首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To facilitate the release of infectious progeny virions, human immunodeficiency virus type 1 (HIV-1) exploits the Endosomal Sorting Complex Required for Transport (ESCRT) pathway by engaging Tsg101 and ALIX through late assembly (L) domains in the C-terminal p6 domain of Gag. However, the L domains in p6 are known to be dispensable for efficient particle production by certain HIV-1 Gag constructs that have the nucleocapsid (NC) domain replaced by a foreign dimerization domain to substitute for the assembly function of NC. We now show that one such L domain-independent HIV-1 Gag construct (termed ZWT) that has NC-p1-p6 replaced by a leucine zipper domain is resistant to dominant-negative inhibitors of the ESCRT pathway that block HIV-1 particle production. However, ZWT became dependent on the presence of an L domain when NC-p1-p6 was restored to its C terminus. Furthermore, when the NC domain was replaced by a leucine zipper, the p1-p6 region, but not p6 alone, conferred sensitivity to inhibition of the ESCRT pathway. In an authentic HIV-1 Gag context, the effect of an inhibitor of the ESCRT pathway on particle production could be alleviated by deleting a portion of the NC domain together with p1. Together, these results indicate that the ESCRT pathway dependence of HIV-1 budding is determined, at least in part, by the NC-p1 region of Gag.Human immunodeficiency virus type 1 (HIV-1) and other retroviruses hijack the cellular Endosomal Sorting Complex Required for Transport (ESCRT) pathway to promote the detachment of virions from the cell surface and from each other (3, 21, 42, 44, 47). The ESCRT pathway was initially identified based on its requirement for the sorting of ubiquitinated cargo into multivesicular bodies (MVB) (50, 51). During MVB biogenesis, the ESCRT pathway drives the membrane deformation and fission events required for the inward vesiculation of the limiting membrane of this organelle (26, 29, 50, 51). More recently, it emerged that the ESCRT pathway is also essential for the normal abscission of daughter cells during the final stage of cell division (10, 43). Most of the components of the ESCRT pathway are involved in the formation of four heteromeric protein complexes termed ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Additional components include ALIX, which interacts both with ESCRT-I and ESCRT-III, and the AAA ATPase Vps4, which mediates the disassembly of ESCRT-III (29, 42).The deformation and scission of endocytic membranes is thought to be mediated by ESCRT-III, which, together with Vps4, constitutes the most conserved element of the pathway (23, 26, 42). Indeed, it was recently shown that purified yeast ESCRT-III induces membrane deformation (52), and in another study three subunits of yeast ESCRT-III were sufficient to promote the formation of intralumenal vesicles in an in vitro assay (61). In mammals, ESCRT-III is formed by the charged MVB proteins (CHMPs), which are structurally related and tightly regulated through autoinhibition (2, 33, 46, 53, 62). The removal of an inhibitory C-terminal domain induces polymerization and association with endosomal membranes and converts CHMPs into potent inhibitors of retroviral budding (34, 46, 53, 60, 62). Alternatively, CHMPs can be converted into strong inhibitors of the ESCRT pathway and of HIV-1 budding through the addition of a bulky tag such as green fluorescent protein (GFP) or red fluorescent protein (RFP) (27, 36, 39, 54). Retroviral budding in general is also strongly inhibited by catalytically inactive Vps4 (22, 41, 55), or upon Vsp4B depletion (31), confirming the crucial role of ESCRT-III.Retroviruses engage the ESCRT pathway through the activity of so-called late assembly (L) domains in Gag. In the case of HIV-1, the primary L domain maps to a conserved PTAP motif in the C-terminal p6 domain of Gag (24, 28) and interacts with the ESCRT-I component Tsg101 (15, 22, 40, 58). HIV-1 p6 also harbors an auxiliary L domain of the LYPxnL type, which interacts with the V domain of ALIX (20, 35, 39, 54, 59, 63). Interestingly, Tsg101 binding site mutants of HIV-1 can be fully rescued through the overexpression of ALIX, and this rescue depends on the ALIX binding site in p6 (20, 56). In contrast, the overexpression of a specific splice variant of the ubiquitin ligase Nedd4-2 has been shown to rescue the release and infectivity of HIV-1 mutants lacking all known L domains in p6 (12, 57). Nedd4 family ubiquitin ligases had previously been implicated in the function of PPxY-type L domains, which also depend on an intact ESCRT pathway for function (4, 32, 38). However, HIV-1 Gag lacks PPxY motifs, and the WW domains of Nedd4-2, which mediate its interaction with PPxY motifs, are dispensable for the rescue of HIV-1 L domain mutants (57).ALIX also interacts with the nucleocapsid (NC) region of HIV-1 Gag (18, 49), which is located upstream of p6 and the p1 spacer peptide. ALIX binds HIV-1 NC via its Bro1 domain, and the capacity to interact with NC and to stimulate the release of a minimal HIV-1 Gag construct is shared among widely divergent Bro1 domain proteins (48). Based on these findings and the observation that certain mutations in NC cause a phenotype that resembles that of L domain mutants, it has been proposed that NC cooperates with p6 to recruit the machinery required for normal HIV-1 budding (18, 49).NC also plays a role in Gag polyprotein multimerization, and this function of NC depends on its RNA-binding activity (5-8). It has been proposed that the role of the NC-nucleic acid interaction during assembly is to promote the formation of Gag dimers (37), and HIV-1 assembly in the absence of NC can indeed be efficiently rescued by leucine zipper dimerization domains (65). Surprisingly, in this setting the L domains in p6 also became dispensable, since particle production remained efficient even when the entire NC-p1-p6 region of HIV-1 Gag was replaced by a leucine zipper (1, 65). These findings raised the possibility that the reliance of wild-type (WT) HIV-1 Gag on a functional ESCRT pathway is, at least in part, specified by NC-p1-p6. However, it also remained possible that the chimeric Gag constructs engaged the ESCRT pathway in an alternative manner.In the present report, we provide evidence supporting the first of those two possibilities. Particle production became independent of ESCRT when the entire NC-p1-p6 region was replaced by a leucine zipper, and reversion to ESCRT dependence was shown to occur as a result of restoration of p1-p6 but not of p6 alone. Furthermore, although the deletion of p1 alone had little effect in an authentic HIV-1 Gag context, the additional removal of a portion of NC improved particle production in the presence of an inhibitor of the ESCRT pathway. Together, these data imply that the NC-p1 region plays an important role in the ESCRT-dependence of HIV-1 particle production.  相似文献   

2.
3.
4.
