首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clinically, amniotic membrane (AM) suppresses inflammation, scarring, and angiogenesis. AM contains abundant hyaluronan (HA) but its function in exerting these therapeutic actions remains unclear. Herein, AM was extracted sequentially with buffers A, B, and C, or separately by phosphate-buffered saline (PBS) alone. Agarose gel electrophoresis showed that high molecular weight (HMW) HA (an average of ∼3000 kDa) was predominantly extracted in isotonic Extract A (70.1 ± 6.0%) and PBS (37.7 ± 3.2%). Western blot analysis of these extracts with hyaluronidase digestion or NaOH treatment revealed that HMW HA was covalently linked with the heavy chains (HCs) of inter-α-inhibitor (IαI) via a NaOH-sensitive bond, likely transferred by the tumor necrosis factor-α stimulated gene-6 protein (TSG-6). This HC·HA complex (nHC·HA) could be purified from Extract PBS by two rounds of CsCl/guanidine HCl ultracentrifugation as well as in vitro reconstituted (rcHC·HA) by mixing HMW HA, serum IαI, and recombinant TSG-6. Consistent with previous reports, Extract PBS suppressed transforming growth factor-β1 promoter activation in corneal fibroblasts and induced mac ro phage apo pto sis. However, these effects were abolished by hyaluronidase digestion or heat treatment. More importantly, the effects were retained in the nHC·HA or rcHC·HA. These data collectively suggest that the HC·HA complex is the active component in AM responsible in part for clinically observed anti-inflammatory and anti-scarring actions.Hyaluronan (HA)4 is widely distributed in extracellular matrices, tissues, body fluids, and even in intracellular compartments (reviewed in Refs. 1 and 2). The molecular weight of HA ranges from 200 to 10,000 kDa depending on the source (3), but can also exist as smaller fragments and oligosaccharides under certain physiological or pathological conditions (1). Investigations over the last 15 years have suggested that low Mr HA can induce the gene expression of proinflammatory mediators and proangiogenesis, whereas high molecular weight (HMW) HA inhibits these processes (47).Several proteins have been shown to bind to HA (8) such as aggrecan (9), cartilage link protein (10), versican (11), CD44 (12, 13), inter-α-inhibitor (IαI) (14, 15), and tumor necrosis factor-α stimulated gene-6 protein (TSG-6) (16, 17). IαI consists of two heavy chains (HCs) (HC1 and HC2), both of which are linked through ester bonds to a chondroitin sulfate chain that is attached to the light chain, i.e. bikunin. Among all HA-binding proteins, only the HCs of IαI have been clearly demonstrated to be covalently coupled to HA (14, 18). However, TSG-6 has also been reported to form stable, possibly covalent, complexes with HA, either alone (19, 20) or when associated with HC (21).The formation of covalent bonds between HCs and HA is mediated by TSG-6 (2224) where its expression is often induced by inflammatory mediators such as tumor necrosis factor-α and interleukin-1 (25, 26). TSG-6 is also expressed in inflammatory-like processes, such as ovulation (21, 27, 28) and cervical ripening (29). TSG-6 interacts with both HA (17) and IαI (21, 24, 3033), and is essential for covalently transferring HCs on to HA (2224). The TSG-6-mediated formation of the HC·HA complex has been demonstrated to play a crucial role in female fertility in mice. The HC·HA complex is an integral part of an expanded extracellular “cumulus” matrix around the oocyte, which plays a critical role in successful ovulation and fertilization in vivo (22, 34). HC·HA complexes have also been found at sites of inflammation (3538) where its pro- or anti-inflammatory role remain arguable (39, 40).Immunostaining reveals abundant HA in the avascular stromal matrix of the AM (41, 42).5 In ophthalmology, cryopreserved AM has been widely used as a surgical graft for ocular surface reconstruction and exerts clinically observable actions to promote epithelial wound healing and to suppress inflammation, scarring, and angiogenesis (for reviews see Refs. 4345). However, it is not clear whether HA in AM forms HC·HA complex, and if so whether such an HC·HA complex exerts any of the above therapeutic actions. To address these questions, we extracted AM with buffers of increasing salt concentration. Because HMW HA was found to form the HC·HA complex and was mainly extractable by isotonic solutions, we further purified it from the isotonic AM extract and reconstituted it in vitro from three defined components, i.e. HMW HA, serum IαI, and recombinant TSG-6. Our results showed that the HC·HA complex is an active component in AM responsible for the suppression of TGF-β1 promoter activity, linkable to the scarring process noted before by AM (4648) and by the AM soluble extract (49), as well as for the promotion of macrophage death, linkable to the inflammatory process noted by AM (50) and the AM soluble extract (51).  相似文献   

2.
Magnetic resonance imaging remains the only non-invasive method to assess the quality of cartilage repair procedures, but ideally would be complemented by other modalities, particularly blood tests. Nganvongpanit and colleagues investigated serum levels of hyaluronic acid (HA) and chondroitin sulfate (CS) for their correlation with tissue quality after cartilage repair with autologous chondrocytes versus subchondral drilling in a dog model. They reported better tissue quality in animals treated with chondrocyte implantation. Serum levels correlated with the histological score of biopsy samples: CS showed a negative (r = -0.69) and HA a positive (r = +0.46) correlation. Many questions remain to be answered before serum markers can provide a reliable, non-invasive tool to assess tissue quality, but these data provide an important foundation for additional research.  相似文献   

3.
Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1β, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.Hyaluronan (HA)3 is the only non-sulfated linear polymer belonging to the family of glycosaminoglycans (GAGs). HA is an unbranched polymer of alternating GlcNAc and GlcUA residues linked by alternate β(1→4) and β(1→3) bonds. Native HA is typically larger than other GAGs, reaching molecular mass values between 106 and 107 Da.HA is a major component of extracellular matrices and in pericellular spaces, particularly in tissues with rapid cell proliferation and cell migration (1). Through interactions with cell surface receptors, notably CD44 and RHAMM (receptor for HA-mediated motility), HA has important roles in regulating cell behavior, including signal transduction, cell adhesion, proliferation, migration, and differentiation (2). Recently, novel interactions involving HA and Toll-like receptors 4 and 2 have been described that have important roles in inflammation (3, 4). Moreover, HA has been implicated in morphogenesis (58), wound healing (9), angiogenesis (10), malignancies, cancer growth, and tumor invasion (11).In mammals, HA is normally synthesized at the plasma membrane and extruded directly into the extracellular space by three isoforms of HA synthases (HASs), HAS1, -2, and -3. The three HAS isoforms differ in tissue distribution, regulation, and enzymatic properties (12); nevertheless, they are similar in amino acid sequences and molecular structures.HA biosynthesis is under the control of a wide variety of cytokines and growth factors (13). The changes in HA synthesis can be related to HAS mRNA expression (14), to availability of the UDP-sugar precursors (15, 16), or to modulation by phosphorylation of HAS (1719) in response to cytokines and growth factors. Moreover, HA chain synthesis can be controlled by additional mechanisms, such as cell type, intracellular environment, or HAS accessory proteins (20). Cultures of smooth muscle cells isolated from human colon increase synthesis of HA after treatment with a viral mimetic molecule (poly(I-C)) (21). The HA is organized into novel cable-like structures, and their synthesis may be initiated in the perinuclear and/or the endoplasmic reticulum (ER) membranes (22). Furthermore, HA interstitial deposition is correlated with inflammatory processes (23, 24) in which HA-CD44 interactions stimulate leukocyte adhesion in order to generate an inflammatory response (25).Cytokines and growth factors, such as IL-1β and platelet-derived growth factor BB (PDGF-BB), as well as 4-methylumbeliferone (4-MU) and the tumor promoter phorbol 12-myristate 13-acetate (PMA), also modulate HA synthesis (2629). In order to elucidate how these different effectors affect HAS activity, it is important to purify and solubilize the HAS enzymes as previously underlined in studies on eukaryotic cell lines (30). In this context, Itano and Kimata (31) used a mammalian transient expression system to characterize the three different HAS isoforms in either cells or cellular membrane extracts. On the other hand, Spicer (32) described three relatively simple procedures for the detection of HA synthase activity in cultured mammalian cell lines. In all of these studies, the enzyme activity was measured by incubating cellular membrane extracts with radiolabeled UDP-sugar precursors, and the final analysis of the products was done by liquid scintillation counting. Various other strategies and methods can be used to determine the HA biosynthetic capacity of cells, although they are always based on the use of radiolabeled UDP-sugar precursors (3335).In our previous studies, we described methods of polyacrylamide gel electrophoresis of fluorophore-labeled saccharides (PAGEFS) and high performance liquid chromatography (HPLC) for the analysis of disaccharides derived from HA and chondroitin sulfate (3338). In order to improve the sensitivity of this method, a derivatization with 2-aminoacridone (AMAC) was done, followed by fluorescence detection (39). In this study, we modified this method to address the question of localization of HAS activity during intracellular trafficking, since HA has been detected inside cells in previous studies (4042). This new non-radioactive method was used to quantify HAS activity on cell membranes fractionated by sucrose gradient methods. To test the robustness of our approach, we analyzed the effect of 4-MU, PMA, IL-1β, PDGF-BB, and tunicamycin on cell cultures. In particular, we found that tunicamycin induced an increase of HA synthesis in both plasma and internal cell membranes in EVC cells, whereas it increased HA synthesis only in the internal cell membranes in the OVCAR-3 cells. The results suggest that post-translational modulation of HAS activity is responsible for the increased HA synthesis inside the cells. Moreover, since tunicamycin induced HA cable structures in the OVCAR-3 cells, we correlated the altered intracellular HAS activity with the capability to promote HA cable formation.  相似文献   

4.
The molecular weight of hyaluronan is important for its rheological and biological function. The molecular mechanisms underlying chain termination and hence molecular weight control remain poorly understood, not only for hyaluronan synthases but also for other β-polysaccharide synthases, e.g. cellulose, chitin, and 1,3-betaglucan synthases. In this work, we manipulated metabolite concentrations in the hyaluronan pathway by overexpressing the five genes of the hyaluronan synthesis operon in Streptococcus equi subsp. zooepidemicus. Overexpression of genes involved in UDP-glucuronic acid biosynthesis decreased molecular weight, whereas overexpression of genes involved in UDP-N-acetylglucosamine biosynthesis increased molecular weight. The highest molecular mass observed was at 3.4 ± 0.1 MDa twice that observed in the wild-type strain, 1.8 ± 0.1 MDa. The data indicate that (a) high molecular weight is achieved when an appropriate balance of UDP-N-acetylglucosamine and UDP-glucuronic acid is achieved, (b) UDP-N-acetylglucosamine exerts the dominant effect on molecular weight, and (c) the wild-type strain has suboptimal levels of UDP-N-acetylglucosamine. Consistent herewith molecular weight correlated strongly (ρ = 0.84, p = 3 × 10−5) with the concentration of UDP-N-acetylglucosamine. Data presented in this paper represent the first model for hyaluronan molecular weight control based on the concentration of activated sugar precursors. These results can be used to engineer strains producing high molecular weight hyaluronan and may provide insight into similar polymerization mechanisms in other polysaccharides.Hyaluronan (HA)3 is a linear polymer of a repeating disaccharide, β1–3 d-N-acetylglucosamine (GlcNAc) β1–4 d-glucuronic acid (GlcUA) (1) (see Fig. 1). Ubiquitous in the extracellular matrix in vertebrates, HA is particularly abundant in cartilage, synovial fluid, dermis, and the vitreous humor of the eye, where it serves specialized functions. HA also plays a critical role during fertilization and embryogenesis. In many group A and C streptococci, HA forms a capsule that helps these microbes evade the host immune system (2). HA molecular weight is important for the physiochemical as well as biological properties of HA. High molecular weight is important for HA to exert its unique rheological properties (3), for mucoadherence (4, 5), and anti-inflammatory effects (6, 7), whereas low molecular weight is a potent signaling molecule (8).Open in a separate windowFIGURE 1.Biosynthetic pathway of HA in S. zooepidemicus.HA is produced by a processive synthase (9, 10) from the activated sugar precursors, UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc) (see Fig. 1). In addition to the HA synthase (hasA), streptococcal has operons encode for one or more enzymes involved in biosynthesis of the activated sugars (11). The Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) operon encodes for five genes: HA synthase (EC 2.4.1.212; hasA), UDP-glucose dehydrogenase (EC 1.1.1.22; hasB), UDP-glucose pyrophosphorylase (EC 2.7.7.9; hasC), a glmU paralog encoding for a dual function enzyme acetyltransferase and pyrophosphorylase activity (EC 2.3.1.4/EC 2.7.7.23; hasD), and a pgi paralog encoding for phosphoglucoisomerase (EC 5.3.1.9; hasE).Although the biosynthetic mechanism is well established, little is known about what controls HA molecular weight. This is true not only for HA, but also for the highly abundant β-polysaccharides: cellulose, chitin, and 1,3-betaglucan. Molecular weight is partly an intrinsic parameter of the HA synthase. Weigel and colleagues have demonstrated that, at least in vitro, mutation of conserved cysteine or polar residues in streptococcal HA synthases results in reduced molecular weight with limited effect on biosynthetic rate (1214). In a vertebrate HA synthase from Xenopus, the mutation of a serine or a cysteine residue yielded HA of higher, lower, or similar molecular weight depending on the amino acid substitution (15).We and others have demonstrated that in vivo molecular weight is also affected by culture parameters, e.g. temperature and aeration (1620). Although changed culture conditions affect the physiochemical environment of the HA synthase, a more likely explanation is that molecular weight is affected by the availability of activated sugar substrates (UDP-GlcUA and UDP-GlcNAc) as well as the concentration of possible effector molecules, such as free UDP (21). Although such a mechanism has been suggested for several processive synthases (22, 23), there has never been any direct evidence linking molecular weight to the concentration of a substrate.Experimental support for the hypothesis has been obtained for the type 3 polysaccharide of Streptococcus pneumoniae (24). Like HA, the type 3 polysaccharide in S. pneumoniae is synthesized by a processive synthase from alternating addition of activated sugars, in this case UDP-glucose (UDP-Glc) and UDP-GlcUA. Mutants with reduced UDP-glucose dehydrogenase (“hasB”) activity not only produce less polysaccharide, but also polysaccharide with lower molecular weight (24). Although the levels of UDP-GlcUA were below detection in all strains, this supports the idea that UDP-GlcUA concentration controls molecular weight. Moreover, it is consistent with previous in vitro studies showing that low levels of UDP-GlcUA cause chain termination and hence low molecular weight (25). It was proposed that the concentration of UDP-GlcUA is critical for the successful transition from oligosaccharide lipid to highly processive polysaccharide synthesis (26). A similar mechanism is not likely for HA biosynthesis, because there is no indication that the HA synthase needs a primer (27).In the present study, we manipulated metabolite concentrations in the HA pathway by overexpressing the five genes in the has operon of S. zooepidemicus (Fig. 1). Overexpression of these genes had a profound effect on HA molecular weight, which correlated with the levels of UDP-sugars and in particular, UDP-GlcNAc.  相似文献   

5.
