首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infectious bronchitis (IB), caused by infectious bronchitis virus (IBV), is a highly contagious chicken disease, and can lead to serious economic losses in poultry enterprises. The continual introduction of new IBV serotypes requires alternative strategies for the production of timely and safe vaccines against the emergence of variants. Modification of the IBV genome using reverse genetics is one way to generate recombinant IBVs as the candidates of new IBV vaccines. In this study, the recombinant IBV is developed by replacing the ectodomain region of the S1 gene of the IBV Beaudette strain with the corresponding fragment from H120 strain, designated as rBeau-H120(S1e). In Vero cells, the virus proliferates as its parental virus and can cause syncytium formation. The peak titer would reach 105.9 50 % (median) tissue culture infective dose/mL at 24 h post-infection. After inoculation of chickens with the recombinant virus, it demonstrated that rBeau-H120(S1e) remained nonpathogenic and was restricted in its replication in vivo. Protection studies showed that vaccination with rBeau-H120 (S1e) at 7-day after hatch provided 80 % rate of immune protection against challenge with 103 50 % embryos infection dose of the virulent IBV M41 strain. These results indicate that rBeau-H120 (S1e) has the potential to be an alternative vaccine against IBV based on excellent propagation property and immunogenicity. This finding might help in providing further information that replacement of the ectodomain fragment of the IBV Beaudette S1 gene with that from a present field strain is promising for IBV vaccine development.  相似文献   

2.
A recombinant infectious bronchitis virus (IBV), BeauR-M41(S), was generated using our reverse genetics system (R. Casais, V. Thiel, S. G. Siddell, D. Cavanagh, and P. Britton, J. Virol. 75:12359-12369, 2001), in which the ectodomain region of the spike gene from IBV M41-CK replaced the corresponding region of the IBV Beaudette genome. BeauR-M41(S) acquired the same cell tropism phenotype as IBV M41-CK in four different cell types, demonstrating that the IBV spike glycoprotein is a determinant of cell tropism.  相似文献   

3.
We have shown previously that replacement of the spike (S) gene of the apathogenic IBV strain Beau-R with that from the pathogenic strain of the same serotype, M41, resulted in an apathogenic virus, BeauR-M41(S), that conferred protection against challenge with M41. We have constructed a recombinant IBV, BeauR-4/91(S), with the genetic backbone of Beau-R but expressing the spike protein of the pathogenic IBV strain 4/91(UK), which belongs to a different serogroup as Beaudette or M41. Similar to our previous findings with BeauR-M41(S), clinical signs observations showed that the S gene of the pathogenic 4/91 virus did not confer pathogenicity to the rIBV BeauR-4/91(S). Furthermore, protection studies showed there was homologous protection; BeauR-4/91(S) conferred protection against challenge with wild type 4/91 virus as shown by the absence of clinical signs, IBV RNA assessed by qRT-PCR and the fact that no virus was isolated from tracheas removed from birds primarily infected with BeauR-4/91(S) and challenged with IBV 4/91(UK). A degree of heterologous protection against M41 challenge was observed, albeit at a lower level.Our results confirm and extend our previous findings and conclusions that swapping of the ectodomain of the S protein is a precise and effective way of generating genetically defined candidate IBV vaccines.  相似文献   

4.
The binding of viruses to host cells is the first step in determining tropism and pathogenicity. While avian infectious bronchitis coronavirus (IBV) infection and avian influenza A virus (IAV) infection both depend on α2,3-linked sialic acids, the host tropism of IBV is restricted compared to that of IAV. Here we investigated whether the interaction between the viral attachment proteins and the host could explain these differences by using recombinant spike domains (S1) of IBV strains with different pathogenicities, as well as the hemagglutinin (HA) protein of IAV H5N1. Protein histochemistry showed that S1 of IBV strain M41 and HA of IAV subtype H5N1 displayed sialic acid-dependent binding to chicken respiratory tract tissue. However, while HA bound with high avidity to a broad range of α2,3-linked sialylated glycans, M41 S1 recognized only one particular α2,3-linked disialoside in a glycan array. When comparing the binding of recombinant IBV S1 proteins derived from IBV strains with known differences in tissue tropism and pathogenicity, we observed that while M41 S1 displayed binding to cilia and goblet cells of the chicken respiratory tract, S1 derived from the vaccine strain H120 or the nonvirulent Beaudette strain had reduced or no binding to chicken tissues, respectively, in agreement with the reduced abilities of these viruses to replicate in vivo. While the S1 protein derived from the nephropathogenic IBV strain B1648 also hardly displayed binding to respiratory tract cells, distinct binding to kidney cells was observed, but only after the removal of sialic acid from S1. In conclusion, our data demonstrate that the attachment patterns of the IBV S proteins correlate with the tropisms and pathogenicities of the corresponding viruses.  相似文献   