The efficient release of newly assembled retrovirus particles from the plasma membrane requires the recruitment of a network of cellular proteins (ESCRT machinery) normally involved in the biogenesis of multivesicular bodies and in cytokinesis. Retroviruses and other enveloped viruses recruit the ESCRT machinery through three classes of short amino acid consensus sequences termed late domains: PT/SAP, PPXY, and LYPXnL. The major late domain of Rous sarcoma virus (RSV) has been mapped to a PPPY motif in Gag that binds members of the Nedd4 family of ubiquitin ligases. RSV Gag also contains a second putative late domain motif, LYPSL, positioned 5 amino acids downstream of PPPY. LYPXnL motifs have been shown to support budding in other retroviruses by binding the ESCRT adaptor protein Alix. To investigate a possible role of the LYPSL motif in RSV budding, we constructed PPPY and LYPSL mutants in the context of an infectious virus and then analyzed the budding rates, spreading profiles, and budding morphology. The data imply that the LYPSL motif acts as a secondary late domain and that its role in budding is amplified in the absence of a fully functional PPPY motif. The LYPXL motif proved to be a stronger late domain when an aspartic acid was substituted for the native serine, recapitulating the properties of the LYPDL late domain of equine infectious anemia virus. The overexpression of human Alix in the absence of a fully functional PPPY late domain partially rescued both the viral budding rate and viral replication, supporting a model in which the RSV LYPSL motif mediates budding through an interaction with the ESCRT adaptor protein Alix.Retroviruses acquire their lipid envelopes from the plasma membrane as they bud from the cell. Although the structural protein Gag is both necessary and sufficient for the assembly of virus-like particles (VLPs), the membrane scission step of virus egress requires the recruitment of a network of cellular proteins normally involved in two analogous cellular membrane fission events, the budding of cargo-containing vesicles into multivesicular bodies (MVBs) (for review, see references 1, 5, 11, and 50) and the separation of two daughter cells during cytokinesis (3, 4). This cellular network of proteins, collectively called the ESCRT (endosomal sorting complex required for transport) machinery, includes four sequentially recruited high-molecular-weight protein complexes (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) and is essential for the transport of transmembrane cargo proteins to the lysosome for degradation via an MVB intermediate.In addition to the multiprotein ESCRT complexes, other proteins are required to promote the budding of vesicles into the MVB. Ubiquitin ligases (such as Nedd4) monoubiquitinate both ESCRT components and transmembrane cargo proteins, tagging them for the MVB pathway. Adaptor proteins connect cargo proteins to ESCRT complexes or ESCRT complexes to each other. Ultimately, the final membrane fission event of vesicle budding is mediated by an AAA ATPase (Vps4).Retroviruses as well as other enveloped viruses use three amino acid consensus sequences, PPXY, PT/SAP, and LYPXnL, as docking sites for the components of the cellular ESCRT machinery. The deletion or mutation of these sequences, termed late domains, results in the failure of the virus to recruit the budding machinery to the site of assembly and thereby results in a block at the late stage of virus release in which fully assembled but immature virus particles remain attached to the plasma membrane. The PPXY late domain interacts with the WW domains of the Nedd4 family of ubiquitin ligases. Multiple ESCRT components bind to monoubiquitin tags on both cargo and ESCRT proteins. The PT/SAP late domain binds the ESCRT-I complex component, Tsg101 (tumor susceptibility gene 101). The LYPXnL late domain interacts with an adaptor protein of the ESCRT pathway, Alix (ALG-2-interacting protein X; also called AIP1) (reviewed in reference 12). Alix interacts with both Tsg101 of the ESCRT-I complex and CMHP4 of the ESCRT-III complex. A possible fourth class of late domains for the paramyxovirus SV5 was reported previously (47). The late domain function in this case has been mapped to an FPIV sequence in the M (matrix) protein. To date, this motif has yet to be shown to be important for the budding of any other virus, and an FPIV-interacting cellular protein has yet to be identified.Often, retroviruses rely on multiple late domains for efficient budding (2, 13, 16, 29, 30). For example, in addition to its PT/SAP motif in human immunodeficiency virus type 1 (HIV-1) p6, which binds Tsg101 (6, 14, 34, 52), HIV-1 also harbors an Alix-binding LYPXnL motif that functions in budding (13, 33, 34, 48, 52). Mutation of this LYPXnL motif results in only a modest reduction in HIV-1 budding (10). However, the effects of mutations in the LYPXnL motif become more obvious in the context of a minimal Gag in which the globular domain of MA and the N-terminal domain of CA are absent (48). Furthermore, the role of this motif also seems to vary among cell types. For example, the deletion of this motif decreases HIV-1 particle production 2- to 3-fold in COS-7 cells (15) but has no consequence for HeLa cells (7). The relationship of the two viral late domains to each other is unknown. It is possible that they are partially redundant, are cooperative (since they act at slightly different steps in the ESCRT pathway), or are cell type specific. It has been observed that the mutation of one late domain has a larger effect on budding than the mutation of the other, implying a hierarchy of function. For example, in HIV-1, PTAP acts as the dominant late domain and LYPXnL acts as a secondary late domain. Equine infectious anemia virus (EIAV) seems to be an exception in that it relies only on a single LYPDL motif for late domain function.Like other retroviruses, the avian alpharetrovirus Rous sarcoma virus (RSV) requires the ESCRT pathway for release, as evidenced by the observation that a dominant-negative mutant of the ATPase Vps4, which is required for the final step of the ESCRT pathway that releases the ESCRT-III complex, inhibits RSV budding in a dose-dependent manner (37). Mutational analysis mapped the RSV late domain to the PPPY motif in the small spacer peptide p2b of Gag (41, 54, 56). This PPPY motif was previously shown to interact with chicken members of the Nedd4 family of ubiquitin ligases (21, 51). RSV Gag also harbors an LYPSL late domain consensus motif 5 amino acids downstream from PPPY in the p10 domain, which could potentially promote budding via an interaction with Alix.Alix, a 97-kDa adaptor protein with diverse functions, is composed of an N-terminal Bro1 domain, a central V domain, and a C-terminal proline-rich region (10, 22, 26, 58). The proline-rich region is assumed to be unstructured and binds Tsg101 and endophilins. The Bro1 domain, which binds CHMP4, is curved and resembles a banana shape. CHMP4 binding is functionally important for promoting HIV-1 budding (10). It was suggested previously that its convex face may allow Alix to sense negative curvatures in membranes (17, 22). At least for HIV-1, the Alix Bro1 domain also interacts with the Gag NC domain (42, 43). The central V domain of Alix, which is named for its shape, has a conserved hydrophobic pocket on the second arm near the apex of the V that is responsible for the binding of the LYPXnL late domains of HIV-1 and EIAV (10, 26, 58).In the present study, we investigated the role of the LYPSL motif in RSV budding and replication. We report here that not only the PPPY motif but also the LYPSL motif act as late domains. The contribution of the LYPSL motif to the budding rate and spreading rate is secondary to that of the PPPY motif but increases in the absence of a fully functional PPPY motif. The Alix overexpression-mediated rescue of PPPY mutants supports a model in which the LYPSL late domain functions through an interaction with Alix.  相似文献   

5.