Mass spectrometry-based proteomic analyses performed on cartilage tissue extracts identified the serine protease HtrA1/PRSS11 as a major protein component of human articular cartilage, with elevated levels occurring in association with osteoarthritis. Overexpression of a catalytically active form of HtrA1, but not an active site mutant (S328A), caused a marked reduction in proteoglycan content in chondrocyte-seeded alginate cultures. Aggrecan degradation fragments were detected in conditioned media from the alginate cultures overexpressing active HtrA1. Incubation of native or recombinant aggrecan with wild type HtrA1 resulted in distinct cleavage of these substrates. Cleavage of aggrecan by HtrA1 was strongly enhanced by HtrA1 agonists such as CPII, a C-terminal hexapeptide derived from the C-propeptide of procollagen IIα1 (i.e. chondrocalcin). A novel HtrA1-susceptible cleavage site within the interglobular domain (IGD) of aggrecan was identified, and an antibody that specifically recognizes the neoepitope sequence (VQTV356) generated at the HtrA1 cleavage site was developed. Western blot analysis demonstrated that HtrA1-generated aggrecan fragments containing the VQTV356 neoepitope were significantly more abundant in osteoarthritic cartilage compared with cartilage from healthy joints, implicating HtrA1 as a critical protease involved in proteoglycan turnover and cartilage degradation during degenerative joint disease.The mammalian high-temperature requirement A (HtrA) family of serine proteases is defined by a characteristic trypsin-like serine protease domain and one or two C-terminal PDZ domains. Four mammalian HtrA proteins have been identified to date, HtrA1–4. HtrA1 (also called PRSS11) is a ubiquitously expressed extracellular serine protease which contains a signal sequence for secretion, an insulin-like growth factor (IGF)2-binding protein domain, and a Kazal-type serine protease inhibitor domain in addition to the serine protease domain and one C-terminal PDZ domain (1). HtrA1 has been implicated in the progression of several pathologies including age-related macular degeneration, cancer, Alzheimer disease, rheumatoid arthritis, and osteoarthritis (OA) (210). HtrA1 has also been shown to inhibit osteoblast mineralization (11).Expression of HtrA1 has been found to be elevated in articular cartilage in association with OA (5). In addition, HtrA1 levels are up-regulated in murine cartilage after experimentally induced joint damage (6). The physiological role of HtrA1 in OA disease progression as well as in other pathologies is unclear. Preliminary studies using in vitro digestion assays suggest that HtrA1 might be capable of digesting cartilage extracellular matrix (ECM) proteins such as fibromodulin, cartilage oligomeric matrix protein (COMP), fibronectin, decorin, and aggrecan (6, 12, 13). Furthermore, it was recently reported that elevated levels of HtrA1 protein (∼7-fold above normal) are present in synovial fluids obtained from OA patients and that fibronectin fragments generated by HtrA1 cleavage induced the expression of catabolic enzymes such as matrix metalloproteinases-1 (MMP-1) and MMP-3 in synovial fibroblasts (4). HtrA1 has also been shown to modulate multiple signaling pathways in vitro. It binds to transforming growth factor-β family proteins including transforming growth factor-β1 and bone morphogenetic proteins 2 and 4 and inhibits signaling mediated by these factors (14, 15). In addition, HtrA1 has been shown to cleave IGF-binding protein-5 and possibly regulate signaling mediated by IGF (16). These findings suggest that the protease HtrA1 may play a physiological role in cartilage during OA.Articular cartilage is made up of chondrocytes surrounded by the ECM comprised mainly of the proteoglycan, aggrecan, and type II collagen. During normal homeostasis there is a dynamic balance between anabolic activities such as proteoglycan synthesis as well as catabolic activities in which the ECM is destroyed. When the catabolic activities of proteases, such as MMPs and aggrecanases, offset new matrix synthesis, focal degradation and loss of articular cartilage occurs, resulting in the development of OA. In some in vitro digestion studies, we and others have shown degradation of aggrecan by recombinant HtrA1 (6, 12, 13). In the present study we set out to examine the physiological relevance of aggrecan cleavage by HtrA1 in OA disease progression.  相似文献   

6.
Most human genes undergo alternative splicing, but aberrant splice forms are hallmarks of many cancers, usually resulting from mutations initiating abnormal exon skipping, intron retention, or the introduction of a new splice sites. We have identified a family of aberrant splice variants of HAS1 (the hyaluronan synthase 1 gene) in some B lineage cancers, characterized by exon skipping and/or partial intron retention events that occur either together or independently in different variants, apparently due to accumulation of inherited and acquired mutations. Cellular, biochemical, and oncogenic properties of full-length HAS1 (HAS1-FL) and HAS1 splice variants Va, Vb, and Vc (HAS1-Vs) are compared and characterized. When co-expressed, the properties of HAS1-Vs are dominant over those of HAS1-FL. HAS1-FL appears to be diffusely expressed in the cell, but HAS1-Vs are concentrated in the cytoplasm and/or Golgi apparatus. HAS1-Vs synthesize detectable de novo HA intracellularly. Each of the HAS1-Vs is able to relocalize HAS1-FL protein from diffuse cytoskeleton-anchored locations to deeper cytoplasmic spaces. This HAS1-Vs-mediated relocalization occurs through strong molecular interactions, which also serve to protect HAS1-FL from its otherwise high turnover kinetics. In co-transfected cells, HAS1-FL and HAS1-Vs interact with themselves and with each other to form heteromeric multiprotein assemblies. HAS1-Vc was found to be transforming in vitro and tumorigenic in vivo when introduced as a single oncogene to untransformed cells. The altered distribution and half-life of HAS1-FL, coupled with the characteristics of the HAS1-Vs suggest possible mechanisms whereby the aberrant splicing observed in human cancer may contribute to oncogenesis and disease progression.About 70–80% of human genes undergo alternative splicing, contributing to proteomic diversity and regulatory complexities in normal development (1). About 10% of mutations listed so far in the Human Gene Mutation Database (HGMD) of “gene lesions responsible for human inherited disease” were found to be located within splice sites. Furthermore, it is becoming increasingly apparent that aberrant splice variants, generated mostly due to splicing defects, play a key role in cancer. Germ line or acquired genomic changes (mutations) in/around splicing elements (24) promote aberrant splicing and aberrant protein isoforms.Hyaluronan (HA)3 is synthesized by three different plasma membrane-bound hyaluronan synthases (1, 2, and 3). HAS1 undergoes alternative and aberrant intronic splicing in multiple myeloma, producing truncated variants termed Va, Vb, and Vc (5, 6), which predicted for poor survival in a cohort of multiple myeloma patients (5). Our work suggests that this aberrant splicing arises due to inherited predispositions and acquired mutations in the HAS1 gene (7). Cancer-related, defective mRNA splicing caused by polymorphisms and/or