5.
We have replaced the ectodomain of the spike (S) protein of the Beaudette strain (Beau-R; apathogenic for Gallus domesticus chickens) of avian infectious bronchitis coronavirus (IBV) with that from the pathogenic M41 strain to produce recombinant IBV BeauR-M41(S). We have previously shown that this changed the tropism of the virus in vitro (R. Casais, B. Dove, D. Cavanagh, and P. Britton, J. Virol. 77:9084-9089, 2003). Herein we have assessed the pathogenicity and immunogenicity of BeauR-M41(S). There were no consistent differences in pathogenicity between the recombinant BeauR-M41(S) and its apathogenic parent Beau-R (based on snicking, nasal discharge, wheezing, watery eyes, rales, and ciliostasis in trachea), and both replicated poorly in trachea and nose compared to M41; the S protein from the pathogenic M41 had not altered the apathogenic nature of Beau-R. Both Beau-R and BeauR-M41(S) induced protection against challenge with M41 as assessed by absence of recovery of challenge virus and nasal exudate. With regard to snicking and ciliostasis, BeauR-M41(S) induced greater protection (seven out of nine chicks [77%]; assessed by ciliostasis) than Beau-R (one out of nine; 11%) but less than M41 (100%). The greater protection induced by BeauR-M41(S) against M41 may be related to the ectodomain of the spike protein of Beau-R differing from that of M41 by 4.1%; a small number of epitopes on the S protein may play a disproportionate role in the induction of immunity. The results are promising for the prospects of S-gene exchange for IBV vaccine development.  相似文献   

6.
In April 1983, an influenza virus of low virulence appeared in chickens in Pennsylvania. Subsequently, in October 1983, the virus became virulent and caused high mortality in poultry. The causative agent has been identified as an influenza virus of the H5N2 serotype. The hemagglutinin is antigenically closely related to tern/South Africa/61 (H5N3) and the neuraminidase is similar to that from human H2N2 strains (e.g., A/Japan/305/57) and from some avian influenza virus strains (e.g., A/turkey/Mass/66 [H6N2]). Comparison of the genome RNAs of chicken/Penn with other influenza virus isolates by RNA-RNA hybridization indicated that all of the genes of this virus were closely related to those of various other influenza virus isolates from wild birds. Chickens infected with the virulent strain shed high concentrations of virus in their feces (10(7) 50% egg infective dose per g), and the virus was isolated from the albumin and yolk of eggs layed just before death. Virus was also isolated from house flies in chicken houses. Serological and virological studies showed that humans are not susceptible to infection with the virus, but can serve as short-term mechanical carriers. Analysis of the RNA of the viruses isolated in April and October by gel migration and RNA-RNA hybridization suggested that these strains were very closely related. Oligonucleotide mapping of the individual genes of virulent and avirulent strains showed a limited number of changes in the genome RNAs, but no consistent differences between the virulent and avirulent strains that could be correlated with pathogenicity were found. Polyacrylamide gel analysis of the early (avirulent) isolates demonstrated the presence of low-molecular-weight RNA bands which is indicative of defective-interfering particles. These RNAs were not present in the virulent isolates. Experimental infection of chickens with mixtures of the avirulent and virulent strains demonstrated that the avirulent virus interferes with the pathogenicity of the virulent virus. The results suggest that the original avirulent virus was probably derived from influenza viruses from wild birds and that the virulent strain was derived from the avirulent strain by selective adaptation rather than by recombination or the introduction of a new virus into the population. This adaptation may have involved the loss of defective RNAs, as well as mutations, and thus provides a possible model for a role of defective-interfering particles in nature.  相似文献   