Tethering factors and SNAREs control the last two steps of vesicular trafficking: the initial interaction and the fusion, respectively, of transport vesicles with target membranes. The Golgi-associated retrograde protein (GARP) complex regulates retrograde transport from endosomes to the trans-Golgi network (TGN). Although GARP has been proposed to function as a tethering factor at the TGN, direct evidence for such a role is still lacking. Herein we report novel and specific interactions of the mammalian GARP complex with SNAREs that participate in endosome-to-TGN transport, namely, syntaxin 6, syntaxin 16, and Vamp4. These interactions depend on the N-terminal regions of Vps53 and Vps54 and the SNARE motif of the SNAREs. We show that GARP functions upstream of the SNAREs, regulating their localization and assembly into SNARE complexes. However, interactions of GARP with SNAREs are insufficient to promote retrograde transport, because deletion of the C-terminal region of Vps53 precludes GARP function without affecting GARP-SNARE interactions. Finally, we present in vitro data consistent with a tethering role for GARP, which is disrupted by deletion of the Vps53 C-terminal region. These findings indicate that GARP orchestrates retrograde transport from endosomes to the TGN by promoting vesicle tethering and assembly of SNARE complexes in consecutive, independent steps.Conveyance of cargo among organelles of the secretory and endosomal-lysosomal pathways is mediated by transport vesicles that bud from a donor compartment and fuse with an acceptor compartment in a specific and regulated manner (2, 25, 42). The accuracy and efficiency of vesicle fusion with the target compartment are provided by the concomitant actions of at least three protein families: tethers, small GTPases, and SNAREs. The general view is that a transport vesicle first finds its target organelle through interaction with tethering factors and then fuses with it through assembly of SNARE proteins while small GTPases of the Rab and Arl subfamilies orchestrate multiple steps of the overall process (1, 38, 44). The mechanistic details, however, are far from being completely understood and might vary depending on the transport pathway considered.Tethering represents the first step in the interaction between a transport vesicle and its target membrane and results in the formation of physical links between two membranes that are bound to fuse. Two types of tethering factor, long coiled-coil proteins (e.g., p115, GCC185, and GM-130) and multisubunit complexes (e.g., HOPS/Vps-C, exocyst, COG, and GARP/VFT) have been implicated in nearly all vesicular transport routes (19, 38), although their direct role in connecting two opposing membranes has been documented for only a few (7, 40). Fusion is triggered by the assembly of SNAREs on the transport vesicle (v-SNAREs) with their cognate SNAREs on the target membranes (t-SNAREs) to form a SNARE pin or SNARE complex (12, 35). SNARE complex assembly involves the formation of a four-helix bundle that drives fusion of the two lipid bilayers (10, 14). Small GTPases participate in the initial recruitment of tethering factors and other peripherally associated effectors to specific locations on membranes, as well as in the subsequent fusion events (21). For example, the long coiled-coil protein GCC185 binds different GTPases, Rab9 on transport vesicles through the middle part and Rab6 and Arl1 at the trans-Golgi network (TGN) through the C-terminal part, thereby facilitating the recognition and connection of both membrane-bound compartments (11, 33). Other coiled-coil tethers have the ability to bind several different Rabs through domains that are not required for Golgi apparatus targeting. This supports a general model for a tentacular Golgi complex in which coiled-coil proteins capture and retain Rab-containing vesicles (33).In addition to bringing together transport vesicles with target organelles, tethers may also regulate SNARE complex assembly, thus coordinating these two steps of vesicular transport. Several examples of tether-SNARE interactions have been reported, but no consensus for a mechanism of interaction or functional significance has yet emerged. For example, the HOPS complex associates with v- and t-SNARE complexes on Saccharomyces cerevisiae vacuoles both before and after fusion (37). Sec6p, a member of the exocyst complex, binds to the plasma membrane t-SNARE Sec9p, preventing its interaction with the cognate t-SNARE Sso1p (34). The COG complex binds the Golgi t-SNARE syntaxin 5 and enhances intra-Golgi SNARE complex stability (29). The long coiled-coil protein p115 also stimulates SNARE complex assembly (30).The Golgi-associated retrograde protein (GARP) complex, also named the Vps fifty-three (VFT) complex, together with COG and the exocyst, belongs to the quatrefoil family of multisubunit tethering complexes (43), a structurally diverse group of peripheral membrane protein assemblies. Defects in the GARP, COG, or exocyst complexes cause accumulation of untethered vesicles that are scattered throughout the cytoplasm and contain different cargo proteins (18, 20, 45, 47). Direct proof of a tethering function for the GARP complex is still lacking, although its inactivation leads to defects consistent with a prominent role in the fusion of endosome-derived transport intermediates with the TGN (4-6, 20, 31). The yeast GARP complex is composed of four subunits named Vps51p, Vps52p, Vps53p, and Vps54p. Mutations in any of these subunits impair the retrieval of the secretory vesicle v-SNARE Snc1p and the carboxypeptidase Y receptor, Vps10p, from endosomes (5, 23, 32). The mammalian GARP complex also comprises Vps52, Vps53, and Vps54 subunits, but no Vps51 subunit has been identified to date (13). Depletion of the mammalian GARP complex prevents the delivery of Shiga toxin B subunit and the retrieval of TGN-localized proteins, such as TGN46, from endosomes to the TGN (20). Moreover, GARP depletion blocks the recycling of the cation-independent mannose 6-phosphate receptor (CI-MPR) from endosomes to the TGN, leading to missorting of the CI-MPR cargo, lysosomal hydrolases, into the extracellular space (20). The essential nature of mammalian GARP function in endosome-to-TGN transport is highlighted by the embryonic lethality of mice with ablation of the Vps54 subunit gene (27) and the motor neuron degeneration of Wobbler mice bearing a Vps54 hypomorphic mutation (27).In yeast, the GARP subunit Vps51p specifically binds to the conserved N-terminal regulatory domain of the t-SNARE Tlg1p (5, 32). This finding led to the proposal that GARP tethers endosome-derived vesicles through its interaction with Tlg1p. However, deletions or point mutations that eliminate the binding of Vps51p to Tlg1p do not show any functional phenotype in vivo (8). Binding of Tlg1p to Vps51p is thus not essential for GARP-mediated vesicle tethering. In this work, we set out to study the possible link between the mammalian GARP complex and SNAREs. We found that GARP specifically and directly interacts with SNAREs that participate in the endosome-to-TGN retrograde route (i.e., syntaxin 6 [Stx6], Stx16, and Vamp4). These interactions depend on the fusion-inducing SNARE “motif” of the SNAREs and the N-terminal regions of Vps53 and Vps54. Functional analyses place the GARP complex upstream of the SNAREs, regulating their localization and assembly into SNARE complexes. In addition, we demonstrate that the GARP complex has a vesicle tethering function independent of its interaction with the SNAREs.  相似文献   

6.
