首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Type I interferons (IFNs) play a critical role in the host defense against viruses. Lymphocytic choriomeningitis virus (LCMV) infection induces robust type I IFN production in its natural host, the mouse. However, the mechanisms underlying the induction of type I IFNs in response to LCMV infection have not yet been clearly defined. In the present study, we demonstrate that IRF7 is required for both the early phase (day 1 postinfection) and the late phase (day 2 postinfection) of the type I IFN response to LCMV, and melanoma differentiation-associated gene 5 (MDA5)/mitochondrial antiviral signaling protein (MAVS) signaling is crucial for the late phase of the type I IFN response to LCMV. We further demonstrate that LCMV genomic RNA itself (without other LCMV components) is able to induce type I IFN responses in various cell types by activation of the RNA helicases retinoic acid-inducible gene I (RIG-I) and MDA5. We also show that expression of the LCMV nucleoprotein (NP) inhibits the type I IFN response induced by LCMV RNA and other RIG-I/MDA5 ligands. These virus-host interactions may play important roles in the pathogeneses of LCMV and other human arenavirus diseases.Type I interferons (IFNs), namely, alpha interferon (IFN-α) and IFN-β, are not only essential for host innate defense against viral pathogens but also critically modulate the development of virus-specific adaptive immune responses (6, 8, 28, 30, 36, 50, 61). The importance of type I IFNs in host defense has been demonstrated by studying mice deficient in the type I IFN receptor, which are highly susceptible to most viral pathogens (2, 47, 62).Recent studies have suggested that the production of type I IFNs is controlled by different innate pattern recognition receptors (PRRs) (19, 32, 55, 60). There are three major classes of PRRs, including Toll-like receptors (TLRs) (3, 40), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) (25, 48, 51), and nucleotide oligomerization domain (NOD)-like receptors (9, 22). TLRs are a group of transmembrane proteins expressed on either cell surfaces or endosomal compartments. RLRs localize in the cytosol. Both TLRs and RLRs are involved in detecting viral pathogens and controlling the production of type I IFNs (52, 60). In particular, the endosome-localized TLRs (TLR3, TLR7/8, and TLR9) play important roles in detecting virus-derived double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), and DNA-containing unmethylated CpG motifs, respectively. In contrast, RIG-I detects virus-derived ssRNA with 5′-triphosphates (5′-PPPs) or short dsRNA (<1 kb), whereas melanoma differentiation-associated gene 5 (MDA5) is responsible for recognizing virus-derived long dsRNA as well as a synthetic mimic of viral dsRNA poly(I):poly(C) [poly(I·C)] (24, 60). Recognition of viral pathogen-associated molecular patterns (PAMPs) ultimately leads to the activation and nuclear translocation of interferon regulatory factors (IRFs) and nuclear factor κB (NF-κB), which, in turn, switches on a cascade of genes controlling the production of both type I IFNs and other proinflammatory cytokines (10, 11, 60).Lymphocytic choriomeningitis virus (LCMV) infection in its natural host, the mouse, is an excellent system to study the impact of virus-host interactions on viral pathogenesis and to address important issues related to human viral diseases (1, 45, 49, 67). LCMV infection induces type I IFNs as well as other proinflammatory chemokines and cytokines (6, 41). Our previous studies have demonstrated that TLR2, TLR6, and CD14 are involved in LCMV-induced proinflammatory chemokines and cytokines (66). The mechanism by which LCMV induces type I IFN responses, however, has not been clearly defined (7, 8, 31, 44). The role of the helicase family members RIG-I and MDA5 in virus-induced type I IFN responses has been recently established. RIG-I has been found to be critical in controlling the production of type I IFN in response to a number of RNA viruses, including influenza virus, rabies virus, Hantaan virus, vesicular stomatitis virus (VSV), Sendai virus (SeV), etc. In contrast, MDA5 is required for responses to picornaviruses (15, 25, 63).In the present study, we demonstrated that LCMV genomic RNA strongly activates type I IFNs through a RIG-I/MDA5-dependent signaling pathway. Our present study further demonstrated that the LCMV nucleoprotein (NP) blocks LCMV RNA- and other viral ligand-induced type I IFN responses.  相似文献   

2.
Innate recognition of viruses is mediated by pattern recognition receptors (PRRs) triggering expression of antiviral interferons (IFNs) and proinflammatory cytokines. In mice, Toll-like receptor 2 (TLR2) and TLR9 as well as intracellular nucleotide-sensing pathways have been shown to recognize herpes simplex virus (HSV). Here, we describe how human primary macrophages recognize early HSV infection via intracellular pathways. A number of inflammatory cytokines, IFNs, and IFN-stimulated genes were upregulated after HSV infection. We show that early recognition of HSV and induction of IFNs and inflammatory cytokines are independent of TLR2 and TLR9, since inhibition of TLR2 using TLR2 neutralizing antibodies did not affect virus-induced responses and the macrophages were unresponsive to TLR9 stimulation. Instead, HSV recognition involves intracellular recognition systems, since induction of tumor necrosis factor alpha (TNF-α) and IFNs was dependent on virus entry and replication. Importantly, expression of IFNs was strongly inhibited by small interfering RNA (siRNA) knockdown of MAVS, but this MAVS-dependent IFN induction occurred independently of the recently discovered polymerase III (Pol III)/RIG-I DNA sensing system. In contrast, induction of TNF-α was largely independent of MAVS, suggesting that induction of inflammatory cytokines during HSV infection proceeds via a novel pathway. Transfection with ODN2006, a broad inhibitor of intracellular nucleotide recognition, revealed that nucleotide-sensing systems are employed to induce both IFNs and TNF-α. Finally, using siRNA knockdown, we found that MDA5, but not RIG-I, was the primary mediator of HSV recognition. Thus, innate recognition of HSV by human primary macrophages occurs via two distinct intracellular nucleotide-sensing pathways responsible for induction of IFNs and inflammatory cytokine expression, respectively.Virus recognition is essential for activation of innate antiviral immune defense and the subsequent induction of acquired immunity. Conserved pathogen motifs, termed pathogen-associated molecular patterns (PAMPs), are recognized by pattern recognition receptors (PRRs). Virus-recognizing PRRs include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and a number of intracellular DNA receptors. Several TLRs have been attributed roles in the recognition of virus. TLR2 and TLR4 recognize viral surface structures (3, 6, 18, 31), TLR3 recognizes double-stranded RNA (dsRNA) (2), and TLR7/8 and TLR9 function as signaling receptors for viral single-stranded RNA (ssRNA) (8, 11, 21) and CpG DNA (12, 20), respectively.Within