mutations in splicing elements often results in inactivation of tumor suppressor activity (e.g. HRPT2 (8, 9), PTEN (10), MLHI (1114), and ATR (15)) or generation of dominant negative inhibitors (e.g. CHEK2 (16) and VWOX (17)). In breast cancer, aberrantly spliced forms of progesterone and estrogen receptors are found (reviewed in Ref. 3). Intronic mutations inactivate p53 through aberrant splicing and intron retention (18). Somatic mutations with the potential to alter splicing are frequent in some cancers (1925). Single nucleotide polymorphisms in the cyclin D1 proto-oncogene predispose to aberrant splicing and the cyclin D1b intronic splice variant (2629). Cyclin D1b confers anchorage independence, is tumorogenic in vivo, and is detectable in human tumors (30), but as yet no clinical studies have confirmed an impact on outcome. On the other hand, aberrant splicing of HAS1 shows an association between aberrant splice variants and malignancy, suggesting that such variants may be potential therapeutic targets and diagnostic indicators (19, 3133). Increased HA expression has been associated with malignant progression of multiple tumor types, including breast, prostate, colon, glioma, mesothelioma, and multiple myeloma (34). The three mammalian HA synthase (HAS) isoenzymes synthesize HA and are integral transmembrane proteins with a probable porelike structural assembly (3539). Although in humans, the three HAS genes are located on different chromosomes (hCh19, hCh8, and hCh16, respectively) (40), they share a high degree of sequence homology (41, 42). HAS isoenzymes synthesize a different size range of HA molecules, which exhibit different functions (43, 44). HASs contribute to a variety of cancers (4555). Overexpression of HASs promotes growth and/or metastatic development in fibrosarcoma, prostate, and mammary carcinoma, and the removal of the HA matrix from a migratory cell membrane inhibits cell movement (45, 53). HAS2 confers anchorage independence (56). Our work has shown aberrant HAS1 splicing in multiple myeloma (5) and Waldenstrom''s macroglobulinemia (6). HAS1 is overexpressed in colon (57), ovarian (58), endometrial (59), mesothelioma (60), and bladder cancers (61). A HAS1 splice variant is detected in bladder cancer (61).Here, we characterize molecular and biochemical characteristics of HAS1 variants (HAS1-Vs) (5), generated by aberrant splicing. Using transient transfectants and tagged HAS1 family constructs, we show that HAS1-Vs differ in cellular localization, de novo HA localization, and turnover kinetics, as compared with HAS1-FL, and dominantly influence HAS1-FL when co-expressed. HAS1-Vs proteins form intra- and intermolecular associations among themselves and with HAS1-FL, including covalent interactions and multimer formation. HAS1-Vc supports vigorous cellular transformation of NIH3T3 cells in vitro, and HAS1-Vc-transformed NIH3T3 cells are tumorogenic in vivo.  相似文献   

7.
Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms.Skeletogenesis is a complex process that involves differentiation and proliferation, but the most important step is the mineralization of the extracellular matrix (ECM)1 to form bone to physically support body functions (1). Our aging population is facing an increase in age-related diseases (e.g. diabetes and osteoporosis) that impair bone healing and require situation-adapted solutions for bone grafts and implants (2). One promising approach is the use of glycosaminoglycans (GAGs) to modify biomaterials (3). GAGs are the major organic components of ECM and play an important regulatory role in the development and remodeling of bone tissue. GAGs are polysaccharides consisting of alternating monosaccharide residues. Their sequence varies with respect to saccharide composition, glycosidic bond, and modification of the disaccharide unit, e.g. the degree of sulfation (3). GAGs modulate water and extracellular cation homeostasis. Moreover, they interact with and modulate the function of proteins like cytokines, adhesion molecules, and enzymes and thereby regulate processes such as migration, adhesion, differentiation, and proliferation of bone cells (2, 413). Thus, because human bone marrow stromal cells (hBMSC) sense their microenvironment, especially the chemical composition of the ECM (14), GAGs also promote the differentiation of bone-forming osteoblasts from hBMSC, as different studies have shown for sulfated GAGs (15, 16). Additionally, GAGs are potent molecules to promote bone anabolic activities (2).Osteoblasts synthesize the majority of extracellular matrix components and control the mineralization of the organic ECM by secreting regulatory proteins such as osteocalcin, bone sialoprotein II, and osteoadherin and modulate the local concentration of phosphate ions by tissue nonspecific alkaline phosphatase. With ongoing differentiation, osteoblasts release matrix vesicles (MV) (17). MVs are extracellular membrane-limited structures with a diameter of 100–400 nm (18, 19). According their size and biogenesis, they are grouped into the category of ectosomes (20). Mineralizing osteoblasts as well as hypertrophic chondrocytes were shown to have high levels of Ca2+ ions in their mitochondria and inorganic phosphate (Pi) in their cytoplasm prior to mineralization. Ca2+ ions are released by mitochondria and in combination with Pi, amorphous calcium phosphate is formed at sites of MV formation (1). MVs are released from apical microvilli into the ECM by pinching off or budding (18, 19). They continue to accumulate Ca2+ ions and Pi, which promotes the formation of hydroxyapatite in their lumen (21). In the second phase of mineralization, MVs release hydroxyapatite crystals that propagate continuous mineral formation in the ECM (22). Furthermore, MVs possess proteins and lipids to execute essential functions for initiating mineral formation. This includes Ca2+/Pi ion homeostasis, mineral nucleation, ECM remodeling, degradation of mineralization inhibitors or the maintenance of membrane lipid composition, and the control of ECM interactions that are crucial for controlling mineral growth and localization (2224).In previous studies we have reported that GAGs such as HA and its synthetically sulfated derivatives induce osteoblast functions, e.g. cell-matrix interaction, differentiation, mineralization, and endocytosis (25). However, it is not clear whether GAGs influence only the osteoblasts or also the formation, composition, activity, and adhesion to the ECM of secreted MVs. To delineate the molecular effects, the synthetically low-sulfated hyaluronic acid derivative (sHA1, degree of sulfation ∼1) was studied in terms of MV biogenesis, release, and composition, and the effects were compared with those caused by naturally equally low-sulfated chondroitin sulfate (CS1, degree of sulfation ∼1) as well as by non-sulfated HA. Furthermore, we isolated MVs from osteoblasts after cultivation with those GAGs and analyzed their respective protein composition in a quantitative manner using a global proteomic approach after stable isotope labeling by amino acids in cell culture (SILAC) labeling. To find out whether the alteration of the MV proteome is a reflection of the changes of the cellular proteome or whether the MV proteome is independently regulated, we compared the GAG-induced changes in both proteomes.  相似文献   

8.
9.
