70th birthday. 相似文献
4.
Marc D. Panas Tim Schulte Bastian Thaa Tatiana Sandalova Nancy Kedersha Adnane Achour Gerald M. McInerney 《PLoS pathogens》2015,11(2)
The Ras-GAP SH3 domain–binding proteins (G3BP) are essential regulators of the formation of stress granules (SG), cytosolic aggregates of proteins and RNA that are induced upon cellular stress, such as virus infection. Many viruses, including Semliki Forest virus (SFV), block SG induction by targeting G3BP. In this work, we demonstrate that the G3BP-binding motif of SFV nsP3 consists of two FGDF motifs, in which both phenylalanine and the glycine residue are essential for binding. In addition, we show that binding of the cellular G3BP-binding partner USP10 is also mediated by an FGDF motif. Overexpression of wt USP10, but not a mutant lacking the FGDF-motif, blocks SG assembly. Further, we identified FGDF-mediated G3BP binding site in herpes simplex virus (HSV) protein ICP8, and show that ICP8 binding to G3BP also inhibits SG formation, which is a novel function of HSV ICP8. We present a model of the three-dimensional structure of G3BP bound to an FGDF-containing peptide, likely representing a binding mode shared by many proteins to target G3BP. 相似文献
5.
Marc A. Becker Yasir H. Ibrahim Annabell S. Oh Dedra H. Fagan Sara A. Byron Aaron L. Sarver Adrian V. Lee Leslie M. Shaw Cheng Fan Charles M. Perou Douglas Yee 《PloS one》2016,11(3)
Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. 相似文献
6.
Cellular Expression and Proteolytic Processing of Presenilin Proteins Is Developmentally Regulated During Neuronal Differentiation 总被引:2,自引:0,他引:2
Anja Capell Rainer Saffrich †Jean-Christophe Olivo ‡Liane Meyn Jochen Walter Jürgen Grünberg §Paul Mathews §Ralph Nixon ‡Carlos Dotti Christian Haass 《Journal of neurochemistry》1997,69(6):2432-2440
Abstract: We have determined the expression of the Alzheimer's disease-associated proteins presenilin-1 and presenilin-2 in primary cultures of rat hippocampal neurons. Neurons highly express presenilin-1 and presenilin-2, whereas both proteins were not detected in astrocytes. Further, we have analyzed the subcellular localization and expression in rat hippocampal neurons during development. Although presenilin proteins were localized predominantly to the endoplasmic reticulum in nonneuronal cells transfected with presenilin cDNAs, in neurons, presenilin proteins were also found in compartments not staining with antibodies to grp78(BiP). Presenilin-1 and presenilin-2 were predominantly detected in vesicular structures within the somatodendritic compartment with much less expression in axons. Polarized distribution of presenilin-1 and presenilin-2 differs slightly, with more presenilin-2 expressed in axons compared with presenilin-1. Presenilin expression was found to be developmentally regulated. Presenilin expression strongly increased during neuronal differentiation until full morphological polarization and then declined. No full-length presenilin-1 or presenilin-2 could be detected within cell lysates. At early developmental stages the expected ~34-kDa N-terminal proteolytic fragment of presenilin-1 and the ~38-kDa fragment of presenilin-2 were detected. Later during differentiation we predominantly detected a ~38-kDa fragment for presenilin-1 and a ~42-kDa fragment for presenilin-2. By epitope mapping, we show that these slower migrating peptides represent N-terminal proteolytic fragments, cleaved C-terminal to the conventional site of processing. It is noteworthy that both presenilin-1 and presenilin-2 undergo alternative proteolytic cleavage at the same stage of neuronal differentiation. Regulation of presenilin expression and proteolytic processing might have implications for the pathological as well as the biological function of presenilins during aging in the human brain. 相似文献
7.
有序差异显示:一种基因表达谱系统比较法 总被引:2,自引:0,他引:2
系统研究具有同一基因组的各种细胞群之间基因的差异表达谱十分重要。目前,研究基因差异表达的技术大致有mRNA差异显示[1]、RDA[3]、SSH[4、5]和cDNA阵列[6]等。近几年,还发展了一些研究基因差异表达谱系统的技术,如RLCS(restrictionland-markcDNAscanning)[8]、GEF(geneexpres-sionfingerprinting)[2]和RNA指纹法[9]等。然而,这些技术或较为复杂,或灵敏度偏低。本文拟介绍一种有效的基因表达谱系统比较法——有序差… 相似文献
8.
9.
Melnikova D. N. Finkina E. I. Bogdanov I. V. Ovchinnikova T. V. 《Russian Journal of Bioorganic Chemistry》2018,44(6):586-594
Russian Journal of Bioorganic Chemistry - Synthesis of defensive pathogenesis-related (PR) proteins in plants is induced by biotic and abiotic stress. The family of plant PR proteins is divided... 相似文献
10.