The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind Tsg101 and Alix, respectively. Interactions with these two cellular proteins recruit members of the host''s fission machinery (ESCRT) to facilitate HIV-1 release. Other retroviruses gain access to the host ESCRT components by utilizing a PPXY-type L domain that interacts with cellular Nedd4-like ubiquitin ligases. Despite the absence of a PPXY motif in HIV-1 Gag, interaction with the ubiquitin ligase Nedd4-2 was recently shown to stimulate HIV-1 release. We show here that another Nedd4-like ubiquitin ligase, Nedd4-1, corrected release defects resulting from the disruption of PTAP (PTAP), suggesting that HIV-1 Gag also recruits Nedd4-1 to facilitate virus release. Notably, Nedd4-1 remediation of HIV-1 PTAP budding defects is independent of cellular Tsg101, implying that Nedd4-1''s function in HIV-1 release does not involve ESCRT-I components and is therefore distinct from that of Nedd4-2. Consistent with this finding, deletion of the p6 region decreased Nedd4-1-Gag interaction, and disruption of the LYPXnL motif eliminated Nedd4-1-mediated restoration of HIV-1 PTAP. This result indicated that both Nedd4-1 interaction with Gag and function in virus release occur through the Alix-binding LYPXnL motif. Mutations of basic residues located in the NC domain of Gag that are critical for Alix''s facilitation of HIV-1 release, also disrupted release mediated by Nedd4-1, further confirming a Nedd4-1-Alix functional interdependence. In fact we found that Nedd4-1 binds Alix in both immunoprecipitation and yeast-two-hybrid assays. In addition, Nedd4-1 requires its catalytic activity to promote virus release. Remarkably, RNAi knockdown of cellular Nedd4-1 eliminated Alix ubiquitination in the cell and impeded its ability to function in HIV-1 release. Together our data support a model in which Alix recruits Nedd4-1 to facilitate HIV-1 release mediated through the LYPXnL/Alix budding pathway via a mechanism that involves Alix ubiquitination.Retroviral Gag polyproteins bear short conserved sequences that control virus budding and release. As such, these motifs have been dubbed late or L domains (49). Three types of L domains have thus far been characterized: PT/SAP, LYPXnL, and PPPY motifs (5, 9, 32). They recruit host proteins known to function in the vacuolar protein sorting (vps) of cargo proteins and the generation of multivesicular bodies (MVB) compartments (2). It is currently accepted that budding of vesicles into MVB involves the sequential recruitment of endosomal sorting complexes required for transport (ESCRT-I, -II, and -III) and the activity of the VPS4 AAA-ATPase (22). These sorting events are believed to be triggered by recognition of ubiquitin molecules conjugated to cargo proteins (20, 24, 41). For retrovirus budding, L domain motifs are the primary signals in Gag that elicit the recruitment of ESCRT components to facilitate viral budding. Consequently, mutations in L domain motifs or dominant-negative interference with the function of ESCRT-III members or the VPS4 ATPase adversely affect virus release. This indicates that Gag interactions with the ESCRT machinery are necessary for virus budding and separation from the cell (7, 10, 15, 16, 21, 28, 44).Two late domains have been identified within the p6 region of human immunodeficiency virus type 1 (HIV-1) Gag protein: the PTAP and LYPXnL motifs. The PTAP motif binds the cellular protein Tsg101 (15, 39, 40, 47), whereas the LYPXnL motif is the docking site for Alix (44). Tsg101 functions in HIV-1 budding (15) as a member of ESCRT-I (30, 48), a soluble complex required for the generation of MVB. This process is topologically similar to HIV-1 budding and requires the recruitment of ESCRT-III members called the charged-multivesicular body proteins (3, 29, 48) and the activity of the VPS4 AAA-ATPase (4, 48). In addition to binding the LYPXnL motif, Alix also interacts with the nucleocapsid (NC) domain of HIV-1 Gag (13, 38), thus linking Gag to components of ESCRT-III that are critical for virus release (13).Other retroviruses, including the human T-cell leukemia virus (HTLV) and the Moloney murine leukemia virus (MoMLV), utilize the PPPY-type L domain to efficiently release virus (7, 26, 51). The PPPY motif binds members of the Nedd4-like ubiquitin ligase family (6, 7, 16, 19, 25, 43), whose normal cellular function is to ubiquitinate cargo proteins and target them into the MVB sorting pathway (11, 12, 20). Members of the Nedd4-like ubiquitin ligase family include Nedd4-1, Nedd4-2 (also known as Nedd4L), WWP-1/2, and Itch. They contain three distinct domains: an N-terminal membrane binding C2 domain (12), a central PPPY-interacting WW domain (43), and a C-terminal HECT domain that contains the ubiquitin ligase active site (42). The functional requirement for the binding of Nedd4-like ubiquitin ligases to the PPPY motif in virus budding has been demonstrated (7, 16, 18, 19, 25, 26, 28, 50, 51). Overexpression of dominant-negative mutants of Nedd4-like ligases, ESCRT-III components, or VPS4 cause a potent inhibition of PPPY-dependent virus release (7, 19, 29, 31, 52) and induce assembly and budding defects similar to those observed after perturbation of the PPPY motif (26, 51). These observations demonstrated that Nedd4-like ligases connect Gag encoding PPPY motif to ESCRT-III and VPS4 proteins to facilitate virus release.Whereas the role of Nedd4-like ubiquitin ligases in virus budding has been established, the protein interactions that link them to the cell''s ESCRT-III pathway are still unknown. Evidence for associations of Nedd4-like ligases with ESCRT proteins have been previously reported and include: the binding of Nedd4-like ubiquitin ligases LD1 and Nedd4-1 to ESCRT-I member Tsg101 (6, 31), the colocalization of multiple Nedd4-like ubiquitin ligases with endosomal compartments (1, 28), the requirement of the cell''s ESCRT pathway for Itch mediated L domain independent stimulation of MoMLV release (23), and the ubiquitination of ESCRT-I components with a shorter isoform, Nedd4-2s (8). Therefore, Nedd4-like ubiquitin ligase interactions with members of the cell''s ESCRT pathway may provide retroviral Gag with access to the host budding machinery required for virus release.Although HIV-1 Gag does not carry the PPPY canonical sequence known to interact with Nedd4-like ubiquitin ligases, both Nedd4-1 and Nedd4-2 were shown to restore the release of the HIV-1 PTAP mutant, albeit Nedd4-1 with less efficiency than Nedd4-2 (8, 46). These findings suggested that HIV-1 might utilize cellular Nedd4-like ubiquitin ligases to increase virus release. We present here evidence demonstrating that Nedd4-1 interacts with Gag and enhances HIV-1 PTAP virus release. Furthermore, we show that Nedd4-1''s function in HIV-1 release is distinct from that of Nedd4-2 in both its viral and cellular requirements. Notably, we found that Nedd4-1 enhancement of HIV-1 release requires the Alix-binding LYPXnL L domain motif in the p6 region and basic residues in the NC domain. In addition, Alix''s facilitation of HIV-1 release requires cellular Nedd4-1, since mutations in NC that prevented Alix-mediated HIV-1 release also eliminated release by overexpression of Nedd4-1. This suggested a Nedd4-1-Alix physical and functional interdependence. In agreement with this, we found Nedd4-1 to bind and ubiquitinate Alix in the cell. Taken together, these results support a model in which Alix recruits Nedd4-1 to facilitate late steps of HIV-1 release through the LYPXnL L domain motif via a mechanism that involves Alix ubiquitination.  相似文献   

7.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

8.