Endogenous regeneration and repair mechanisms are responsible for replacing dead and damaged cells to maintain or enhance tissue and organ function, and one of the best examples of endogenous repair mechanisms involves skeletal muscle. Although the molecular mechanisms that regulate the differentiation of satellite cells and myoblasts toward myofibers are not fully understood, cell surface proteins that sense and respond to their environment play an important role. The cell surface capturing technology was used here to uncover the cell surface N-linked glycoprotein subproteome of myoblasts and to identify potential markers of myoblast differentiation. 128 bona fide cell surface-exposed N-linked glycoproteins, including 117 transmembrane, four glycosylphosphatidylinositol-anchored, five extracellular matrix, and two membrane-associated proteins were identified from mouse C2C12 myoblasts. The data set revealed 36 cluster of differentiation-annotated proteins and confirmed the occupancy for 235 N-linked glycosylation sites. The identification of the N-glycosylation sites on the extracellular domain of the proteins allowed for the determination of the orientation of the identified proteins within the plasma membrane. One glycoprotein transmembrane orientation was found to be inconsistent with Swiss-Prot annotations, whereas ambiguous annotations for 14 other proteins were resolved. Several of the identified N-linked glycoproteins, including aquaporin-1 and β-sarcoglycan, were found in validation experiments to change in overall abundance as the myoblasts differentiate toward myotubes. Therefore, the strategy and data presented shed new light on the complexity of the myoblast cell surface subproteome and reveal new targets for the clinically important characterization of cell intermediates during myoblast differentiation into myotubes.Endogenous regeneration and repair mechanisms are responsible for replacing dead and damaged cells to maintain or enhance tissue and organ function. One of the best examples of endogenous repair mechanisms involves skeletal muscle, which has innate regenerative capacity (for reviews, see Refs. 14). Skeletal muscle repair begins with satellite cells, a heterogeneous population of mitotically quiescent cells located in the basal lamina that surrounds adult skeletal myofibers (5, 6), that, when activated, rapidly proliferate (7). The progeny of activated satellite cells, known as myogenic precursor cells or myoblasts, undergo several rounds of division prior to withdrawal from the cell cycle. This is followed by fusion to form terminally differentiated multinucleated myotubes and skeletal myofibers (7, 8). These cells effectively repair or replace damaged cells or contribute to an increase in skeletal muscle mass.The molecular mechanisms that regulate differentiation of satellite cells and myoblasts toward myofibers are not fully understood, although it is known that the cell surface proteome plays an important biological role in skeletal muscle differentiation. Examples include how cell surface proteins modulate myoblast elongation, orientation, and fusion (for a review, see Ref. 8). The organization and fusion of myoblasts is mediated, in part, by cadherins (for reviews, see Refs. 9 and 10), which enhance skeletal muscle differentiation and are implicated in myoblast fusion (11). Neogenin, another cell surface protein, is also a likely regulator of myotube formation via the netrin ligand signal transduction pathway (12, 13), and the family of sphingosine 1-phosphate receptors (Edg receptors) are known key signal transduction molecules involved in regulating myogenic differentiation (1417). Given the important role of these proteins, identifying and characterizing the cell surface proteins present on myoblasts in a more comprehensive approach could provide insights into the molecular mechanisms involved in skeletal muscle development and repair. The identification of naturally occurring cell surface proteins (i.e. markers) could also foster the enrichment and/or characterization of cell intermediates during differentiation that could be useful therapeutically.Although it is possible to use techniques such as flow cytometry, antibody arrays, and microscopy to probe for known proteins on the cell surface in discrete populations, these methods rely on a priori knowledge of the proteins present on the cell surface and the availability/specificity of an antibody. Proteomics approaches coupled with mass spectrometry offer an alternative approach that is antibody-independent and allows for the de novo discovery of proteins on the surface. One approach, which was used in the current study, exploits the fact that a majority of the cell surface proteins are glycosylated (18). The method uses hydrazide chemistry (19) to immobilize and enrich for glycoproteins/glycopeptides, and previous studies using this chemistry have successfully identified soluble glycoproteins (2024) as well as cell surface glycoproteins (2528). A recently optimized hydrazide chemistry strategy by Wollscheid et al. (29) termed cell surface capturing (CSC)1 technology, reports the ability to identify cell surface (plasma membrane) proteins specifically with little (<15%) contamination from non-cell surface proteins. The specificity stems from the fact that the oligosaccharide structure is labeled using membrane-impermeable reagents while the cells are intact rather than after cell lysis. Consequently, only extracellular oligosaccharides are labeled and subsequently captured. Utilizing information regarding the glycosylation site then allows for a rapid elimination of nonspecifically captured proteins (i.e. non-cell surface proteins) during the data analysis process, a feature that makes this approach unique to methods where no label or tag is used. Additionally, the CSC technology provides information about glycosylation site occupancy (i.e. whether a potential N-linked glycosylation site is actually glycosylated), which is important for determining the protein orientation within the membrane and, therefore, antigen selection and antibody design.To uncover information about the cell surface of myoblasts and to identify potential markers of myoblast differentiation, we used the CSC technology on the mouse myoblast C2C12 cell line model system (30, 31). This adherent cell line derived from satellite cells has routinely been used as a model for skeletal muscle development (e.g. Refs. 1, 32, and 33), skeletal muscle differentiation (e.g. Refs. 3436), and studying muscular dystrophy (e.g. Refs. 3739). Additionally, these cells have been used in cell-based therapies (e.g. Refs. 4042). Using the CSC technology, 128 cell surface N-linked glycoproteins were identified, including several that were found to change in overall abundance as the myoblasts differentiate toward myotubes. The current data also confirmed the occupancy of 235 N-linked glycosites of which 226 were previously unconfirmed. The new information provided by the current study is expected to facilitate the development of useful tools for studying the differentiation of myoblasts toward myotubes.  相似文献   

10.
11.
12.
13.
