首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The budding yeast Saccharomyces cerevisiae secretes 2-isopropylmalic acid (2-iPMA), an intermediate in leucine biosynthesis. Because 2-iPMA binds Al(III) in the culture medium, it is thought to reduce toxicity by Al(III). The effects of 2-iPMA and malic acid (MA) on Al toxicity were investigated in a medium with a low pH and low concentrations of phosphates and magnesium. The reduction in the growth of S. cerevisiae observed in the presence of 100 μM Al(III) ions was relieved more by the addition of 1.0 mM 2-iPMA than by 1.0 mM MA, indicating that 2-iPMA possesses superior Al(III)-ion detoxification ability. Investigations using the wild type and the Δleu4 and Δleu9 mutant strains indicated that secretion of a sufficient level of 2-iPMA was required to enhance the Al tolerance. It is thought that 2-iPMA secreted from the yeast cells chelates Al ions and prevents them from entering the cells, resulting in Al tolerance. Suzuki and Tamura contributed equally to this work.  相似文献   

2.
3.
4.
The budding yeast IQGAP-like protein Cyk1p/Iqg1p localizes to the mother-bud junction during anaphase and has been shown to be required for the completion of cytokinesis. In this study, video microscopy analysis of cells expressing green fluorescent protein-tagged Cyk1p/Iqg1p demonstrates that Cyk1p/Iqg1p is a dynamic component of the contractile ring during cytokinesis. Furthermore, in the absence of Cyk1p/Iqg1p, myosin II fails to undergo the contraction-like size change at the end of mitosis. To understand the mechanistic role of Cyk1p/Iqg1p in actomyosin ring assembly and dynamics, we have investigated the role of the structural domains that Cyk1p/Iqg1p shares with IQGAPs. An amino terminal portion containing the calponin homology domain binds to actin filaments and is required for the assembly of actin filaments to the ring. This result supports the hypothesis that Cyk1p/Iqg1p plays a direct role in F-actin recruitment. Deletion of the domain harboring the eight IQ motifs abolishes the localization of Cyk1p/Iqg1p to the bud neck, suggesting that Cyk1p/Iqg1p may be localized through interactions with a calmodulin-like protein. Interestingly, deletion of the COOH-terminal GTPase-activating protein-related domain does not affect Cyk1p/Iqg1p localization or actin recruitment to the ring but prevents actomyosin ring contraction. In vitro binding experiments show that Cyk1p/Iqg1p binds to calmodulin, Cmd1p, in a calcium-dependent manner, and to Tem1p, a small GTP-binding protein previously found to be required for the completion of anaphase. These results demonstrate the critical function of Cyk1p/Iqg1p in regulating various steps of actomyosin ring assembly and cytokinesis.  相似文献   

5.
6.
Mitochondrial nucleoids (mt-nucleoids) isolated from the yeastSaccharomyces cerevisiae were analyzed to identify the proteincomponents that are involved in the compact packaging of mtDNA.The isolated mt-nucleoids were disassembled by the additionof 2 M NaCl and the disassembled mt-nucleoids were reassembledonce again into compact structures by dialysis against a bufferthat contained NaCl at concentrations below 0.1 M, as monitoredby staining of the DNA with 4',6-diamidino-2-phenylindole. DNA-binding proteins with molecular masses of 67 kDa, 52 kDa,50 kDa, 38 kDa, 30 kDa and 20 kDa were separated from isolatedmt-nucleoids by column chromatography on DNA cellulose afterdigestion of mt-nucleoids by DNase I in the presence or absenceof 2 M NaCl. Purified mtDNA was compactly packaged into nucleoid-likestructures upon the addition of fractions that contained DNA-bindingproteins and subsequent dialysis to reduce the concentrationof NaCl. Five proteins, with molecular masses of 67 kDa, 52kDa, 50 kDa, 38 kDa and 30 kDa, respectively, had lower affinityfor double-stranded DNA than that of the 20-kDa protein. Thefraction that contained the five DNA-binding proteins otherthan the 20-kDa protein was also able to fold mtDNA compactlyinto nucleoid-like structures. By contrast, the combinationof the 20-kDa protein and mtDNA resulted in formation of lesstightly packed, string-of-bead structures. These results suggestthat at least six different DNA-binding proteins are involvedin the organization of the mt-nucleoids. (Received April 7, 1995; Accepted July 10, 1995)  相似文献   

7.
8.
Construction of synthetic genetic networks requires the assembly of DNA fragments encoding functional biological parts in a defined order. Yet this may become a time-consuming procedure. To address this technical bottleneck, we have created a series of Gateway shuttle vectors and an integration vector, which facilitate the assembly of artificial genes and their expression in the budding yeast Saccharomyces cerevisiae. Our method enables the rapid construction of an artificial gene from a promoter and an open reading frame (ORF) cassette by one-step recombination reaction in vitro. Furthermore, the plasmid thus created can readily be introduced into yeast cells to test the assembled gene’s functionality. As flexible regulatory components of a synthetic genetic network, we also created new versions of the tetracycline-regulated transactivators tTA and rtTA by fusing them to the auxin-inducible degron (AID). Using our gene assembly approach, we made yeast expression vectors of these engineered transactivators, AIDtTA and AIDrtTA and then tested their functions in yeast. We showed that these factors can be regulated by doxycycline and degraded rapidly after addition of auxin to the medium. Taken together, the method for combinatorial gene assembly described here is versatile and would be a valuable tool for yeast synthetic biology.  相似文献   