Moloney murine leukemia virus (MoMLV) Gag utilizes its late (L) domain motif PPPY to bind members of the Nedd4-like ubiquitin ligase family. These interactions recruit components of the cell''s budding machinery that are critical for virus release. MoMLV Gag contains two additional L domains, PSAP and LYPAL, that are believed to drive residual MoMLV release via interactions with cellular proteins Tsg101 and Alix, respectively. We found that overexpression of Tsg101 or Alix failed to rescue the release of PPPY-deficient MoMLV via these other L domains. However, low-level expression of the ubiquitin ligase Itch potently rescued the release and infectivity of MoMLV lacking PPPY function. In contrast, other ubiquitin ligases such as WWP1, Nedd4.1, Nedd4.2, and Nedd4.2s did not rescue this release-deficient virus. Efficient rescue required the ubiquitin ligase activity of Itch and an intact C2 domain but not presence of the endophilin-binding site. Additionally, we found Itch to immunoprecipitate with MoMLV Gag lacking the PPPY motif and to be incorporated into rescued MoMLV particles. The PSAP and LYPAL motifs were dispensable for Itch-mediated virus rescue, and their absence did not affect the incorporation of Itch into the rescued particles. Itch-mediated rescue of release-defective MoMLV was sensitive to inhibition by dominant-negative versions of ESCRT-III components and the VPS4 AAA ATPase, indicating that Itch-mediated correction of MoMLV release defects requires the integrity of the host vacuolar sorting protein pathway. RNA interference knockdown of Itch suppressed the residual release of the MoMLV lacking the PPPY motif. Interestingly, Itch stimulation of the PPPY-deficient MoMLV release was accompanied by the enhancement of Gag ubiquitination and the appearance of new ubiquitinated Gag proteins in virions. Together, these results suggest that Itch can facilitate MoMLV release in an L domain-independent manner via a mechanism that requires the host budding machinery and involves Gag ubiquitination.Retroviruses require access to the host budding machinery to exit the cell (5, 13, 40). To this end, retroviral Gag polyproteins use short sequences called late (L) domains to promote virus release by recruiting members of the host vacuolar protein sorting (vps) machinery. In the cell, vps proteins are involved in membrane dynamics that facilitate the separation of daughter cells at the completion of cytokinesis (9, 39) and the budding of vesicles into endosomal compartments or multivesicular bodies (MVB) (2, 23), a process topologically similar to virus budding (57). Class E vps proteins are organized into three heteromeric endosomal complexes (called endosomal sorting complexes) required for transport, namely, ESCRT-I, -II, and -III (2). In the current model for budding, sequential recruitment of ESCRT components on the cytoplasmic face of the membrane facilitates vesicle invagination into MVB compartments and viral egress from the cell (2). The disassembly of ESCRT-III components is catalyzed by the activity of VPS4 AAA-type ATPase, which in turn is presumed to trigger membrane fission events (3, 50). Any disruption in this sequence, such as mutations in L domain motifs or dominant-negative interference with the function of ESCRT-III members or the VPS4 ATPase, adversely affects virus release. This indicates that Gag interactions with the ESCRT machinery are necessary for virus budding and separation from the cell (19, 21, 34, 49, 57).Currently, three types of L domain motifs have been identified: PT/SAP, LYPXnL, and PPPY. All retroviral Gag molecules contain at least one of these motifs, as multiple L domains are believed to synergistically function to ensure efficient viral release. Moloney murine leukemia virus (MoMLV) Gag carries all three L domain motifs, PSAP, LYPAL, and PPPY, which bind the vps protein Tsg101, the ESCRT-associated protein Alix (46), and members of the Nedd4-ubiquitin ligase family (33), respectively. In HIV-1, the PTAP motif in the p6 region of Gag binds Tsg101 (16, 56), which functions in viral budding (16, 35) as a member of ESCRT-I (16, 36, 57). The LYPXnL motif is also located in p6 and is the binding site for Alix (49, 57), a protein that also interacts with the nucleocapsid domain of HIV-1 Gag (14, 43) and links Gag to components of ESCRT-III (14). Similarly, the human T-cell leukemia virus (HTLV-I) Gag carries PPPY and PTAP L domains, which both contribute to efficient HTLV-1 release (6, 7, 21). The PPPY L domain motif, which is found in numerous retroviral Gag polyproteins (6, 7, 19, 21, 27, 28, 61, 62), plays a critical role in MoMLV release, as mutations disrupting its sequence lead to significant decreases in virus budding and release (33, 62). PSAP and LYPAL, the additional L domain motifs, are believed to serve little to no role in the release of MoMLV Gag virus-like particles (45, 46).The role of Nedd4-like ubiquitin ligases in budding events was initially established by data obtained with the yeast Nedd4-like ligase Rsp5, an enzyme that ubiquitinates surface proteins, thus signaling their incorporation into the MVB pathway (26). From retroviral budding studies, multiple findings support the notion that Nedd4-like ubiquitin ligases link PPPY-containing Gag proteins to the host ESCRT machinery. For example, mutations in the PPPY motif or expression of dominant-negative versions of Nedd4-like ligases resulted in budding defects similar to those seen upon interference with the function of ESCRT-III members (7, 21, 27, 28, 33, 62). Overexpression of Nedd4-like ligases WWP1 and Itch corrected the budding defects of a MoMLV PPPY mutant that retained residual binding to both ligases (33). Also, when transplanted to a heterologous retroviral Gag, the PPPY L domain creates a requirement for Nedd4-like ubiqutin ligase activity to facilitate viral release that is dependent on the presence of a functional ESCRT pathway (63). Collectively, these observations support the notion that Nedd4-like ubiquitin ligases link retroviral Gag polyproteins to components of the ESCRT pathway necessary for budding.Both endosomal and viral budding require the ubiquitin conjugation properties of Nedd4-like ligases, indicating that ubiquitin transfer to a key protein(s) is necessary to promote budding. A role for Gag ubiquitination in viral budding has been suggested (8, 20, 22, 48). In fact, ubiquitin attachment to equine infectious anemia virus (EIAV) Gag can substitute for the lack of L domains and rescue viral budding (25), suggesting that ubiquitin molecules conjugated to Gag can signal the recruitment of the host ESCRT machinery. For feline immunodeficiency virus, efficient budding seems to require L domain-dependent ubiquitination of Gag proteins (8) that is independent of the L domain ability to directly recruit Nedd4-like ubiquitin ligases (i.e., by means of the PT/SAP L domain motif) (8). Similarly, ubiquitination of HTLV-1 Gag was also shown to play a significant role in viral release (22). Conversely, data arguing in favor of a role for the ubiquitination of transacting factors, but not Gag, in the facilitation of viral budding have also been reported (10, 63). Thus Gag polyproteins recruit, in a PPPY-dependent or -independent manner, enzymatically active Nedd4-like ubiquitin ligases that conjugate ubiquitin molecules to Gag or to Gag-binding host factors. Such interactions, whether direct or indirect, are believed to link the viral protein to the host ESCRT pathway and facilitate release.In addition to the well-characterized cellular proteins that bind primary L domain motifs, retroviral Gag can recruit other host factors, either via secondary L domains or independently of L domains (10, 24, 29, 55, 59). These cellular factors are believed to promote virus production by facilitating Gag protein trafficking to the plasma membrane and/or providing additional L domain-independent links to the host vps pathway. Examples of these parallel pathways are illustrated in the rescue of a budding-defective HIV-1 lacking the PTAP domain by overexpression of Alix (15, 54) and in the remarkably potent rescue of HIV-1 lacking all known L domains by the overexpression of Nedd4.2s, a Nedd4.2 isoform that belongs to the Nedd4-like ubiquitin ligase family (10, 55). In this study, we sought to identify host cell factors that rescue budding defects of the MoMLV mutant lacking the PPPY motif (MoMLV AAAY mutant). Our studies provide evidence that Itch overexpression rescued budding and infectivity defects of the MoMLV AAAY mutant virus, indicating that Gag can recruit the ubiquitin ligase Itch in an L domain-independent manner to facilitate MoMLV release via a mechanism that involves Gag ubiquitination.  相似文献   

9.