the cell, cytoplasmic RLRs RIG-I and MDA5 both recognize accumulation of virus-derived dsRNA; in addition, RIG-I recognizes 5′-triphosphated RNA (14, 27, 39, 40). In addition to the RLRs, a number of receptors recognize foreign DNA. Presently, three DNA receptors have been identified: Z-DNA binding protein 1 (ZBP-1, or DAI) (36) and RNA polymerase III (Pol III) (1, 4) both mediate interferon (IFN) and cytokine production, whereas the AIM2 inflammasome is involved in caspase 1 activation in response to cytoplasmic dsDNA (13).Herpes simplex virus type 1 (HSV-1) and HSV-2 are two closely related human DNA viruses associated with a number of serious diseases, including orofacial infections, encephalitis, and genital infections (34). Macrophages play an important role in the first line of defense against viral infection via production of IFNs, cytokines, and chemokines that regulate the progress of the virus infection and activate and support appropriate defense mechanisms (9, 10, 24).TLR2, TLR3, and TLR9 have been identified as mediators of proinflammatory cytokine production during HSV infections. TLR2 mediates an overzealous inflammatory cytokine response following HSV-1 infection in mice, promoting mononuclear cell infiltration of the brain and development of encephalitis (18). TLR3 mediates type I and III IFN production in human fibroblasts (41). TLR9 recognizes genomic DNA from HSV-1 and HSV-2 in murine plasmacytoid dendritic cells (DCs) (17, 20) and mediates tumor necrosis factor alpha (TNF-α) and CCL5 production in murine macrophages (22). Both TLR2 and TLR9 mediate recognition of HSV and cytokine production in murine conventional DCs (35). HSV is recognized by an RLR/MAVS-dependent mechanism in murine macrophages and mouse embryonic fibroblasts (MEFs) (5, 29, 30). Recent data suggest that RNA Pol III mediates IFN production following HSV-1 infection and transfection with HSV-1 DNA in macrophage-like RAW 264.7 cells (4). Finally, murine L929 fibroblast-like cells are moderately inhibited in their ability to produce IFN after HSV-1 infection when ZBP-1 is knocked down (19, 36). Thus, several PRRs have been reported to recognize HSV-1 in murine cells and different cell lines, but the pathways responsible for sensing this virus in human primary macrophages and their impact on cytokine expression have not previously been described.In this work, we investigate the recognition pathways underlying HSV-induced cytokine and chemokine expression in human primary macrophages. We demonstrate that HSV-1-induced IFN and cytokine expression is independent of TLR2 and TLR9 but highly dependent on virus replication and intracellular nucleotide recognition systems. Specifically, induction of IFNs is dependent on MAVS and MDA5, whereas TNF-α is induced by a novel intracellular nucleotide-sensing system.  相似文献   

3.
4.
5.
Interferon (IFN) signaling is initiated by the recognition of viral components by host pattern recognition receptors. Dengue virus (DEN) triggers IFN-β induction through a molecular mechanism involving the cellular RIG-I/MAVS signaling pathway. Here we report that the MAVS protein level is reduced in DEN-infected cells and that caspase-1 and caspase-3 cleave MAVS at residue D429. In addition to its well-known function in IFN induction, MAVS is also a proapoptotic molecule that triggers disruption of the mitochondrial membrane potential and activation of caspases. Although different domains are required for the induction of cytotoxicity and IFN, caspase cleavage at residue 429 abolished both functions of MAVS. The apoptotic role of MAVS in viral infection and double-stranded RNA (dsRNA) stimulation was demonstrated in cells with reduced endogenous MAVS expression induced by RNA interference. Even though IFN-β promoter activation was largely suppressed, DEN production was not affected greatly in MAVS knockdown cells. Instead, DEN- and dsRNA-induced cell death and caspase activation were delayed and attenuated in the cells with reduced levels of MAVS. These results reveal a new role of MAVS in the regulation of cell death beyond its well-known function of IFN induction in antiviral innate immunity.In the battle of hosts and microbes, the innate immune system uses pathogen recognition receptors (PRRs) to sense pathogen-associated molecular patterns (23). There are several functionally distinct classes of PRRs, such as the transmembrane (TM) Toll-like receptors (TLRs) and the intracellular retinoic acid-inducible gene I (RIG-I)-like helicase (RLH) receptors (15, 23, 25, 38). RLHs, including RIG-I and melanoma differentiation-associated gene 5 (MDA5), comprise an N-terminal caspase recruitment domain (CARD), a middle DEXD/H box RNA helicase domain, and a C-terminal domain. RLHs sense intracellular viral RNA and initiate an antiviral interferon (IFN) response (1, 43). RIG-I binding to viral RNA triggers conformational changes that expose the CARD for subsequent signaling (42). The adaptor molecule providing a link between RIG-I and downstream events was identified independently by four research groups as a mitochondrial CARD-containing protein, which was named mitochondrial antiviral signaling protein (MAVS) (34), IFN-β promoter stimulator 1 (IPS-1) (12), virus-induced signaling adaptor (VISA) (40), and CARD adaptor-inducing IFN-β (Cardif) (24). We refer to this adaptor as MAVS in this paper. MAVS transduces signals from RIG-I through CARD-CARD interactions, which then lead to interferon regulatory factor 3 (IRF-3) and NF-κB activation of IFN-β induction through a signaling cascade involving IKKα/β/γ, IKKɛ, and TBK1 (15). Recently, a protein termed STING (11) or MITA (47) was identified as a mediator that acts downstream of RIG-I and MAVS and upstream of TBK1.MAVS protein contains an N-terminal CARD required for signaling, a proline-rich domain that interacts with TRAF3, and a C-terminal TM region that targets MAVS to the mitochondrial outer membrane (29). Several cellular and viral proteins target MAVS in the attenuation of the IFN induction pathway. Cleavage of MAVS by hepatitis C virus (HCV) and hepatitis A virus (HAV) proteases, at residues C508 (18, 24) and Q428 (41), respectively, results in the loss of MAVS mitochondrial localization, thereby disrupting its function in IFN induction. Another mitochondrial outer membrane protein, NLRX1, can sequester MAVS from its association with RIG-I and act as a negative regulator of the IFN pathway (28). MAVS was recently found to be cleaved and inactivated by caspases during apoptosis (31, 33).The caspases are a well-known family of cysteinyl aspartate-specific proteases. The diverse roles of caspases in the cell cycle, proliferation, differentiation, cytokine production, innate immune regulation, and microbial infection suggest various functions of caspases beyond apoptosis (13, 14). The caspases can be separated into two subfamilies, namely, the cell death and inflammation subfamilies. In response to apoptotic stimuli, the initiators caspase-2, -8, -9, and -10 and effectors caspase-3, -6, and -7 mediate cell death events. Caspase-1, -4, -5, and -12 are known as the inflammatory