11.
目的:分别克隆人细小病毒B19三个主要蛋白VP1、VP2、NS1全长基因,构建真核表达载体。方法:利用PCR和分子克隆技术,分别将B19病毒vp1、vp2、ns1基因全长片段扩增后,构建带荧光标签的真核表达载体;在人体细胞中表达并通过荧光、RT-PCR和Western Blot、测序等方法鉴定。结果:成功构建了包含B19病毒vp1、vp2、ns1全长基因,并在人体细胞中表达了VP1、VP2、NS1蛋白。结论:人微小病毒B19三个主要蛋白基因得到克隆和表达,为进行相关的研究奠定了基础。 相似文献
12.
Temporal Profiles of Proteins Responsive to Transient Ischemia 总被引:4,自引:3,他引:1
The responses of long and short half-lived proteins to ischemia were measured in rat brain during 6 days of recovery from 30 min of transient forebrain ischemia produced by four-vessel occlusion. At the end of the ischemic interval, the neocortical activities of four vulnerable enzymes [ornithine (ODC) and S-adenosylmethionine (SAMDC) decarboxylases, and RNA polymerases I and II] were unchanged, but within 30 min of reperfusion, their activities dropped by 25-50%. The loss of substance P in the striatum and substantia nigra was slower, reaching about 50% by 12 h. On the other hand, the activities of 5 long half-lived enzymes did not change in the neocortex at 5 and 15 h of reperfusion and regional protein concentrations were essentially unaffected over 6 days survival. The rate and extent of normalization of the amounts or activities of the vulnerable proteins varied. RNA polymerase II and ODC activities were restored within 4 h, and ODC showed a biphasic increase in activity, with peaks at 10 h and 2-3 days. RNA polymerase I and SAMDC activities were restored by 18 h and 5 days, respectively, whereas substance P concentrations did not completely recover, even at 6-15 days. The greater the regional reduction of blood flow during ischemia, the larger the net change (gain or loss) of SAMDC or ODC activity and the longer the time required to normalize the activities of these enzymes. The average rate of proteolysis, assessed by measuring the rate of clearance of 14C from protein prelabeled with [14C]bicarbonate, was abnormal during the first 2 days of reperfusion. Postischemic changes in both protein synthesis and degradation could affect the amounts of some of the proteins responsive to transient ischemia. 相似文献
13.
Morphology and Release Profiles of Biodegradable Microparticles Containing Rhamnolipid Biosurfactant
Natasha D. Henry Michael Abazinge Elijah Johnson Tanise Jackson 《Bioremediation Journal》2005,9(3-4):121-128
In an effort to expand the technology of bioremediation of hydrophobic organic compounds, microencapsulation technology was investigated as a method of biosurfactant delivery to contaminated sites. Microparticles are composed of active or inactive materials encapsulated in a polymer coating designed for controlled release of the encapsulated substance. Surface morphology and release profiles of microparticles containing rhamnolipid biosurfactant were investigated for development of a controlled release bioremediation scheme. The evaluation was conducted under laboratory conditions with 45 mg/ml concentration of biosurfactant and a representative environmental medium; using artificial salt water (35 ppt) and deionized water medium as a control. The microparticles were prepared by the water–in–oil–in–water double emulsion solvent evaporation method. The surface morphology was examined after initial preparation, at 0, 15 and 31 days incubation, using light microscopy. Light microscopic images revealed smooth, spherical microparticles that degraded over time in the media. Results indicated that microparticle degradation occurred mostly in the salt water environment, suggesting that the presence of salts (Na+ and Cl? ions) in the water enhanced microparticle degradation. The deionized water environment achieved polymeric degradation that was similar to what was generally reported in the literature. Biosurfactant release was evaluated for polymer molecular weights (Mw) 40, 80, and 200 kDa, in salt water and deionized water media, each of which showed a high initial burst release of biosurfactant, followed by pulse releases that occurred over the 31 day period. The highest level of biosurfactant release of all the molecular weights tested occurred in the Mw 80 kDa. The release from Mw 40 kDa and Mw 200 kDa was not significantly different (P > 0.05). The results showed that this technology may be useful for enhancing bioremediation of residual hydrophobic organic contaminants (HOC) in estuarine and marine environments. 相似文献
14.