10.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

11.
12.
13.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

14.
15.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

16.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

17.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

18.
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.Lentiviruses display an exquisite ability to infect dividing and nondividing cells alike that is unequalled among Retroviridae. This property is thought to be due to the particular behavior or composition of the viral nucleoprotein complexes (NPCs) that are liberated into the cytoplasm of target cells upon virus-to-cell membrane fusion and that allow lentiviruses to traverse an intact nuclear membrane (17, 28, 29, 39, 52, 55, 67, 79). In the case of the human immunodeficiency type I virus (HIV-1), several studies over the years identified viral components of such structures with intrinsic karyophilic properties and thus perfect candidates for mediation of the passage of viral DNA (vDNA) through the nuclear pore: the matrix protein (MA); Vpr; the integrase (IN); and a three-stranded DNA flap, a structure present in neo-synthesized viral DNA, specified by the central polypurine tract-central termination sequence (cPPT-CTS). It is clear that these elements may mediate nuclear import directly or via the recruitment of the host''s proteins, and indeed, several cellular proteins have been found to influence HIV-1 infection during nuclear import, like the karyopherin α2 Rch1 (38); importin 7 (3, 30, 93); the transportin SR-2 (13, 20); or the nucleoporins Nup98 (27), Nup358/RANBP2, and Nup153 (13, 56).More recently, the capsid protein (CA), the main structural component of viral nucleoprotein complexes at least upon their cytoplasmic entry, has also been suggested to be involved in nuclear import or in postnuclear entry steps (14, 25, 74, 90, 92). Whether this is due to a role for CA in the shaping of viral nucleoprotein complexes or to a direct interaction between CA and proteins involved in nuclear import remains at present unknown.Despite a large number of reports, no single viral or cellular element has been described as absolutely necessary or sufficient to mediate lentiviral nuclear import, and important controversies as to the experimental evidences linking these elements to this step exist. For example, MA was among the first viral protein of HIV-1 described to be involved in nuclear import, and 2 transferable nuclear localization signals (NLSs) have been described to occur at its N and C termini (40). However, despite the fact that early studies indicated that the mutation of these NLSs perturbed HIV-1 nuclear import and infection specifically in nondividing cells, such as macrophages (86), these findings failed to be confirmed in more-recent studies (23, 33, 34, 57, 65, 75).Similarly, Vpr has been implicated by several studies of the nuclear import of HIV-1 DNA (1, 10, 21, 43, 45, 47, 64, 69, 72, 73, 85). Vpr does not possess classical NLSs, yet it displays a transferable nucleophilic activity when fused to heterologous proteins (49-51, 53, 77, 81) and has been shown to line onto the nuclear envelope (32, 36, 47, 51, 58), where it can truly facilitate the passage of the viral genome into the nucleus. However, the role of Vpr in this step remains controversial, as in some instances Vpr is not even required for viral replication in nondividing cells (1, 59).Conflicting results concerning the role of IN during HIV-1 nuclear import also exist. Indeed, several transferable NLSs have been described to occur in the catalytic core and the C-terminal DNA binding domains of IN, but for some of these, initial reports of nuclear entry defects (2, 9, 22, 46, 71) were later shown to result from defects at steps other than nuclear import (60, 62, 70, 83). These reports do not exclude a role for the remaining NLSs in IN during nuclear import, and they do not exclude the possibility that IN may mediate this step by associating with components of the cellular nuclear import machinery, such as importin alpha and beta (41), importin 7 (3, 30, 93, 98), and, more recently, transportin-SR2 (20).The central DNA flap, a structure present in lentiviruses and in at least 1 yeast retroelement (44), but not in other orthoretroviruses, has also been involved in the nuclear import of viral DNA (4, 6, 7, 31, 78, 84, 95, 96), and more recently, it has been proposed to provide a signal for viral nucleoprotein complexes uncoating in the proximity of the nuclear pore, with the consequence of providing a signal for import (8). However, various studies showed an absence or weakness of nuclear entry defects in viruses devoid of the DNA flap (24, 26, 44, 61).Overall, the importance of viral factors in HIV-1 nuclear import is still unclear. The discrepancies concerning the role of MA, IN, Vpr, and cPPT-CTS in HIV-1 nuclear import could in part be explained by their possible redundancy. To date, only one comprehensive study analyzed the role of these four viral potentially karyophilic elements together (91). This study showed that an HIV-1 chimera where these elements were either deleted or replaced by their murine leukemia virus (MLV) counterparts was, in spite of an important infectivity defect, still able to infect cycling and cell cycle-arrested cell lines to similar efficiencies. If this result indicated that the examined viral elements of HIV-1 were dispensable for the cell cycle independence of HIV, as infections proceeded equally in cycling and arrested cells, they did not prove that they were not required in nuclear import, because chimeras displayed a severe infectivity defect that precluded their comparison with the wild type (WT).Nuclear import and cell cycle independence may not be as simply linked as previously thought. On the one hand, there has been no formal demonstration that the passage through the nuclear pore, and thus nuclear import, is restricted to nondividing cells, and for what we know, this passage may be an obligatory step in HIV infection in all cells, irrespective of their cycling status. In support of this possibility, certain mutations in viral elements of HIV affect nuclear import in dividing as well as in nondividing cells (4, 6, 7, 31, 84, 95). On the other hand, cell cycle-independent infection may be a complex phenomenon that is made possible not only by the ability of viral DNA to traverse the nuclear membrane but also by its ability to cope with pre- and postnuclear entry events, as suggested by the phenotypes of certain CA mutants (74, 92).Given that the cellular environment plays an important role during the early steps of viral infection, we chose to analyze the role of the four karyophilic viral elements of HIV-1 during infection either alone or combined in a wide comparison between cells highly susceptible to infection and more-restrictive primary cell targets of HIV-1 in vivo, such as primary blood lymphocytes (PBLs), monocyte-derived macrophages (MDM), and dendritic cells (DCs).In this study, we show that an HIV-1-derived virus in which the 2 NLSs of MA are mutated and the IN, Vpr, and cPPT-CTS elements are removed displays no detectable nuclear import defect in HeLa cells independently of their cycling status. However, this mutant virus is partially impaired for nuclear entry in primary cells and more specifically in DCs and PBLs. We found that this partial defect is specified by the cPPT-CTS, while the 3 remaining elements seem to play no role in nuclear import. Thus, our study indicates that the central DNA flap specifies the most important role among the viral elements involved thus far in nuclear import. However, it also clearly indicates that the role played by the central DNA flap is not absolute and that its importance varies depending on the cell type, independently from the dividing status of the cell.  相似文献   

19.