caspases. Caspase-1 is involved in the cleavage and maturation of cytokines (8, 17). Caspase-8 and -10 were discovered as essential components that mediate antiviral signaling (37). Caspase-1 and -3 are activated in innate immune signaling (32). These findings indicate that caspases are involved in the regulation of innate immunity, in addition to their well-known apoptotic role. However, the details of how caspases are activated, the role of caspase activation, and how caspases manipulate the signaling pathways in innate immunity are still obscure.The family Flaviviridae contains three genera: Hepacivirus, Flavivirus, and Pestivirus. Infections with flaviviruses, such as dengue virus (DEN), Japanese encephalitis virus, and West Nile virus, are emerging worldwide. DEN triggers IFN-β through a molecular mechanism involving the RIG-I/MAVS signaling pathway (5, 20). In this study, we found that MAVS is cleaved during DEN serotype 2 (DEN-2) infection, in a caspase-dependent manner; this contrasts with viral protease-dependent cleavage of MAVS during infection with HCV and HAV. In a cell-free caspase assay system, MAVS was cleaved at residue D429 by caspase-1 and caspase-3. Cleaved MAVS failed to induce IFN production and caspase activation, and overexpression of MAVS also triggered caspase activation, which then negatively regulated its own function. Importantly, the role of MAVS in viral infection was verified by knockdown of MAVS expression. We discuss the possible regulatory mechanisms of MAVS and the biological significance of this cleavage event by caspases in the context of understanding how these apoptosis-related proteases might achieve cross talk with the innate immune pathway during viral infection.  相似文献   

6.
7.
Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.Hepatitis C virus (HCV) is a global blood-borne pathogen, with 3% of the world''s population chronically infected. Most infections are asymptomatic, yet 60 to 80% become persistent and lead to severe fibrosis and cirrhosis, hepatic failure, or hepatocellular carcinoma (3). Currently available therapies are limited to the administration of pegylated alpha interferon in combination with ribavirin, which are expensive and often unsuccessful, with significant side effects (23, 36). Thus, the development of novel therapeutic approaches against HCV remains a high priority (18, 40, 60). Targeting the early steps of HCV infection may represent one such option, and much effort is being devoted to uncovering the mechanism of viral attachment and entry.The current view is that HCV entry into target cells occurs after attachment to specific cellular receptors via its surface glycoproteins E1 and E2 (27). The molecules to which HCV initially binds might constitute a diverse collection of cellular proteins, carbohydrates, and lipids that concentrate viruses on the cell surface and determine to a large extent which cell types, tissues, and organisms HCV can infect.CD81, claudin 1 (CLDN1), occludin (OCLN), and scavenger receptor class B type I (SR-BI) were previously shown to play essential roles in HCV cell entry (15, 22, 26, 35, 42, 43, 50, 63, 64).Recent reports suggest that CD81 engagement triggers intracellular signaling responses, ultimately leading to actin remodeling and the relocalization of CD81 to tight junctions (TJ) (11). Thus, CD81 may function as a bridge between the initial interaction of the virus with receptors on the basolateral surface of the hepatocyte and the TJ where two of the HCV entry molecules, CLDN1 and OCLN, are located. CD81 acts as a postbinding factor, and the TJ proteins CLDN1 and OCLN seem to be involved in late steps of HCV entry, such as HCV glycoprotein-dependent cell fusion (9, 11, 22). The discovery of TJ proteins as entry factors has added complexity to the model of HCV entry, suggesting parallels with other viruses like coxsackievirus B infection, where an initial interaction of the viral particle with the primary receptor decay-accelerating factor induces the lateral movement of the virus from the luminal surface to TJ, where coxsackievirus B binds coxsackievirus-adenovirus receptor and internalization takes place (17).Much less is known about the specific role of SR-BI in virus entry: neither the specific step of the entry pathway that SR-BI is involved in nor the protein determinants that mediate such processes are known. SR-BI is a lipoprotein receptor of 509 amino acids (aa) with cytoplasmic C- and N-terminal domains separated by a large extracellular domain (1, 13, 14). It is expressed primarily in liver and steroidogenic tissues, where it mediates selective cholesteryl ester uptake from high-density lipoprotein (HDL) and may act as an endocytic receptor (45, 46, 51, 52). SR-BI was originally identified as being a putative receptor for HCV because it binds soluble E2 (sE2) through interactions with E2 hypervariable region 1 (HVR1) (8, 50). RNA interference studies as well as the ability to block both HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) infections with anti SR-BI antibodies have confirmed its involvement in the HCV entry process (7, 8, 15, 26, 33, 63). Intriguingly, lipoproteins were previously shown to modulate HCV infection through SR-BI (12). It was indeed previously demonstrated that two natural ligands of SR-BI, HDL and oxidized low-density lipoprotein, can improve and inhibit HCV entry, respectively (57, 59). Moreover, small-molecule inhibitors of SR-BI-mediated lipid transfer (block of lipid transfer BLT-3 and BLT-4) abrogate the stimulation of HCV infectivity by human serum or HDL, suggesting that the enhancement of viral infection might be dependent on the lipid exchange activity of SR-BI (20, 58).We previously generated high-affinity monoclonal antibodies (MAbs) specific for human SR-BI and showed that they were capable of inhibiting the binding of SR-BI to sE2 and blocking HCVcc infection of human hepatoma cells (15). The HDL-induced enhancement of infection had no impact on the ability of the anti-SR-BI MAbs to block HCV infection, and the antibodies were effective in counteracting HCV infection even in the absence of lipoproteins. These data demonstrated that SR-BI participates in the HCV infection process as an entry receptor by directly interacting with viral glycoproteins. Here we have used one of the anti-SR-BI MAbs to show that SR-BI participates in an early step of HCV infection. By assays of binding of sE2 to SR-BI molecules from different species and to SR-BI mutants, we identified species-specific SR-BI protein residues that are required for sE2 binding. The functional significance of these observations was confirmed by the finding that SR-BI mutants with reduced binding to sE2 were also impaired in their ability to restore the infectivity of an SR-BI-knocked-down Huh-7.5 cell line. Finally, we demonstrated that SR-BI mutants with impaired sE2 binding can still form oligomeric structures and that they can bind the physiological ligand HDL and mediate cholesterol efflux, suggesting that distinct protein determinants are responsible for the interaction with HDL and the HCV particle.  相似文献   

8.