Reverse phase protein arrays (RPPA) are an established tool for measuring the expression and activation status of multiple proteins in parallel using only very small amounts of tissue. Several studies have demonstrated the value of this technique for signaling pathway analysis using proteins extracted from fresh frozen (FF) tissue in line with validated antibodies for this tissue type; however, formalin fixation and paraffin embedding (FFPE) is the standard method for tissue preservation in the clinical setting. Hence, we performed RPPA to measure profiles for a set of 300 protein markers using matched FF and FFPE tissue specimens to identify which markers performed similarly using the RPPA technique in fixed and unfixed tissues. Protein lysates were prepared from matched FF and FFPE tissue specimens of individual tumors taken from three different xenograft models of human cancer. Materials from both untreated mice and mice treated with either anti-HER3 or bispecific anti-IGF-1R/EGFR monoclonal antibodies were analyzed. Correlations between signals from FF and FFPE tissue samples were investigated. Overall, 60 markers were identified that produced comparable profiles between FF and FFPE tissues, demonstrating significant correlation between the two sample types. The top 25 markers also showed significance after correction for multiple testing. The panel of markers covered several clinically relevant tumor signaling pathways and both phosphorylated and nonphosphorylated proteins were represented. Biologically relevant changes in marker expression were noted when RPPA profiles from treated and untreated xenografts were compared. These data demonstrate that, using appropriately selected antibodies, RPPA analysis from FFPE tissue is well feasible and generates biologically meaningful information. The identified panel of markers that generate similar profiles in matched fixed and unfixed tissue samples may be clinically useful for pharmacodynamic studies of drug effect using FFPE tissues.Many human diseases are characterized by abnormalities in complex signaling pathways (1). The expression and activation status of proteins from these deregulated pathways has traditionally been analyzed using single marker techniques such as immunohistochemistry and Western blotting. Although these techniques have provided valuable information on the molecular abnormalities underlying human disease, they are labor intensive, have a low throughput, and often require high sample volume. Furthermore, techniques such as Western blotting are not applicable in the routine clinical setting. Miniaturized parallel immunoassay techniques have been developed in recent years and have played a pivotal role in biomarker discovery (2). Antibody arrays enable multiple potential disease markers to be investigated in a single sample in parallel (3). Beyond this, Reverse Phase Protein Arrays (RPPA)1 are sensitive high throughput tools that can quantify protein expression levels and activation status (posttranslational modifications such as phosphorylation) in multiple experimental samples simultaneously. The technique requires only minute amounts of samples, printed as lysate arrays onto slides, and hundreds of markers of interest can be investigated, array by array, in a miniaturized dot blot manner. Numerous reports have demonstrated that RPPA can be applied to various sources of cells and tissues to analyze protein profiles, signaling pathway networks, and for the identification of biomarkers (413). A recently published workshop report reviews the full potential and advances of RPPA for use in clinical, translational, and basic research (11).In oncology, the parallel profiling of multiple protein markers is particularly desirable to study tumor initiation and progression, to classify tumor disease states on the molecular level, and to discover and monitor biomarkers that can predict therapeutic response or tumor recurrence (1416). The study of signaling response and analysis of pharmacodynamic (PD) markers upon treatment using in vitro and in vivo test systems (e.g. cell line or patient derived xenograft tumor models) is an established component of preclinical and early clinical drug development. These techniques can provide evidence of target pathway modulation for new therapeutic lead candidate compounds and provide valuable information on the drug mode of action (17), especially in the translational phase. Multiplex analyses of PD biomarkers by RPPA have been performed in vitro using cancer cell lines (18, 19) as well as in patient-derived tumor tissue and blood samples (20, 21) to assess response to treatment and target inhibition. A combination of RPPA signaling pathway mapping and functional PET imaging has recently been successfully evaluated in xenograft models as an early response PD marker for anti-cancer drug efficacy (13).Translating miniaturized multiple protein analysis platforms-such as RPPA - from preclinical to clinical applicability is highly desirable; however, issues such as the limited amount of available clinical samples and tumor heterogeneity must first be addressed. Furthermore, most studies of RPPA in tumor tissue to date have been conducted using proteins extracted from fresh-frozen (FF) tissue specimens; whereas, formalin fixation and paraffin embedding (FFPE) is the standard method for tissue preservation used in clinical pathology laboratories. FFPE yields excellent tissue architecture for histological assessment and enables analysis of individual proteins in situ by techniques such as immunohistochemistry. However, formalin fixation leads to extensive protein–protein and protein–nucleic acid cross-linking (22), which can hamper protein extraction and reduce both the overall yield of extracted protein and the profile of proteins detectable by proteomic techniques (23, 24). Furthermore, formalin-induced cross-linking induces conformational changes in protein structure that can alter the immunoreactivity of some proteins in situ by hiding or altering peptide epitopes (25, 26). Such artifacts are absent from snap-frozen tissue; therefore, protein profiles obtained from FF tissue are likely to reflect the in vivo biology of the tumor more closely. However, FF tumor tissue is not widely available because it is costly to collect and maintain in the clinical setting. FFPE tissue samples are routinely archived by nearly every hospital and offer a unique opportunity to study thousands of samples retrospectively with extensive clinical records and follow-up information.Several groups have now established protocols for retrieving cross-linked proteins from fixed tissues (2733). These methods are mainly based on the use of concentrated ionic detergents and high temperature protocols closely related to the antigen retrieval methods developed for immunohistochemistry. These studies show that obtaining nondegraded, full-length proteins from FFPE tissues for multiplex analyses is feasible (2733). More recently, protein extraction techniques optimized for fixed samples have been used to successfully conduct RPPA using FFPE tissue biopsies from different cancer types (3440). Guo et al. systematically investigated several protein extraction methods and demonstrated that RPPA of FFPE materials is feasible, reproducible and can generate biologically relevant protein profiles (41). Other studies have confirmed the validity of this approach and shown that data generated from RPPA analyses of FFPE tissue demonstrate good concordance with traditional immunohistochemistry markers such as HER2 protein in breast cancer (34, 40). However, to date, analyses have been performed only for a limited set of protein markers.To evaluate whether analysis of a broader panel of protein markers is feasible and generates meaningful data from FFPE tumor tissue sections, we conducted RPPA on matched samples of FF and FFPE tissues using a set of 300 markers, the largest panel reported to date. Our aim was to identify markers that performed similarly when comparing the protein profiles measured in protein extracts from matched FF and FFPE tissue, using RPPA assays established for use in frozen tissues. Correlating selected markers and assays in such a way should qualify RPPA for further use with FFPE tissues of clinical relevance, e.g. in PD marker studies. In this paper, we have specifically focused on the technical issues relevant for using the RPPA platform in a clinical setting, and did not address the biology of the test systems used in detail. However, the models used have been pre-characterized to identify key signaling parameters in context of targeted drug treatment (42). We conducted a systematic comparison of RPPA protein profiles in matched FF and FFPE tumor tissues resected from three different xenograft models of human cancer, each treated with targeted therapeutic antibodies that have previously been shown to achieve tumor growth inhibition. Furthermore, we investigated the effect of targeted drug treatment on protein expression and activation status, and the concordance of matched FF and FFPE tissue RPPA profiles. Finally, with one of the applied tumor models, we compared a set of protein profiles measured with two different multiple assay platforms - the RPPA and the Luminex Bio-Plex system, and discuss their relevance with respect to the analysis of FFPE tissue.  相似文献   

14.