The human immunodeficiency virus type 1 structural polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, we systematically altered the CA-CTD, NC, and the ability to bind membrane to determine the relative contributions of, and interplay between, these factors. To directly measure Gag-Gag interactions, we utilized chimeric Gag-fluorescent protein fusion constructs and a fluorescence resonance energy transfer (FRET) stoichiometry method. We found that the CA-CTD is essential for Gag-Gag interactions at the plasma membrane, as the disruption of the CA-CTD has severe impacts on FRET. Data from experiments in which wild-type (WT) and CA-CTD mutant Gag molecules are coexpressed support the idea that the CA-CTD dimerization interface consists of two reciprocal interactions. Mutations in NC have less-severe impacts on FRET between normally myristoylated Gag proteins than do CA-CTD mutations. Notably, when nonmyristoylated Gag interacts with WT Gag, NC is essential for FRET despite the presence of the CA-CTD. In contrast, constitutively enhanced membrane binding eliminates the need for NC to produce a WT level of FRET. These results from cell-based experiments suggest a model in which both membrane binding and NC-RNA interactions serve similar scaffolding functions so that one can functionally compensate for a defect in the other.The human immunodeficiency virus type 1 (HIV-1) structural precursor polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles (VLPs). Gag is composed of four major structural domains, matrix (MA), capsid (CA), nucleocapsid (NC), and p6, as well as two spacer peptides, SP1 and SP2 (3, 30, 94). Following particle assembly and release, cleavage by HIV-1 protease separates these domains. However, these domains must work together in the context of the full-length Gag polyprotein to drive particle assembly.Previous studies have mapped two major functional domains involved in the early steps of assembly: first, Gag associates with cellular membranes via basic residues and N-terminal myristoylation of the MA domain (10, 17, 20, 35, 39, 87, 91, 106); second, the Gag-Gag interaction domains that span the CA C-terminal domain (CA-CTD) and NC domain promote Gag multimerization (3, 11, 14, 16, 18, 23, 27, 29, 30, 33, 36, 46, 64, 88, 94, 102, 103). Structural and genetic studies have identified two residues (W184 and M185) within a dimerization interface in the CA-CTD that are critical to CA-CA interactions (33, 51, 74, 96). Analytical ultracentrifugation of heterodimers formed between wild-type (WT) Gag and Gag mutants with changes at these residues suggests that the dimerization interface consists of two reciprocal interactions, one of which can be disrupted to form a “half-interface” (22).In addition to the CA-CTD, NC contributes to assembly via 15 basic residues (8, 9, 11, 14, 18, 23, 25, 28, 34, 40, 43, 54, 57, 58, 74, 79, 88, 97, 104, 105), although some researchers have suggested that NC instead contributes to the stability of mature virions after assembly (75, 98, 99). It is thought that the contribution of NC to assembly is due to its ability to bind RNA, since the addition of RNA promotes the formation of particles in vitro (14-16, 37, 46), and RNase treatment disrupts Gag-Gag interactions (11) and immature viral cores (67). However, RNA is not necessary per se, since dimerization motifs can substitute for NC (1, 4, 19, 49, 105). This suggests a model in which RNA serves a structural role, such as a scaffold, to promote Gag-Gag interactions through NC. Based on in vitro studies, it has been suggested that this RNA scaffolding interaction facilitates the low-order Gag multimerization mediated by CA-CTD dimerization (4, 37, 49, 62, 63, 85). Despite a wealth of biochemical data, the relative contributions of the CA-CTD and NC to Gag multimerization leading to assembly are yet to be determined in cells.Mutations in Gag interaction domains alter membrane binding in addition to affecting Gag multimerization. In particular, mutations or truncations of CA reduce membrane binding (21, 74, 82), and others previously reported that mutations or truncations of NC affect membrane binding (13, 78, 89, 107). These findings are consistent with a myristoyl switch model of membrane binding in which Gag can switch between high- and low-membrane-affinity states (38, 71, 76, 83, 86, 87, 92, 95, 107). Many have proposed, and some have provided direct evidence (95), that Gag multimerization mediated by CA or NC interactions promotes the exposure of the myristoyl moiety to facilitate membrane associations.Gag membrane binding and multimerization appear to be interrelated steps of virus assembly, since membrane binding also facilitates Gag multimerization. Unlike betaretroviruses that fully assemble prior to membrane targeting and envelopment (type B/D), lentiviruses, such as HIV, assemble only on cellular membranes at normal Gag expression levels (type C), although non-membrane-bound Gag complexes exist (45, 58, 60, 61, 65). Consistent with this finding, mutations that reduce Gag membrane associations cause a defect in Gag multimerization (59, 74). Therefore, in addition to their primary effects on Gag-Gag interactions, mutations in Gag interaction domains cause a defect in membrane binding, which, in turn, causes a secondary multimerization defect. To determine the relative contributions of the CA-CTD and the NC domain to Gag-Gag interactions at the plasma membrane, it is essential to eliminate secondary effects due to a modulation of membrane binding.Except for studies using a His-tag-mediated membrane binding system (5, 46), biochemical studies of C-type Gag multimerization typically lack membranes. Therefore, these studies do not fully represent particle assembly, which occurs on biological membranes in cells. Furthermore, many biochemical and structural approaches are limited to isolated domains or truncated Gag constructs. Thus, some of these studies are perhaps more relevant to the behavior of protease-cleaved Gag in mature virions. With few exceptions (47, 74), cell-based studies of Gag multimerization have typically been limited to measuring how well mutant Gag is incorporated into VLPs when coexpressed or not with WT Gag. Since VLP production is a complex multistep process, effects of mutations on other steps in the process can confound this indirect measure. For example, NC contributes to VLP production by both promoting multimerization and interacting with the host factor ALIX to promote VLP release (26, 80). To directly assay Gag multimerization in cells, several groups (24, 45, 52, 56) developed microscopy assays based on fluorescence resonance energy transfer (FRET). These assays measure the transfer of energy between donor and acceptor fluorescent molecules that are brought within ∼5 nm by the association of the proteins to which they are attached (41, 48, 90). However, these microscopy-based Gag FRET assays have not been used to fully elucidate several fundamental aspects of HIV-1 Gag multimerization at the plasma membrane of cells, such as the relative contributions of the CA-CTD and NC and the effect of membrane binding on Gag-Gag interactions. In this study, we used a FRET stoichiometry method based on calibrated spectral analysis of fluorescence microscopy images (41). This algorithm determines the fractions of both donor and acceptor fluorescent protein-tagged Gag molecules participating in FRET. For cells expressing Gag molecules tagged with donor (cyan fluorescent protein [CFP]) and acceptor (yellow fluorescent protein [YFP]) molecules, this method measures the apparent FRET efficiency, which is proportional to the mole fraction of Gag constructs in complex. By measuring apparent FRET efficiencies, quantitative estimates of the mole fractions of interacting proteins can be obtained.Using this FRET-based assay, we aim to answer two questions: (i) what are the relative contributions of CA-CTD and NC domains to Gag multimerization when secondary effects via membrane binding are held constant, and (ii) what is the effect of modulating membrane binding on the ability of Gag mutants to interact with WT Gag?Our data demonstrate that the CA-CTD dimerization interface is essential for Gag multimerization at the plasma membrane, as fully disrupting the CA-CTD interaction abolishes FRET, whereas a modest level of FRET is still detected in the absence of NC. We also present evidence that the CA-CTD dimerization interface consists of two reciprocal interactions, allowing the formation of a half-interface that can still contribute to Gag multimerization. Notably, when Gag derivatives with an intact CA-CTD were coexpressed with WT Gag, either membrane binding ability or NC was required for the Gag mutants to interact with WT Gag, suggesting functional compensation between these factors.  相似文献   