Recently, claudin-1 (CLDN1) was identified as a host protein essential for hepatitis C virus (HCV) infection. To evaluate CLDN1 function during virus entry, we searched for hepatocyte cell lines permissive for HCV RNA replication but with limiting endogenous CLDN1 expression, thus permitting receptor complementation assays. These criteria were met by the human hepatoblastoma cell line HuH6, which (i) displays low endogenous CLDN1 levels, (ii) efficiently replicates HCV RNA, and (iii) produces HCV particles with properties similar to those of particles generated in Huh-7.5 cells. Importantly, naïve cells are resistant to HCV genotype 2a infection unless CLDN1 is expressed. Interestingly, complementation of HCV entry by human, rat, or hamster CLDN1 was highly efficient, while mouse CLDN1 (mCLDN1) supported HCV genotype 2a infection with only moderate efficiency. These differences were observed irrespective of whether cells were infected with HCV pseudoparticles (HCVpp) or cell culture-derived HCV (HCVcc). Comparatively low entry function of mCLDN1 was observed in HuH6 but not 293T cells, suggesting that species-specific usage of CLDN1 is cell type dependent. Moreover, it was linked to three mouse-specific residues in the second extracellular loop (L152, I155) and the fourth transmembrane helix (V180) of the protein. These determinants could modulate the exposure or affinity of a putative viral binding site on CLDN1 or prevent optimal interaction of CLDN1 with other human cofactors, thus precluding highly efficient infection. HuH6 cells represent a valuable model for analysis of the complete HCV replication cycle in vitro and in particular for analysis of CLDN1 function in HCV cell entry.Hepatitis C virus (HCV) is a liver-tropic plus-strand RNA virus of the family Flaviviridae that has chronically infected about 130 million individuals worldwide. During long-term persistent virus replication, many patients develop significant liver disease which can lead to cirrhosis and hepatocellular carcinoma (54). Current treatment of chronic HCV infection consists of a combination of pegylated alpha interferon and ribavirin. However, this regimen is not curative for all treated patients and is associated with severe side effects (37). Therefore, an improved therapy is needed and numerous HCV-specific drugs targeting viral enzymes are currently being developed (47). These efforts have been slowed down by a lack of small-animal models permissive for HCV replication since HCV infects only humans and chimpanzees. Among small animals, only immunodeficient mice suffering from a transgene-induced disease of endogenous liver cells and repopulated with human primary hepatocytes are susceptible to HCV infection (39).The restricted tropism of HCV likely reflects very specific host factor requirements for entry, RNA replication, assembly, and release of virions. Although HCV RNA replication has been observed in nonhepatic human cells and even nonhuman cells, its efficiency is rather low (2, 11, 59, 67). In addition, so far, efficient production of infectious particles has only been reported with Huh-7 human hepatoma cells, Huh-7-derived cell clones, and LH86 cells (33, 61, 65, 66). Although murine cells sustain HCV RNA replication, they do not produce detectable infectious virions (59). Together, these results suggest that multiple steps of the HCV replication cycle may be blocked or impaired in nonhuman or nonhepatic cells.HCV entry into host cells is complex and involves interactions between viral surface-resident glycoproteins E1 and E2 and multiple host factors. Initial adsorption to the cell surface is likely facilitated by interaction with attachment factors like glycosaminoglycans (4, 31) and lectins (13, 35, 36, 51). Beyond these, additional host proteins have been implicated in HCV entry. Since HCV circulates in the blood associated with lipoproteins (3, 43, 57), it has been postulated that HCV enters hepatocytes via the low-density lipoprotein receptor (LDL-R), and evidence in favor of an involvement of LDL-R has been provided (1, 40, 42, 44). Direct interactions between soluble E2 and scavenger receptor class B type I (SR-BI) (53) and CD81 (49) have been reported, and firm experimental proof has accumulated that these host proteins are essential for HCV infection (5, 6, 16, 26, 28, 33, 41, 61). Finally, more recently, claudin-1 (CLDN1) and occludin, two proteins associated with cellular tight junctions, have been identified as essential host factors for infection (20, 34, 50) and an interaction between E2 and these proteins, as revealed by coimmunoprecipitation assays, was reported (7, 34, 63). Although the precise functions of the individual cellular proteins during HCV infection remain poorly defined, based on kinetic studies with antibodies blocking interactions with SR-BI, CD81, or CLDN1, these factors are likely required subsequent to viral attachment (14, 20, 31, 64). Interestingly, viral resistance to antibodies directed against CLDN1 seems to be slightly delayed compared to resistance to antibodies directed against CD81 and SR-BI (20, 64), suggesting that there may be a sequence of events with the virus encountering first SR-BI and CD81 and subsequently CLDN1. Moreover, in Huh-7 cells, engagement of CD81 by soluble E1/E2 induces Rho GTPase-dependent relocalization of these complexes to areas of cell-to-cell contact, where these colocalized with CLDN1 and occludin (9). Together, these findings are consistent with a model where HCV reaches the basolateral, sinusoid-exposed surface of hepatocytes via the circulation. Upon binding to attachment factors SR-BI and CD81, which are highly expressed in this domain (52), the HCV-receptor complex may be ferried to tight-junction-resident CLDN1 and occludin and finally be endocytosed in a clathrin-dependent fashion (8, 38). Once internalized, the viral genome is ultimately delivered into the cytoplasm through a pH-dependent fusion event (24, 26, 31, 58). Recently, Ploss et al. reported that expression of human SR-BI, CD81, CLDN1, and occludin was sufficient to render human and nonhuman cells permissive for HCV infection (50). These results indicate that these four factors are the minimal cell type-specific set of host proteins essential for HCV entry. Interestingly, HCV seems to usurp at least CD81 and occludin in a very species-specific manner since their murine orthologs permit HCV infection with limited efficiency only (22, 50). Recently, it was shown that expression of mouse SR-BI did not fully restore entry function in Huh-7.5 cells with knockdown of endogenous human SR-BI, suggesting that also SR-BI function in HCV entry is, to some extent, species specific (10).In this study, we have developed a receptor complementation system for CLDN1 that permits the assessment of functional properties of this crucial HCV host factor with cell culture-derived HCV (HCVcc) and a human hepatocyte cell line. This novel model is based on HuH6 cells, which were originally isolated from a male Japanese patient suffering from a hepatoblastoma (15). These cells express little endogenous CLDN1, readily replicate HCV RNA, and produce high numbers of infectious HCVcc particles with properties comparable to those of Huh-7 cell-derived HCV. In addition, we identified three mouse-typic residues of CLDN1 that limit receptor function in HuH6 cells. These results suggest that besides CD81 and occludin, and to a minor degree SR-BI, CLDN1 also contributes to the restricted species tropism of HCV.  相似文献   

9.