Hyaluronidases from diverse species and sources have different pH optima. Distinct mechanisms with regard to dynamic structural changes, which control hyaluronidase activity at varying pH, are unknown. Human serum hyaluronidase 1 (HYAL1) is active solely below pH 5.1. Here we report the design of a HYAL1 variant that degrades hyaluronan up to pH 5.9. Besides highly conserved residues in close proximity of the active site of most hyaluronidases, we identified a bulky loop formation located at the end of the substrate binding crevice of HYAL1 to be crucial for substrate hydrolysis. The stretch between cysteine residues 207 and 221, which normally contains 13 amino acids, could be replaced by a tetrapeptide sequence of alternating glycine serine residues, thereby yielding an active enzyme with an extended binding cleft. This variant exhibited hyaluronan degradation at elevated pH. This is indicative for appropriate substrate binding and proper positioning being decisively affected by sites far off from the active center.Hyaluronan (HA),3 a linear polysaccharide found in the extracellular matrix of most tissues and body fluids of vertebrates, is enzymatically degraded by hyaluronidases (1). Mammalian-type hyaluronidases are grouped into EC 3.2.1.35 (2, 3) or the glycoside hydrolase family 56 (4). Members of this enzyme family hydrolyze the 1,4-β-glycosidic linkage between N-acetyl-d-glucosamine and d-glucuronate within HA polymers (5). In mammalians, hyaluronidases have been found in testis, liver lysosomes, and serum. They are involved in controlling HA levels and are thus implicated in various diseases related to defects of HA metabolism (6).The crystal structures of hyaluronidase from bee (7), wasp (8), and only recently that of human serum hyaluronidase 1 (HYAL1) (9) have been deciphered. In addition to the N-terminal catalytic domain of the insect enzymes, which resembles a distorted (β/α)8 barrel, HYAL1 contains yet another domain. HA hydrolysis is achieved by a pair of acidic amino acids via a retaining double displacement mechanism and a substrate-assisted catalysis, in which the carbonyl oxygen of the N-acetyl group of the cleaved HA subunit acts as the catalytic nucleophile (7).Mammalian-type hyaluronidases display different pH optima. HYAL1 (10) and hyaluronidase 2 (HYAL2) (11) exhibit highest activities at acidic conditions, whereas the hyaluronidase found in Xenopus laevis kidney is only active at neutral pH (12). Bee venom hyaluronidase (13), as well as sperm hyaluronidase, PH20 (SPAM1) (14), are capable of degrading HA over a broad pH range. Up to three PH20 isoforms with greatly different pH optima could be found in protein preparations from bovine testis (15). Extensive analysis of hyaluronidase structures did not bring forward any insights as to what residues or regions of the enzymes specify a specific pH optimum.Profiles of pH-dependent activities can be assigned by computing the electrostatic interactions of the enzyme, which are primarily determined by the ionization states of its amino acid side chains. The pKa values of titratable groups of the enzyme reflect pH-dependent properties such as stability, enzymatic interaction, and substrate interactions (16). Here we present computational and experimental data on the replacement of a loop region located at the end of the substrate binding groove yielding a variant hyaluronidase with an altered pH profile.  相似文献   

15.
16.
FANCI Binds Branched DNA and Is Monoubiquitinated by UBE2T-FANCL   总被引:1,自引:0,他引:1  
FANCI is integral to the Fanconi anemia (FA) pathway of DNA damage repair. Upon the occurrence of DNA damage, FANCI becomes monoubiquitinated on Lys-523 and relocalizes to chromatin, where it functions with monoubiquitinated FANCD2 to facilitate DNA repair. We show that FANCI and its C-terminal fragment possess a DNA binding activity that prefers branched structures. We also demonstrate that FANCI can be ubiquitinated on Lys-523 by the UBE2T-FANCL pair in vitro. These findings should facilitate future efforts directed at elucidating molecular aspects of the FA pathway.Fanconi anemia (FA)4 is characterized by developmental defects, bone marrow failure, and a strong predisposition to cancer. FA cells exhibit exquisite sensitivity to DNA cross-linking agents and marked genomic instability, indicative of a failure to repair damaged DNA (13). Thirteen FA proteins have been identified, of which eight, FANC-A, -B, -C, -E, -F, -G, -L, and -M, form part of a nuclear core complex that is required to monoubiquitinate two other FA proteins, FANCD2 and FANCI. When monoubiquitinated, FANCD2 and FANCI become chromatin-associated in foci that contain various factors, including the RAD51 recombinase BRCA2 (also known as FANCD1) and PALB2 (also called FANCN), which mediate DNA repair via RAD51-catalyzed homologous recombination (4).Monoubiquitination of FANCD2 appears to be a key event for proper repair of exogenous DNA damage but also occurs during an unperturbed S phase, likely in response to stalled replication forks (47). FANCD2 monoubiquitination depends on the E3 ligase activity of FANCL (8) and on the E2 ubiquitin-conjugating enzyme, UBE2T (9). In vitro, FANCL and UBE2T can monoubiquitinate chicken FANCD2 (10).FANCI was identified recently as a target protein for the ATM/ATR kinase. FANCI is also monoubiquitinated, in a manner that is dependent on the FA core complex (11). In cells, a fraction of FANCD2 and FANCI associates in a complex. Moreover, the amount and monoubiquitination of these two FA proteins are co-dependent in human cells, i.e. the quantity and monoubiquitination of FANCD2 are diminished in FANCI-deficient cells and vice versa (1114). These observations suggest that FANCI and FANCD2 form a complex integral to cellular DNA repair capacity. Mutating the ubiquitinated target lysine of FANCI (Lys-523) renders cells sensitive to DNA damage and impairs the assembly of DNA damage-induced nuclear foci of FANCD2 and FANCI (11, 14). Herein, we document studies that reveal several biochemical attributes of FANCI, including DNA binding, and its monoubiquitination, that are relevant for understanding the biological role of this key FA protein.  相似文献   

17.
Vertebrates produce various chondroitin sulfate proteoglycans (CSPGs) that are important structural components of cartilage and other connective tissues. CSPGs also contribute to the regulation of more specialized processes such as neurogenesis and angiogenesis. Although many aspects of CSPGs have been studied extensively, little is known of where the CS chains are attached on the core proteins and so far, only a limited number of CSPGs have been identified. Obtaining global information on glycan structures and attachment sites would contribute to our understanding of the complex proteoglycan structures and may also assist in assigning CSPG specific functions. In the present work, we have developed a glycoproteomics approach that characterizes CS linkage regions, attachment sites, and identities of core proteins. CSPGs were enriched from human urine and cerebrospinal fluid samples by strong-anion-exchange chromatography, digested with chondroitinase ABC, a specific CS-lyase used to reduce the CS chain lengths and subsequently analyzed by nLC-MS/MS with a novel glycopeptide search algorithm. The protocol enabled the identification of 13 novel CSPGs, in addition to 13 previously established CSPGs, demonstrating that this approach can be routinely used to characterize CSPGs in complex human samples. Surprisingly, five of the identified CSPGs are traditionally defined as prohormones (cholecystokinin, chromogranin A, neuropeptide W, secretogranin-1, and secretogranin-3), typically stored and secreted from granules of endocrine cells. We hypothesized that the CS side chain may influence the assembly and structural organization of secretory granules and applied surface plasmon resonance spectroscopy to show that CS actually promotes the assembly of chromogranin A core proteins in vitro. This activity required mild acidic pH and suggests that the CS-side chains may also influence the self-assembly of chromogranin A in vivo giving a possible explanation to previous observations that chromogranin A has an inherent property to assemble in the acidic milieu of secretory granules.Chondroitin sulfates (CS)1 are complex polysaccharides present at cell surfaces and in extracellular matrices. The polysaccharides belong to a subclass of glycosaminoglycans (GAGs) and are covalently linked to various core proteins to form CS-proteoglycans (CSPGs), each with differences in the protein structures and/or numbers of CS side chains. Apart from their structural role in cartilage, CSPGs contribute to the regulation