20.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by the homophilic assembly of vascular endothelial cadherin (VE-cadherin) within adherens junctions, which is regulated by VEGF receptor-2 (VEGFR2) responses. Here, we investigated VEGFR2 phosphorylation and the internalization of VE-cadherin within endothelial cells infected by pathogenic Andes virus (ANDV) and Hantaan virus (HTNV) and nonpathogenic Tula virus (TULV) hantaviruses. We found that VEGF addition to ANDV- and HTNV-infected endothelial cells results in the hyperphosphorylation of VEGFR2, while TULV infection failed to increase VEGFR2 phosphorylation. Concomitant with the VEGFR2 hyperphosphorylation, VE-cadherin was internalized to intracellular vesicles within ANDV- or HTNV-, but not TULV-, infected endothelial cells. Addition of angiopoietin-1 (Ang-1) or sphingosine-1-phosphate (S1P) to ANDV- or HTNV-infected cells blocked VE-cadherin internalization in response to VEGF. These findings are consistent with the ability of Ang-1 and S1P to inhibit hantavirus-induced endothelial cell permeability. Our results suggest that pathogenic hantaviruses disrupt fluid barrier properties of endothelial cell adherens junctions by enhancing VEGFR2-VE-cadherin pathway responses which increase paracellular permeability. These results provide a pathway-specific mechanism for the enhanced permeability of hantavirus-infected endothelial cells and suggest that stabilizing VE-cadherin within adherens junctions is a primary target for regulating endothelial cell permeability during pathogenic hantavirus infection.Hantaviruses cause 2 human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) (50). HPS and HFRS are multifactorial in nature and cause thrombocytopenia, immune and endothelial cell responses, and hypoxia, which contribute to disease (7, 11, 31, 42, 62). Although these syndromes sound quite different, they share common components which involve the ability of hantaviruses to infect endothelial cells and induce capillary permeability. Edema, which results from capillary leakage of fluid into tissues and organs, is a common finding in both HPS and HFRS patients (4, 7, 11, 31, 42, 62). In fact, both diseases can present with renal or pulmonary sequelae, and the renal or pulmonary focus of hantavirus diseases is likely to result from hantavirus infection of endothelial cells within vast glomerular and pulmonary capillary beds (4, 7, 11, 31, 42, 62). All hantaviruses predominantly infect endothelial cells which line capillaries (31, 42, 44, 61, 62), and endothelial cells have a primary role in maintaining fluid barrier functions of the vasculature (1, 12, 55). Although hantaviruses do not lyse endothelial cells (44, 61), this primary cellular target underlies hantavirus-induced changes in capillary integrity. As a result, understanding altered endothelial cell responses following hantavirus infection is fundamental to defining the mechanism of permeability induced by pathogenic hantaviruses (1, 12, 55).Pathogenic, but not nonpathogenic, hantaviruses use β3 integrins on the surface of endothelial cells and platelets for attachment (19, 21, 23, 39, 46), and β3 integrins play prominent roles in regulating vascular integrity (3, 6, 8, 24, 48). Pathogenic hantaviruses bind to basal, inactive conformations of β3 integrins (35, 46, 53) and days after infection inhibit β3 integrin-directed endothelial cell migration (20, 46). This may be the result of cell-associated virus (19, 20, 22) which keeps β3 in an inactive state but could also occur through additional regulatory processes that have yet to be defined. Interestingly, the nonpathogenic hantaviruses Prospect Hill virus (PHV) and Tula virus (TULV) fail to alter β3 integrin functions, and their entry is consistent with the use of discrete α5β1 integrins (21, 23, 36).On endothelial cells, αvβ3 integrins normally regulate permeabilizing effects of vascular endothelial growth factor receptor-2 (VEGFR2) (3, 24, 48, 51). VEGF was initially identified as an edema-causing vascular permeability factor (VPF) that is 50,000 times more potent than histamine in directing fluid across capillaries (12, 14). VEGF is responsible for disassembling adherens junctions between endothelial cells to permit cellular movement, wound repair, and angiogenesis (8, 10, 12, 13, 17, 26, 57). Extracellular domains of β3 integrins and VEGFR2 reportedly form a coprecipitable complex (3), and knocking out β3 causes capillary permeability that is augmented by VEGF addition (24, 47, 48). Pathogenic hantaviruses inhibit β3 integrin functions days after infection and similarly enhance the permeability of endothelial cells in response to VEGF (22).Adherens junctions form the primary fluid barrier of endothelial cells, and VEGFR2 responses control adherens junction disassembly (10, 17, 34, 57, 63). Vascular endothelial cadherin (VE-cadherin) is an endothelial cell-specific adherens junction protein and the primary determinant of paracellular permeability within the vascular endothelium (30, 33, 34). Activation of VEGFR2, another endothelial cell-specific protein, triggers signaling responses resulting in VE-cadherin disassembly and endocytosis, which increases the permeability of endothelial cell junctions (10, 12, 17, 34). VEGF is induced by hypoxic conditions and released by endothelial cells, platelets, and immune cells (2, 15, 38, 52). VEGF acts locally on endothelial cells through the autocrine or paracrine activation of VEGFR2, and the disassembly of endothelial cell adherens junctions increases the availability of nutrients to tissues and facilitates leukocyte trafficking and diapedesis (10, 12, 17, 55). The importance of endothelial cell barrier integrity is often in conflict with requirements for endothelial cells to move in order to permit angiogenesis and repair or cell and fluid egress, and as a result, VEGF-induced VE-cadherin responses are tightly controlled (10, 17, 18, 32, 33, 59). This limits capillary permeability while dynamically responding to a variety of endothelial cell-specific factors and conditions. However, if unregulated, this process can result in localized capillary permeability and edema (2, 9, 10, 12, 14, 17, 29, 60).Interestingly, tissue edema and hypoxia are common findings in both HPS and HFRS patients (11, 31, 62), and the ability of pathogenic hantaviruses to infect human endothelial cells provides a means for hantaviruses to directly alter normal VEGF-VE-cadherin regulation. In fact, the permeability of endothelial cells infected by pathogenic Andes virus (ANDV) or Hantaan virus (HTNV) is dramatically enhanced in response to VEGF addition (22). This response is absent from endothelial cells comparably infected with the nonpathogenic TULV and suggests that enhanced VEGF-induced endothelial cell permeability is a common underlying response of both HPS- and HFRS-causing hantaviruses (22). In these studies, we comparatively investigate responses of human endothelial cells infected with pathogenic ANDV and HTNV, as well as nonpathogenic TULV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号