10.
The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection.Hepatitis C virus (HCV) is a small enveloped virus that causes chronic hepatitis worldwide (32). HCV belongs to the genus Hepacivirus of the family Flaviviridae. Its genome comprises 9.6 kb of single-stranded RNA of positive polarity flanked by highly conserved untranslated regions at both the 5′ and 3′ ends (4, 27, 29). The 5′ untranslated region harbors an internal ribosomal entry site (29) that initiates translation of a single open reading frame encoding a large polyprotein comprising about 3,010 amino acids (35). The encoded polyprotein is co- and posttranslationally processed into 10 individual viral proteins (15).In most cases of human infection, HCV is highly potent and establishes lifelong persistent infection, which progressively leads to chronic hepatitis, liver steatosis, cirrhosis, and hepatocellular carcinoma (9, 16, 21). The most effective therapy for treatment of HCV infection is administration of pegylated interferon combined with ribavirin. However, the combination therapy is an arduous regimen for patients; furthermore, HCV genotype 1b does not respond efficiently (19). The prevailing scientific opinion is that a more viable option than interferon treatment is needed.The chimpanzee is the only validated animal model for in vivo studies of HCV infection, and it is capable of reproducing most aspects of human infection (5, 18, 23, 28, 35, 36). The chimpanzee is also the only validated animal for testing the authenticity and infectivity of cloned viral sequences (8, 14, 35, 36). However, chimpanzees are relatively rare and expensive experimental subjects. Cross-species transmission from infected chimpanzees to other nonhuman primates has been tested but has proven unsuccessful for all species evaluated (1).The tupaia (Tupaia belangeri), a tree shrew, is a small nonprimate mammal indigenous to certain areas of Southeast Asia (6). It is susceptible to infection with a wide range of human-pathogenic viruses, including hepatitis B viruses (13, 20, 31), and appears to be permissive for HCV infection (33, 34). In an initial report, approximately one-third of inoculated animals exhibited acute, transient infection, although none developed the high-titer sustained viremia characteristic of infection in humans and chimpanzees (33). The short duration of follow-up precluded any observation of liver pathology. In addition to the putative in vivo model, cultured primary hepatocytes from tupaias can be infected with HCV, leading to de novo synthesis of HCV RNA (37). These reports strongly support tupaias as a valid model for experimental studies of HCV infection. However, longitudinal analyses evaluating the clinical development and pathology of HCV-infected tupaias have yet to be examined. In the present study, we describe the clinical development and pathology of HCV-infected tupaias over an approximately 3-year time course.  相似文献   

11.
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. As HCV infects only human and chimpanzee cells, antiviral therapy and vaccine development have been hampered by the lack of a convenient small-animal model. In this study we further investigate how the species tropism of HCV is modulated at the level of cell entry. It has been previously determined that the tight junction protein occludin (OCLN) is essential for HCV host cell entry and that human OCLN is more efficient than the mouse ortholog at mediating HCV cell entry. To further investigate the relationship between OCLN sequence and HCV species tropism, we compared OCLN proteins from a range of species for their ability to mediate infection of naturally OCLN-deficient 786-O cells with lentiviral pseudoparticles bearing the HCV glycoproteins. While primate sequences function equivalently to human OCLN, canine, hamster, and rat OCLN had intermediate activities, and guinea pig OCLN was completely nonfunctional. Through analysis of chimeras between these OCLN proteins and alanine scanning mutagenesis of the extracellular domains of OCLN, we identified the second half of the second extracellular loop (EC2) and specific amino acids within this domain to be critical for modulating the HCV cell entry factor activity of this protein. Furthermore, this critical region of EC2 is flanked by two conserved cysteine residues that are essential for HCV cell entry, suggesting that a subdomain of EC2 may be defined by a disulfide bond.Hepatitis C virus (HCV), a member of the family Flaviviridae, is the causative agent of classically defined non-A, non-B hepatitis and is highly prevalent, with approximately 3% of the worldwide population infected (48). HCV infection often results in a chronic, life-long infection that can have severe health consequences, including hepatitis, cirrhosis, hepatocellular carcinoma, and liver failure. There is no HCV vaccine available, and the currently employed interferon-based treatment is inadequate as it has severe side effects and is effective only in half of the major genotype-infected individuals (22, 32). Specific anti-HCV inhibitors targeting the viral proteases and polymerase are currently being developed and will likely improve therapeutic options substantially. Undoubtedly, however, the emergence of viral resistance to such inhibitors will be a problem facing future HCV treatment options. As such, developing a spectrum of inhibitors targeting diverse steps in the virus life cycle, including HCV cell entry, is a priority for HCV research. Such inhibitors may be particularly useful following liver transplantation. Although HCV is the leading cause of liver transplants worldwide (10), the usefulness of such procedures is limited by subsequent universal graft reinfection and often accelerated disease progression (21). Even transiently inhibiting graft reinfection with HCV cell entry inhibitors could greatly improve the effectiveness of this procedure. Therefore, a greater understanding of HCV cell entry is required for the development of therapies targeting this stage of the viral life cycle.HCV host cell entry is a complex process that culminates in the clathrin-dependent endocytosis of the virion and low-pH-mediated fusion of viral and cellular lipid membranes in an early endosome (9, 12, 26, 27, 36, 51). The entry process requires the two viral envelope glycoproteins, E1 and E2, and many cellular factors, including glycosaminoglycans (GAGs) (3, 27), lipoproteins, the low-density lipoprotein receptor (LDL-R) (1, 38-40), tetraspanin CD81 (43), scavenger receptor class B type I (SR-BI) (47), and two tight junction proteins, claudin-1 (CLDN1) (17) and occludin (OCLN) (31, 44). The polarized nature of hepatocytes and the tight junction roles of OCLN and CLDN1 suggest an entry pathway similar to that of the group B coxsackieviruses, where the virion initially binds readily accessible factors that then provide a mechanism for migration of the virion into the tight junction region, just prior to internalization (14). Indeed, cellular factors are utilized by the incoming HCV virion in a temporal manner. At least GAGs and LDL-R appear to mediate virion binding (1, 3, 27, 38-40). Conflicting evidence has shown that SR-BI acts as either a binding (11) or