9.
Signal transduction mediated by the mitogen-activated protein kinase (MAPK) Slt2 pathway is essential to maintain the cell wall integrity in Saccharomyces cerevisiae. Stimulation of MAPK pathways results in activation by phosphorylation of conserved threonine and tyrosine residues of MAPKs. We have used an antibody that specifically recognizes dually phosphorylated Slt2 to gain insight into the activation and modulation of signaling through the cell integrity pathway. We show that caffeine and vanadate activate this pathway in the absence of osmotic stabilization. The lack of the putative cell surface sensor Mid2 prevents vanadate- but not caffeine-induced Slt2 phosphorylation. Disruption of the Rho1-GTPase-activating protein genes SAC7 and BEM2 leads to constitutive Slt2 activation, indicating their involvement as negative regulators of the pathway. MAPK kinases also seem to participate in signaling regulation, Mkk1 playing a greater role than Mkk2 in signal transmission to Slt2. Additionally, one of the phosphatases involved in Slt2 dephosphorylation is likely to be the dual specificity phosphatase Msg5, since overexpression of MSG5 in a sac7Delta mutant eliminates the high Slt2 phosphorylation, and disruption of MSG5 in wild type cells results in increased phospho-Slt2 levels. These data present the first evidence for a negative regulation of the cell integrity pathway.  相似文献   

10.
We have identified a Saccharomyces cerevisiae protein, Cyk1p, that exhibits sequence similarity to the mammalian IQGAPs. Gene disruption of Cyk1p results in a failure in cytokinesis without affecting other events in the cell cycle. Cyk1p is diffused throughout most of the cell cycle but localizes to a ring structure at the mother–bud junction after the initiation of anaphase. This ring contains filamentous actin and Myo1p, a myosin II homologue. In vivo observation with green fluorescent protein–tagged Myo1p showed that the ring decreases drastically in size during cell division and therefore may be contractile. These results indicate that cytokinesis in budding yeast is likely to involve an actomyosin-based contractile ring. The assembly of this ring occurs in temporally distinct steps: Myo1p localizes to a ring that overlaps the septins at the G1-S transition slightly before bud emergence; Cyk1p and actin then accumulate in this ring after the activation of the Cdc15 pathway late in mitosis. The localization of myosin is abolished by a mutation in Cdc12p, implicating a role for the septin filaments in the assembly of the actomyosin ring. The accumulation of actin in the cytokinetic ring was not observed in cells depleted of Cyk1p, suggesting that Cyk1p plays a role in the recruitment of actin filaments, perhaps through a filament-binding activity similar to that demonstrated for mammalian IQGAPs.  相似文献   

11.
12.
13.
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.  相似文献   

14.
15.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacuolar proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40-110 nm; buoyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100-250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

16.
17.
18.
Inheritance of the endoplasmic reticulum (ER) requires Ptc1p, a type 2C protein phosphatase of Saccharomyces cerevisiae. Genetic analysis indicates that Ptc1p is needed to inactivate the cell wall integrity (CWI) MAP kinase, Slt2p. Here we show that under normal growth conditions, Ptc1p inactivates Slt2p just as ER tubules begin to spread from the bud tip along the cortex. In ptc1Δ cells, the propagation of cortical ER from the bud tip to the periphery of the bud is delayed by hyperactivation of Slt2p. The pool of Slt2p that controls ER inheritance requires the CWI pathway scaffold, Spa2p, for its retention at the bud tip, and a mutation within Slt2p that prevents its association with the bud tip blocks its role in ER inheritance. These results imply that Slt2p inhibits a late step in ER inheritance by phosphorylating a target at the tip of daughter cells. The PI4P5-kinase, Mss4p, is an upstream activator of this pool of Slt2p. Ptc1p-dependant inactivation of Slt2p is also needed for mitochondrial inheritance; however, in this case, the relevant pool of Slt2p is not at the bud tip.  相似文献   

19.
20.
The budding yeast Saccharomyces cerevisiae is a well studied unicellular eukaryotic organism the genome of which has been sequenced. The use of yeast in many commercial systems makes its investigation important not only from basic, but also from practical point of view. Yeast may be grown under both aerobic and anaerobic conditions. The investigation of the response of eukaryotes to different kinds of stresses was pioneered owing to yeast and here we focus mainly on the so-called oxidative stress. It is a result of an imbalance between the formation and decomposition of reactive oxygen species increasing their steady-state concentration. Reactive oxygen species may attack any cellular component. In the present review oxidation of proteins in S. cerevisiae is analyzed. There are two connected approaches to study oxidative protein modification - characterization of the overall process and identification of individual oxidized proteins. Because all aerobic organisms possess special systems which defend them against reactive oxygen species, the involvement of so-called antioxidant enzymes, particularly superoxide dismutase and catalase, in the protection of proteins is also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号