7.
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays a crucial role in the process of infection. However, the exact contribution of the HN gene to NDV pathogenesis is not known. In this study, the role of the HN gene in NDV virulence was examined. By use of reverse genetics procedures, the HN genes of a virulent recombinant NDV strain, rBeaudette C (rBC), and an avirulent recombinant NDV strain, rLaSota, were exchanged. The hemadsorption and neuraminidase activities of the chimeric viruses showed significant differences from those of their parental strains, but heterotypic F and HN pairs were equally effective in fusion promotion. The tissue tropism of the viruses was shown to be dependent on the origin of the HN protein. The chimeric virus with the HN protein derived from the virulent virus exhibited a tissue predilection similar to that of the virulent virus, and vice versa. The chimeric viruses with reciprocal HN proteins either gained or lost virulence, as determined by a standard intracerebral pathogenicity index test of chickens and by the mean death time in chicken embryos (a measure devised to classify these viruses), indicating that virulence is a function of the amino acid differences in the HN protein. These results are consistent with the hypothesis that the virulence of NDV is multigenic and that the cleavability of F protein alone does not determine the virulence of a strain.  相似文献   

8.
江国托  刘思国 《病毒学报》1999,15(3):249-251
反转录聚合酶链反应扩增鸡传染性支气管炎病毒中国流行株的主要免疫原纤突蛋白S1基因,将其插入载体pUC18的BamHⅠ/HindⅢ位点,在大肠杆菌中实现目的的基因的分子克隆。经克隆化S1基因的限制性酶切片多段多态性分析和Southern杂交之后,双脱氧链终止法测定其5‘端高变区核苷酸序列,并以此与GeneBank中的参考毒株Massachussetts41相应序列作比较,分析其同源性。  相似文献   

9.
Role of glycoprotein gIII of pseudorabies virus in virulence.   总被引:14,自引:13,他引:1  
Deletion mutants of pseudorabies virus unable to express glycoprotein gIII, gI, or gp63 or double and triple mutants defective in these glycoproteins were constructed, and their virulence for day-old chickens inoculated intracerebrally was determined. Mutants of wild-type pseudorabies virus defective in glycoprotein gIII, gI, or gp63 were only slightly less virulent (at most, fivefold) for chickens than was the wild-type virus. However, mutants defective in both gIII and gI or gIII and gp63 were avirulent for chickens, despite their ability to grow in cell culture in vitro to about the same extent as mutants defective in gIII alone (which were virulent). These results show that gIII plays a role in virulence and does so in conjunction with gI or gp63. The effect of gIII on virulence was also shown when the resident gIII gene of variants of the Bartha vaccine strain (which codes for gIIIB) was replaced with a gIII gene derived from a virulent wild-type strain (which codes for gIIIKa); gIIIKa significantly enhanced the virulence of a variant of the Bartha strain to which partial virulence had been previously restored by marker rescue. Our results show that viral functions that play a role in the virulence of the virus (as measured by intracerebral inoculation of chickens) may act synergistically to affect the expression of virulence and that the ability of the virus to grow in cell culture is not necessarily correlated with virulence.  相似文献   

10.
Identification of virulence determinants of viruses is of critical importance in virology. In search of such determinants, virologists traditionally utilize comparative genomics between a virulent and an avirulent virus strain and construct chimeras to map their locations. Subsequent comparison reveals sequence differences, and through analyses of site-directed mutants, key residues are identified. In the absence of a naturally occurring virulent strain, an avirulent strain can be functionally converted to a virulent variant via an experimental evolutionary approach. However, the concern remains whether experimentally evolved virulence determinants mimic those that have evolved naturally. To provide a direct comparison, we exploited a plant RNA virus, soybean mosaic virus (SMV), and its natural host, soybean. Through a serial in vivo passage experiment, the molecularly cloned genome of an avirulent SMV strain was converted to virulent variants on functionally immune soybean genotypes harboring resistance factor(s) from the complex Rsv1 locus. Several of the experimentally evolved virulence determinants were identical to those discovered through a comparative genomic approach with a naturally evolved virulent strain. Thus, our observations validate an experimental evolutionary approach to identify relevant virulence determinants of an RNA virus.  相似文献   