postbinding entry factor (53), while CD81 (7, 13, 17, 27) and CLDN1 (17, 29) play postbinding roles in the HCV cell entry process. Although the kinetics of OCLN usage have not been clearly defined, this protein does not appear to play a role in virion binding (6). However, recent data showing that CD81 and CLDN1 may form complexes prior to infection (15, 24, 25, 28, 29, 35, 52) and imaging of the cell entry process (12) may contradict such a model.Human hepatocytes are the major target for HCV infection. While multiple blocks at a number of viral life cycle stages likely exist in other cell types, cell entry is one of the events limiting HCV tropism (45). Although species differences in SR-BI and CLDN1 may exert some influence on this selectivity (11, 23), CD81 and OCLN appear to be largely responsible for the restriction of HCV entry to cells from human and chimpanzee origin (7, 8, 20, 44). In fact, overexpression of the human versions of CD81 and OCLN, along with either mouse or human SR-BI and CLDN1, renders a mouse cell able to support HCV cell entry (44).We sought to provide greater insight into the species-specific restrictions of HCV cell entry and to elucidate the mechanism by which OCLN acts to mediate HCV cell entry. We examined the ability of OCLN proteins from a range of species to mediate HCV cell entry and how this function correlated with the degree of similarity to the human protein. A six-amino-acid portion of the second extracellular loop (EC2) of human OCLN was found to be responsible for the species-specific differences in entry factor function. OCLN proteins that were less functional than the human protein could be rendered fully functional by adding the human residues at these positions. Conversely, the ability of the human OCLN protein to mediate HCV cell entry was impaired by swapping this region with the corresponding sequence from species with less functional OCLN proteins. Comprehensive alanine scanning of the extracellular loops of human OCLN confirmed that the second half of EC2 was most important for the HCV cell entry process. Two cysteine residues that flank this region were found to be essential for HCV cell entry, suggesting that these residues may define a disulfide-linked subdomain of EC2. None of these amino acid changes influenced OCLN expression or localization, implying that they may serve to modulate an interaction with either another host protein or the incoming HCV virion.  相似文献   

12.
13.
14.
Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W30-GLW51-C54-C64. Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.Hepatitis C virus (HCV) is a major human pathogen that affects approximately 3% of the global population, leading to cirrhosis and hepatocellular carcinoma in chronically infected individuals (5, 23, 42). Hepatocytes are the major target cells of HCV (11), and entry follows a complex cascade of interactions with several cellular factors (6, 8, 12, 17). Infectious viral particles are associated with lipoproteins and initially attach to target cells via glycosaminoglycans and the low-density lipoprotein receptor (1, 7, 31). These interactions are followed by direct binding of the E2 envelope glycoprotein to the scavenger receptor class B type I (SR-B1) and then to the CD81 tetraspanin (14, 15, 33, 36). Early studies showed that CD81 and SR-B1 were necessary but not sufficient for HCV entry, and claudin-1 was discovered to be a requisite HCV entry cofactor that appears to act at a very late stage of the process (18).Claudin-1 is a member of the claudin protein family that participates in the formation of tight junctions between adjacent cells (25, 30, 37). Tight junctions regulate the paracellular transport of solutes, water, and ions and also generate apical-basal cell polarity (25, 37). In the liver, the apical surfaces of hepatocytes form bile canaliculi, whereas the basolateral surfaces face the underside of the endothelial layer that lines liver sinusoids. Claudin-1 is highly expressed in tight junctions formed by liver hepatocytes as well as on all hepatoma cell lines that are permissive to HCV entry (18, 24, 28). Importantly, nonhepatic cell lines that are engineered to express claudin-1 become permissive to HCV entry (18). Claudin-6 and -9 are two other members of the human claudin family that enable HCV entry into nonpermissive cells (28, 43).The precise role of claudin-1 in HCV entry remains to be determined. A direct interaction between claudins and HCV particles or soluble E2 envelope glycoprotein has not been demonstrated (18; T. Dragic, unpublished data). It is possible that claudin-1 interacts with HCV entry receptors SR-B1 or CD81, thereby modulating their ability to bind to E2. Alternatively, claudin-1 may ferry the receptor-virus complex to fusion-permissive intracellular compartments. Recent studies show that claudin-1 colocalizes with the CD81 tetraspanin at the cell surface of permissive cell lines (22, 34, 41). With respect to nonpermissive cells, one group observed that claudin-1 was predominantly intracellular (41), whereas another reported associations of claudin-1 and CD81 at the cell surface, similar to what is observed in permissive cells (22).Claudins comprise four transmembrane domains along with two extracellular loops and two cytoplasmic domains (19, 20, 25, 30, 37). The first extracellular loop (ECL1) participates in pore formation and influences paracellular charge selectivity (25, 37). It has been shown that the ECL1 of claudin-1 is required for HCV entry (18). All human claudins comprise a highly conserved motif, W30-GLW51-C54-C64, in the crown of ECL1 (25, 37). The exact function of this domain is unknown, and we hypothesized that it is important for HCV entry. The second extracellular loop is required for the holding function and oligomerization of the protein (25). Claudin-1 also comprises various signaling domains and a PDZ binding motif in the intracellular C terminus that binds ZO-1, another major component of tight junctions (30, 32, 37). We further hypothesized that some of these domains may play a role in HCV entry.To understand the role of claudin-1 in HCV infection, we developed a mutagenesis strategy targeting the putative sites for internalization, glycosylation, palmitoylation, and phosphorylation. The functionality of these domains has been described by others (4, 16, 25, 35, 37, 40). We also mutagenized charged and bulky residues in ECL1, including all six residues within the highly conserved motif W30-GLW51-C54-C64. None of the intracellular domains were found to affect HCV entry. However, we identified seven residues in ECL1 that are critical for entry mediated by envelope glycoproteins derived from several HCV subtypes, including all six residues of the conserved motif. These mutants were still expressed at the cell surface and able to form lateral homophilic interactions within the plasma membrane as well as to engage in lateral interactions with CD81. In contrast, they no longer engaged in homophilic trans interactions at cell-cell contacts. We conclude that the highly conserved motif W30-GLW51-C54-C64 of claudin-1 is important for HCV entry into target cells and participates in the formation of cell-cell contacts.  相似文献   

15.