of a diverse set of biological processes such as neurogenesis, growth factor signaling, angiogenesis, and morphogenesis (15). Although the molecular basis of CSPGs functions remains elusive, accumulating evidence suggests that the underlying activities relate to selective ligand binding to discrete structural variants of the polysaccharides. Thus, the current strategy for understanding the biological role of CSPGs aims to identify selective CS polysaccharide–ligand interactions. However, information on the number of CS-chains and their specific attachment site(s) on any given core protein is often scarce which limits our functional understanding of CSPGs.The biosynthesis of GAGs occurs in the endoplasmic reticulum and Golgi compartments and is initiated by the enzymatic addition of a beta-linked xylose (Xyl) to a Ser residue of the core protein. The sequential addition of two galactose residues (Gal) and a glucuronic acid (GlcA) onto the growing saccharide chain completes the formation of a tetrasaccharide linkage region (GlcAβ3Galβ3Galβ4XylβSer). This part of the biosynthesis is the same for CS and heparan sulfate (HS). However, for CS the biosynthesis continues with the addition of an N-acetylgalactosamine (GalNAcβ3), whereas HS biosynthesis continues with the addition of an N-acetylglucosamine (GlcNAcα4) (6). The CS-chains are thereafter elongated through the addition of repeating units of GlcA and GalNAc and are further modified by the addition of specifically positioned sulfate groups (7). Certain features of the core protein seem to influence if a certain Ser residue is selected for GAG attachment and whether CS or HS will be synthesized, but the selection mechanism is largely unknown. Sequence analysis of previously known GAG-substituted core proteins reveals that the glycosylated serine residues are usually flanked by a glycine residue (-SG-), and are associated with a cluster of acidic residues in close proximity (8). This motif may assist in the prediction of potential GAG-sites of core proteins; however, the use of such strategy is ambiguous because proteoglycans may also contain unoccupied motifs or motifs that are occasionally occupied (9).Glycoproteomics strategies have recently appeared that provide site-specific information of N- and O-glycans. Such strategies are typically based on a specific enrichment of glycopeptides and a subsequent analysis with nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) (10). By further developing this concept for proteoglycans (11), we have now analyzed CSPG linkage region glycopeptides of human samples, which enabled us to identify 13 novel human CSPGs in addition to 13 already established CSPGs. Urine and cerebrospinal fluid (CSF) samples were trypsinized and CS glycopeptides were enriched using strong anion exchange (SAX) chromatography. The CS chains were depolymerized with chondroitinase ABC, generating free disaccharides and a residual hexameric structure composed of the linkage region and a GlcA-GalNAc disaccharide dehydrated on the terminal GlcA residue (12). MS/MS analysis provided the combined sequencing of the residual hexasaccharide and of the core peptide.  相似文献   

18.
19.
20.
Proliferating cell nuclear antigen (PCNA) has been demonstrated to interact with multiple proteins involved in several metabolic pathways such as DNA replication and repair. However, there have been fewer reports about whether these PCNA-binding proteins influence stability of PCNA. Here, we observed a physical interaction between PCNA and MutT homolog2 (MTH2), a new member of the MutT-related proteins that hydrolyzes 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP). In several unstressed human cancer cell lines and in normal human fibroblast cells, PCNA and MTH2 formed a complex and their mutual binding fragments were confirmed. It was intriguing that PCNA and MTH2 were dissociated dependent on acetylation of PCNA, which in turn induced degradation of PCNA in response to UV irradiation, but not in response to other forms of DNA-damaging stress. To further explore the link between dissociation of PCNA-MTH2 and degradation of PCNA, RNAi against MTH2 was performed to mimic the dissociated status of PCNA to evaluate changes in the half-life of PCNA. Knockdown of MTH2 significantly promoted degradation of PCNA, suggesting that the physiological interaction of PCNA-MTH2 may confer protection from degradation for PCNA, whereas UV irradiation accelerates PCNA degradation by inducing dissociation of PCNA-MTH2. Moreover, secondary to degradation of PCNA, UV-induced inhibition of DNA synthesis or cell cycle progression was enhanced. Collectively, our data demonstrate for the first time that PCNA is protected by this newly identified partner molecule MTH2, which is related to DNA synthesis and cell cycle progression.Proliferating cell nuclear antigen (PCNA)3 is a member of the DNA sliding clamp family and consists of a ring-shaped trimeric complex (13). Three PCNA monomers, each comprising two similar domains, are joined in a head-to-tail arrangement to form a closed ring (4, 5). Because of this unique structure, PCNA encircles the DNA double helix and slides freely along it. PCNA was originally characterized as a DNA polymerase processivity factor and it increases the processivity of DNA synthesis by interacting with polymerase δ (6, 7). Subsequent studies revealed that PCNA plays an important role in DNA replication (8, 9). For example, PCNA not only functions as a protein binding platform to interact with the DNA polymerases, flap endonuclease-1 (Fen1) or DNA ligase I (1012), but also coordinates complicated processes in DNA replication (2, 13). In addition, PCNA also plays a role in DNA damage repair (1417) and cell cycle control (1820).Because PCNA is essential for DNA synthesis both in DNA replication and repair, a dynamic balance between PCNA synthesis and degradation is critical for maintaining normal DNA synthesis. Up-regulation of PCNA accelerates DNA synthesis and promotes cell proliferation, such that PCNA is regarded as a general proliferation marker in tumor development. On the other hand, degradation of PCNA leads to inhibition of DNA synthesis (9, 21). In this case, in response to inhibition of DNA synthesis by PCNA degradation, both cell proliferation and DNA repair are inhibited, and cells are thus subject to death.In Escherichia coli, MutT protein encoded by the mutT gene has 8-oxo-dGTPase activity, and hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, which is nonutilizable for DNA synthesis, thus preventing misincorporation of 8-oxo-dGTP into DNA (22). 8-Oxo-dGTP is a product of dGTP oxidation and can be inserted into opposite dA or dC residues of template DNA at almost equal efficiencies. As a result, G:C to T:A or T:A to G:C transversion mutations occur (2224). In a mutT-deficient strain, the rate of spontaneous occurrence of A:T to C:G transversion increases by 1000-fold compared with that of cells with wild type mutT (2527). Therefore, MutT protein is required for preventing mutations and maintaining high fidelity of DNA replication (28). In addition, RibA is a backup enzyme for MutT in E. coli and also plays a role in maintaining high fidelity of DNA replication (29). The MutT homologue MTH1 is the first MutT-related protein found in mammalian cells (30). The spontaneous mutation frequency in MTH1-deficient cells showed an increase of ∼2-fold as compared with that in wild type MTH1 cells (31). Comparing the mutation frequency in mutT-deficient E. coli cells with that in MTH1-deficient mammalian cells suggests that there must be other proteins responsible for preventing occurrence of high numbers of oxidative damage induced mutations in mammalian cells. By searching the GenBankTM EST data base, our research group and others (32) have cloned a new member of MutT-related protein, MTH2. The increased mutation frequency in mutT-deficient cells was significantly reduced by overexpression of MTH2 cDNA (32). Therefore, MTH2 may help to ensure cells achieve accurate DNA synthesis. However, aside from the activity of 8-oxo-dGTPase, the exact mechanism by which MTH2 influences DNA synthesis has not been explored.The functions of both PCNA and MTH2 partially overlap in DNA synthesis, thus warranting exploration of whether MTH2 works together with PCNA to regulate DNA replication or repair. In this study, we found that MTH2 directly interacts with PCNA, and this interaction enhances PCNA stability. However, when cells were exposed to UV light, the interaction of MTH2 and PCNA was disrupted, and PCNA degradation was accelerated. Consequently, DNA synthesis was reduced, and cell cycling was arrested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号