Ralf Schneider Sacha A. Jensen James S.O. McCullagh Penny A. Handford 《Journal of molecular biology》2010,401(4):605-617
FBLN5 encodes fibulin-5, an extracellular matrix calcium-binding glycoprotein that is essential for elastic fibre formation. FBLN5 mutations are associated with two distinct human diseases, age-related macular degeneration (AMD) and cutis laxa (CL), but the biochemical basis for the pathogenic effects of these mutations is poorly understood. Two missense mutations found in AMD patients (I169T and G267S) and two missense mutations found in CL patients (G202R and S227P) were analysed in a native-like context in recombinant fibulin-5 fragments. Limited proteolysis, NMR spectroscopy and chromophoric calcium chelation experiments showed that the G267S and S227P substitutions cause long-range structural effects consistent with protein misfolding. Cellular studies using fibroblast cells further demonstrated that these recombinant forms of mutant fibulin-5 were not present in the extracellular medium, consistent with retention. In contrast, no significant effects of I169T and G202R substitutions on protein fold and secretion were identified. These data establish protein misfolding as a causative basis for the effects of G267S and S227P substitutions in AMD and CL, respectively, and raise the possibility that the I169T and G202R substitutions may be polymorphisms or may increase susceptibility to disease. 相似文献
15.
《Cell cycle (Georgetown, Tex.)》2013,12(6):517-520
Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the retinoblastoma tumor suppressor protein, pRb. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-b-galactosidase (SA-b-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. We have recently discovered that expression of active pRb induces expression and altered localization of the ERM family member ezrin, an actin-binding protein involved in membrane-cytoskeletal signaling. pRb expression results in the stimulation of cdk5-mediated phosphorylation of ezrin with subsequent membrane association and induction of cell shape changes, linking pRb activity to cytoskeletal regulation in senescent cells. Cdk5 activity increases in senescing cells and is required for expression of SA-b-gal and for actin polymerization accompanying acquisition of the senescent morphology. These results begin to illuminate the mechanisms underlying induction of senescence and the senescent shape change and describe new pathways that may contribute to the ability of senescent cells to influence tumor growth. 相似文献
16.
Functional and molecular biological evidence exists for the expression of ryanodine receptors in non-muscle cells. In the present study, RT-PCR and 5'-rapid amplification of cDNA 5'-end (5'-RACE analysis) provided evidence for the presence of a type 1 ryanodine receptor/Ca2+ channel (RyR1) in diverse cell types. In parotid gland-derived 3-9 (epithelial) cells, the 3'-end 1589 nucleotide sequence for a rat RyR shared 99% homology with rat brain RyR1. Expression of this RyR mRNA sequence in exocrine acinar cells, endocrine cells, and liver in addition to skeletal muscle and cardiac muscle, suggests wide tissue distribution of the RyR1. Positive identification of a 5'-end sequence was made for RyR1 mRNA in rat skeletal muscle and brain, but not in parotid cells, pancreatic islets, insulinoma cells, or liver. These data suggest that a modified RyR1 is present in exocrine and endocrine cells, and liver. Western blot analysis showed L-type Ca2+ channel-related proteins in parotid acinar cells, which were of comparable size to those identified in skeletal and cardiac muscle, and in brain. Immunocytochemistry carried out on intact parotid acini demonstrated that the dihydropyridine receptor was preferentially co-localized with the IP3 receptor in the apical membranes. From these data we conclude that certain non-muscle cells express a modified RyR1 and L-type Ca2+ channel proteins. These receptor/channels may play a role in Ca2+ signaling involving store-operated Ca2+ influx via receptor-mediated channels. 相似文献
17.
18.
19.
Costas Mitsopoulos Amanda C. Schierz Paul Workman Bissan Al-Lazikani 《PLoS computational biology》2015,11(12)
The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/. 相似文献
20.
硫氧还蛋白还原酶缺陷的大肠杆菌宿主促进含半胱氨酸残基的重组蛋白可溶性表达 总被引:2,自引:0,他引:2
以人工设计的,不含半胱氨氨酸残基的三元蛋白,六聚和八聚鲑鱼降钙素融合蛋白和人尿激酶原等不同半胱氨酸残基含量的外源蛋白质为例,利用大肠杆菌硫氧还蛋白还原酶基因缺陷菌GH980(DE3 trxB^-),探索把以包涵体形式表达的外源蛋白质变为可溶性表达的可能性及其规律。研究表明:由于硫氧还蛋白还原酶基因的缺陷所引超的细胞质氧化还原态势的变化,使一些在普通大肠杆菌宿主中以包涵 形式表达,含有半胱氨酸残基的重组蛋白,在GJ980中能在一定程度上以可溶性蛋白质形式表达;不含有半胱氨酸残基的重组蛋白在GJ980中仍以包涵体形式表达,推测重组蛋白在GJ980细胞质中形成二硫键对其正确构象的形成具有一定的作用。 相似文献