16.
17.
18.
19.
Cell culture-adaptive mutations within the hepatitis C virus (HCV) E2 glycoprotein have been widely reported. We identify here a single mutation (N415D) in E2 that arose during long-term passaging of HCV strain JFH1-infected cells. This mutation was located within E2 residues 412 to 423, a highly conserved region that is recognized by several broadly neutralizing antibodies, including the mouse monoclonal antibody (MAb) AP33. Introduction of N415D into the wild-type (WT) JFH1 genome increased the affinity of E2 to the CD81 receptor and made the virus less sensitive to neutralization by an antiserum to another essential entry factor, SR-BI. Unlike JFH1WT, the JFH1N415D was not neutralized by AP33. In contrast, it was highly sensitive to neutralization by patient-derived antibodies, suggesting an increased availability of other neutralizing epitopes on the virus particle. We included in this analysis viruses carrying four other single mutations located within this conserved E2 region: T416A, N417S, and I422L were cell culture-adaptive mutations reported previously, while G418D was generated here by growing JFH1WT under MAb AP33 selective pressure. MAb AP33 neutralized JFH1T416A and JFH1I422L more efficiently than the WT virus, while neutralization of JFH1N417S and JFH1G418D was abrogated. The properties of all of these viruses in terms of receptor reactivity and neutralization by human antibodies were similar to JFH1N415D, highlighting the importance of the E2 412-423 region in virus entry.Hepatitis C virus (HCV), which belongs to the Flaviviridae family, has a positive-sense single-stranded RNA genome encoding a polyprotein that is cleaved by cellular and viral proteases to yield mature structural and nonstructural proteins. The structural proteins consist of core, E1 and E2, while the nonstructural proteins are p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B (42). The hepatitis C virion comprises the RNA genome surrounded by the structural proteins core (nucleocapsid) and E1 and E2 (envelope glycoproteins). The HCV glycoproteins lie within a lipid envelope surrounding the nucleocapsid and play a major role in HCV entry into host cells (21). The development of retrovirus-based HCV pseudoparticles (HCVpp) (3) and the cell culture infectious clone JFH1 (HCVcc) (61) has provided powerful tools to study HCV entry.HCV entry is initiated by the binding of virus particles to attachment factors which are believed to be glycosaminoglycans (2), low-density lipoprotein receptor (41), and C-type lectins such as DC-SIGN and L-SIGN (12, 37, 38). Upon attachment at least four entry factors are important for particle internalization. These include CD81 (50), SR-BI (53) and the tight junction proteins claudin-1 (15) and occludin (6, 36, 51).CD81, a member of the tetraspanin family, is a cell surface protein with various functions including tissue differentiation, cell-cell adhesion and immune cell maturation (34). It consists of a small and a large extracellular loop (LEL) with four transmembrane domains. Viral entry is dependent on HCV E2 binding to the LEL of CD81 (3, 50). The importance of HCV glycoprotein interaction with CD81 is underlined by the fact that many neutralizing antibodies compete with CD81 and act in a CD81-blocking manner (1, 5, 20, 45).SR-BI is a multiligand receptor expressed on liver cells and on steroidogenic tissue. It binds to high-density lipoproteins (HDL), low-density lipoproteins (LDL), and very low-density lipoproteins (VLDL) (31). The SR-BI binding site is mapped to the hypervariable region 1 (HVR-1) of HCV E2 (53). SR-BI ligands, such as HDL and oxidized LDL have been found to affect HCV infectivity (4, 14, 58-60). Indeed, HDL has been shown to enhance HCV infection in an SR-BI-dependent manner (4, 14, 58, 59). Antibodies against SR-BI and knockdown of SR-BI in cells result in a significant inhibition of viral infection in both the HCVpp and the HCVcc systems (5, 25, 32).Although clearly involved in entry and immune recognition, the more downstream function(s) of HCV glycoproteins are poorly understood, as their structure has not yet been solved. Nonetheless, mutational analysis and mapping of neutralizing antibody epitopes have delineated several discontinuous regions of E2 that are essential for HCV particle binding and entry (24, 33, 45, 47). One of these is a highly conserved sequence spanning E2 residues 412 to 423 (QLINTNGSWHIN). Several broadly neutralizing monoclonal antibodies (MAbs) bind to this epitope. These include mouse monoclonal antibody (MAb) AP33, rat MAb 3/11, and the human MAbs e137, HCV1, and 95-2 (8, 16, 44, 45, 49). Of these, MAbs AP33, 3/11, and e137 are known to block the binding of E2 to CD81.Cell culture-adaptive mutations within the HCV glycoproteins are valuable for investigating the virus interaction(s) with cellular receptors (18). In the present study, we characterize an asparagine-to-aspartic acid mutation at residue 415 (N415D) in HCV strain JFH1 E2 that arose during the long-term passaging of infected human hepatoma Huh-7 cells. Alongside N415D, we also characterize three adjacent cell culture adaptive mutations reported previously and a novel substitution generated in the present study by propagating virus under MAb AP33 selective pressure to gain further insight into the function of this region of E2 in viral infection.  相似文献   

20.
