首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The androgen receptor (AR) plays a central role in prostate, muscle, bone and adipose tissue. Moreover, dysregulated AR activity is a driving force in prostate cancer (PCa) initiation and progression. Consequently, antagonizing AR signalling cascades via antiandrogenic therapy is a crucial treatment option in PCa management. Besides, very high androgen levels also inhibit PCa cells’ growth, so this effect could also be applied in PCa therapy. However, on the molecular and cellular level, these mechanisms have hardly been investigated so far. Therefore, the present study describes the effects of varying androgen concentrations on the viability of PCa cells as well as localization, transactivation, and protein stability of the AR. For this purpose, cell viability was determined via WST1 assay. Alterations in AR transactivity were detected by qPCR analysis of AR target genes. A fluorescent AR fusion protein was used to analyse AR localization microscopically. Changes in AR protein expression were detected by Western blot. Our results showed that high androgen concentrations reduce the cell viability in LNCaP and C4-2 cell lines. In addition, androgens have been reported to increase AR transactivity, AR localization, and AR protein expression levels. However, high androgen levels did not reduce these parameters. Furthermore, this study revealed an androgen-induced increase in AR protein synthesis. In conclusion, inhibitory effects on cell viability by high androgen levels are due to AR downstream signalling or non-genomic AR activity. Moreover, hormonal activation of the AR leads to a self-induced stabilization of the receptor, resulting in increased AR activity. Therefore, in clinical use, a therapeutic reduction in androgen levels represents a clinical target and would lead to a decrease in AR activity and, thus, AR-driven PCa progression.  相似文献   

2.
Deng M  Chen P  Liu F  Fu S  Tang H  Fu Y  Xiong Z  Hui S  Ji W  Zhang X  Zhang L  Gong L  Hu X  Hu W  Sun S  Liu J  Xiao L  Liu WB  Xiao YM  Liu SJ  Liu Y  Li DW 《Current molecular medicine》2012,12(8):901-916
The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells (Qin et al. 2008. Cancer Research. 68(11):4150) and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Here, we demonstrate that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. First, during mouse lens development, p53 is expressed and differentially phosphorylated at different residues. Associated with p53 expression, Bak is also significantly expressed during mouse lens development. Second, human p53 directly regulates Bak promoter and Bak expression in p53 knockout mice (p53-/-) was significantly downregulated. Third, during in vitro bFGF-induced lens cell differentiation, knockdown of p53 or Bak leads to significant inhibition of lens cell differentiation. Fourth, besides the major distribution of Bak in cytoplasm, it is also localized in the nucleus in normal lens or bFGF-induced differentiating lens cells. Finally, p53 and Bak are co-localized in both cytoplasm and nucleus, and their interaction regulates the stability of p53. Together, these results demonstrate for the first time that the p53-Bak apoptotic signaling axis plays an essential role in regulating lens differentiation.  相似文献   

3.
4.
Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein, p44/WDR77, that plays a critical role in the proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44/WDR77 gene caused premature death with dramatic astrogliosis in mouse brain. We further found that p44/WDR77 is expressed in astrocytes and that loss of p44/WDR77 expression in astrocytes leads to growth arrest and astrogliosis. The astrocyte activation induced by deletion of the p44/WDR77 gene was associated with upregulation of p21(Cip1) expression and NF-κB activation. Silencing p21(Cip1) or NF-κB p65 expression with short hairpin RNA (shRNA) abolished astrocyte activation and rescued the astrocyte growth inhibition induced by deletion of the p44/WDR77 gene. Our results reveal a novel role for p44/WDR77 in the control of astrocyte activation through p21(Cip1) and NF-κB signaling.  相似文献   

5.
6.
7.
8.
9.
10.
Highlights? Human CD35, like CD21, binds EBVgp350/220, the major virion envelope glycoprotein ? CD35 mediates latent EBV infection when the fusion coreceptor HLA II is expressed ? Temperature, tempo, structure, and regulation distinguish CD35-mediated infection ? CD35 is a physiologically relevant EBV receptor  相似文献   