Enterovirus 71 (EV71) is a human pathogen that induces hand, foot, and mouth disease and fatal neurological diseases. Immature or impaired immunity is thought to associate with increased morbidity and mortality. In a murine model, EV71 does not facilitate the production of type I interferon (IFN) that plays a critical role in the first-line defense against viral infection. Administration of a neutralizing antibody to IFN-α/β exacerbates the virus-induced disease. However, the molecular events governing this process remain elusive. Here, we report that EV71 suppresses the induction of antiviral immunity by targeting the cytosolic receptor retinoid acid-inducible gene I (RIG-I). In infected cells, EV71 inhibits the expression of IFN-β, IFN-stimulated gene 54 (ISG54), ISG56, and tumor necrosis factor alpha. Among structural and nonstructural proteins encoded by EV71, the 3C protein is capable of inhibiting IFN-β activation by virus and RIG-I. Nevertheless, EV71 3C exhibits no inhibitory activity on MDA5. Remarkably, when expressed in mammalian cells, EV71 3C associates with RIG-I via the caspase recruitment domain. This precludes the recruitment of an adaptor IPS-1 by RIG-I and subsequent nuclear translocation of interferon regulatory factor 3. An R84Q or V154S substitution in the RNA binding motifs has no effect. An H40D substitution is detrimental, but the protease activity associated with 3C is dispensable. Together, these results suggest that inhibition of RIG-I-mediated type I IFN responses by the 3C protein may contribute to the pathogenesis of EV71 infection.Enterovirus 71 (EV71) is a single-stranded, positive-sense RNA virus belonging to the Picornaviridae family. The viral genome is approximately 7,500 nucleotides in length, with a single open reading frame that encodes a large precursor protein. Upon infection, this protein precursor is processed into four structural (VP1, VP2, VP3, and VP4) and seven nonstructural (2A, 2B, 2C, 3A, 3B, 3C, and 3D) proteins (32). EV71 infection manifests most frequently as the childhood exanthema known as hand, foot, and mouth disease (HFMD). Additionally, EV71 infection may cause neurological diseases, which include aseptic meningitis, brain stem and/or cerebellar encephalitis, and acute flaccid paralysis (32). Young children and infants are especially susceptible to EV71 infection. Since the initial recognition of EV71 in the United States, outbreaks have been reported in Southeast Asia, Europe, and Australia (1-3, 11, 14, 24, 30-32). Recently, large epidemics of HFMD occurred in the mainland of China (26, 42, 52).The mechanism of EV71 pathogenesis remains obscure. It is believed that immature or impaired immunity, upon EV71 infection, is associated with increased morbidity and mortality (7, 14, 17). In a murine infection model, lymphocyte as well as antibody responses reduce tissue viral loads and EV71 lethality (28). Notably, EV71 induces skin rash at the early stage and hind limb paralysis or death at the late stage. Oral infection leads to initial replication in the intestine and subsequent spread to various organs such as the spinal cord and the brain stem (8). Intriguingly, EV71 does not facilitate the production of type I interferon (IFN), a family of cytokines involved in first-line defense against virus infection. Indeed, administration of neutralizing antibody to IFN-α/β increases tissue viral loads and exacerbates the virus-induced disease (29).Type I IFN is produced in response to viral infections (22). For example, Toll-like receptor 3 (TLR3) in the endosome recognizes double-stranded RNA (dsRNA), where it recruits the adaptor Toll/interleukin-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF) (22). TRIF, together with tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3), then activates the two IKK-related kinases, TANK-binding kinase 1 (TBK1) and inducible IκB kinase (IKKi), both of which phosphorylate interferon regulatory factor 3/7 (IRF3/7) (10, 13, 36, 45). IRF3 or IRF7, in turn, stimulates the expression of target genes, such as IFN-α/β (33, 37, 39, 51). In parallel, TRIF also induces NF-κB activation via TRAF6 (18, 19). In addition, alternative mechanisms exist in host cells to detect cytosolic nucleic acids. Two RNA helicases, retinoid acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), recognize viral RNA present in the cytoplasm and subsequently recruit the adaptor IFN promoter-stimulating factor 1 (IPS-1; also called Cardif, MAVS, and VISA) (22, 23, 54). The interaction of IPS-1, TRAF3, and TBK1/IKKi activates IRF3/IRF7 and induces the expression of IFN-α/β while the interaction of IPS-1 with the Fas-associated protein-containing death domain (FADD) leads to NF-κB activation. It has been shown that MDA5 recognizes long double-stranded RNAs, such as in cells infected with picornaviruses, whereas RIG-I senses 5′ triphosphate single-stranded RNA with poly(U/A) motifs and short dsRNA in cells infected with a variety of RNA viruses (16, 20, 40, 43).The objective of this study was to investigate the interaction of EV71 with the type I IFN system. We demonstrate that, unlike Sendai virus or double-stranded RNA, EV71 does not stimulate the expression of antiviral genes in mammalian cells. Among structural and nonstructural proteins encoded by EV71, the 3C protein is able to inhibit virus-induced activation of the IFN-β promoter. We provide evidence that when expressed in mammalian cells, the 3C protein suppresses RIG-I signaling by disruption of the RIG-I-IPS-1 complex and IRF3 nuclear translocation. While H40, KFRDI, and VGK motifs are involved, the protease and RNA binding activities are dispensable. Collectively, these results suggest that control of RIG-I by the 3C protein impairs type I IFN responses, which may contribute to the pathogenesis of EV71 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号