11.
12.
p53 is a central tumor suppressor protein and its inhibition is believed to be a prerequisite for cancer development. In approximately 50% of all malignancies this is achieved by inactivating mutations in the p53 gene. However, in several cancer entities, including melanoma, p53 mutations are rare. It has been recently proposed that tyrosinase related protein 2 (TRP2), a protein involved in melanin synthesis, may act as suppressor of the p53 pathway in melanoma. To scrutinize this notion we analyzed p53 and TRP2 expression by immunohistochemistry in 172 melanoma tissues and did not find any correlation. Furthermore, we applied three different TRP2 shRNAs to five melanoma cell lines and could not observe a target specific effect of the TRP2 knockdown on either p53 expression nor p53 reporter gene activity. Likewise, ectopic expression of TRP2 in a TRP2 negative melanoma cell line had no impact on p53 expression. In conclusion our data suggest that p53 repression critically controlled by TRP2 is not a general event in melanoma.  相似文献   

13.
Aurora-A kinase is frequently overexpressed/activated in various types of human malignancy, including prostate cancer. In this study, we demonstrate elevated levels of Aurora-A in androgen-refractory LNCaP-RF but not androgen-sensitive LNCaP cells, which prompted us to examine whether Aurora-A regulates the androgen receptor (AR) and whether elevated Aurora-A is involved in androgen-independent cell growth. We show that ectopic expression of Aurora-A induces AR transactivation activity in the presence and absence of androgen. Aurora-A interacts with AR and phosphorylates AR at Thr282 and Ser293 in vitro and in vivo. Aurora-A induces AR transactivation activity in a phosphorylation-dependent manner. Ectopic expression of Aurora-A in LNCaP cells induces prostate-specific antigen expression and cell survival, whereas knockdown of Aurora-A sensitizes LNCaP-RF cells to apoptosis and cell growth arrest. These data indicate that AR is a substrate of Aurora-A and that elevated Aurora-A could contribute to androgen-independent cell growth by phosphorylation and activation of AR.  相似文献   

14.
雄激素受体是典型的核受体,它对真核基因转录的调控作用受到日益广泛的重视。本文主要阐述了雄激素受体的分子结构,重点总结了雄激素受体介导真核基因转录起始的过程,概述了激素受体辅助使用因子及受体的核转运等受体功能的调控,这些是进一步研究真核基因表达调控机制及治疗雄激素相关疾病的理论基础。  相似文献   

15.
The tumor suppressor p53 is activated in response to many types of cellular and environmental insults via mechanisms involving post-translational modification. Here we demonstrate that, unlike phosphorylation, p53 invariably undergoes acetylation in cells exposed to a variety of stress-inducing agents including hypoxia, anti-metabolites, nuclear export inhibitor and actinomycin D treatment. In vivo, p53 acetylation is mediated by the p300 and CBP acetyltransferases. Overexpression of either p300 or CBP, but not an acetyltransferase-deficient mutant, efficiently induces specific p53 acetylation. In contrast, MDM2, a negative regulator of p53, actively suppresses p300/CBP-mediated p53 acetylation in vivo and in vitro. This inhibitory activity of MDM2 on p53 acetylation is in turn abrogated by tumor suppressor p19(ARF), indicating that regulation of acetylation is a central target of the p53-MDM2-p19(ARF) feedback loop. Functionally, inhibition of deacetylation promotes p53 stability, suggesting that acetylation plays a positive role in the accumulation of p53 protein in stress response. Our results provide evidence that p300/CBP-mediated acetylation may be a universal and critical modification for p53 function.  相似文献   

16.
17.
18.
19.
p300/CBP/p53 interaction and regulation of the p53 response.   总被引:10,自引:0,他引:10  
Substantial evidence points to a critical role for the p300/CREB binding protein (CBP) coactivators in p53 responses to DNA damage. p300/CBP and the associated protein P/CAF bind to and acetylate p53 during the DNA damage response, and are needed for full p53 transactivation as well as downstream p53 effects of growth arrest and/or apoptosis. Beyond this simplistic model, p300/CBP appear to be complex integrators of signals that regulate p53, and biochemically, the multipartite p53/p300/CBP interaction is equally complex. Through physical interaction with p53, p300/CBP can both positively and negatively regulate p53 transactivation, as well as p53 protein turnover depending on cellular context and environmental stimuli, such as DNA damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号