11.
12.
Virulent strains of Newcastle disease virus (NDV) can cause devastating disease in chickens worldwide. Although the current vaccines are substantially effective, they do not completely prevent infection, virus shedding and disease. To produce genotype-matched vaccines, a full-genome reverse genetics system has been used to generate a recombinant virus in which the F protein cleavage site has been changed to that of avirulent vaccine virus. In the other strategy, the vaccines have been generated by replacing the F and HN genes of a commercial vaccine strain with those from a genotype-matched virus. However, the protective efficacy of a chimeric virus vaccine has not been directly compared with that of a full-genome virus vaccine developed by reverse genetics. Therefore, in this study, we evaluated the protective efficacy of genotype VII matched chimeric vaccines by generating three recombinant viruses based on avirulent LaSota (genotype II) strain in which the open reading frames (ORFs) encoding the F and HN proteins were replaced, individually or together, with those of the circulating and highly virulent Indonesian NDV strain Ban/010. The cleavage site of the Ban/010 F protein was mutated to the avirulent motif found in strain LaSota. In vitro growth characteristics and a pathogenicity test indicated that all three chimeric viruses retained the highly attenuated phenotype of the parental viruses. Immunization of chickens with chimeric and full-length genome VII vaccines followed by challenge with virulent Ban/010 or Texas GB (genotype II) virus demonstrated protection against clinical disease and death. However, only those chickens immunized with chimeric rLaSota expressing the F or F plus HN proteins of the Indonesian strain were efficiently protected against shedding of Ban/010 virus. Our findings showed that genotype-matched vaccines can provide protection to chickens by efficiently preventing spread of virus, primarily due to the F protein.  相似文献   

13.
14.
A stable virulent donor strain (EA 178R1-99) of Erwinia amylovora can transfer, by conjugation during a 3-h mating period, the gene or genes which determine(s) plant virulence to avirulent recipient strains (EA178-M64S1 and EA178-M173S1) of Escherichia amylovora. The virulence of over 200 recombinant clones was tested; they all were as virulent on immature Bartlett pear fruits (and, in the smaller series of strains tested, also, on Pyracantha twigs) as was the parent donor strain. Although the avirulent recipeint strains are amino acid auxotrophs, addition of the required amino acids to the inocula in plant virulence trials does not of itself restore virulence. Two small series of prototrophic revertant clones were selected from the auxotrophic avirulent recipient strains; only nine of the 21 prototrophic revertant clones regained virulence, whereas the other 12 prototrophic revertant clones remained avirulent, again suggesting a lack of parallelism between nutritional status and virulence in this system. Preliminary interrupted mating trials, carried out at 15-min intervals over 3 h, show that ser is transferred during the first 15 min, that pro starts entering at about 75 min (and with a higher frequency later), and that lac (originating from an integrated Escherichia coli F'lac) enters toward the end of the 3-h mating period and at a reduced frequency compared to the other markers. The gene or genes which determine(s) plant virulence in this Escherichia amylovora donor strain appear(s) to be transferred readily and seemingly completely to recipient strains during the first 15 min of a 3-h mating period. Exposure of the virulent donor strain to acridine orange or ethidium bromide does not result in loss of virulence, suggesting (but, of course, not proving conclusively) that the determinant(s) of virulence in Escherichia amylovora might be chromosomal rather than extrachromosomal.  相似文献   

15.
Newcastle disease virus (NDV) isolates contain genomes of 15,186, 15,192 or 15,198 nucleotides (nt). The length differences reflect a 6-nt insert in the 5′ (downstream) non-translated region (NTR) of the N gene (15,192-nt genome) or a 12-nt insert in the ORF encoding the P and V proteins (causing a 4-amino acid insert; 15,198-nt genome). We evaluated the role of these inserts in the N and P genes on viral replication and pathogenicity by inserting them into genomes of two NDV strains that have natural genome lengths of 15,186 nt and represent two different pathotypes, namely the mesogenic strain Beaudette C (BC) and the velogenic strain GB Texas (GBT). Our results showed that the 6-nt and 12-nt inserts did not detectably affect N gene expression or P protein function. The inserts had no effect on the replication or virulence of the highly virulent GBT strain but showed modest degree of attenuation in mesogenic strain BC. We also deleted a naturally-occurring 6-nt insertion in the N gene from a highly virulent 15,192-nt genome-length virus, strain Banjarmasin. This resulted in reduced replication in vitro and reduced virulence in vivo. Thus, although these inserts had no evident effect on gene expression, protein function, or replication in vivo, they did affect virulence in two of the three tested strains.  相似文献   

16.
Rout SN  Samal SK 《Journal of virology》2008,82(16):7828-7836
Naturally occurring Newcastle disease virus (NDV) strains vary greatly in virulence, ranging from no apparent infection to severe disease causing 100% mortality in chickens. The viral determinants of NDV virulence are not completely understood. Cleavage of the fusion protein is required for the initiation of infection, and it acts as a determinant of virulence. The attachment protein HN was found to play a minor role in virulence. In this study, we have evaluated the role of the internal proteins (N, P, and L) in NDV virulence by using a chimeric reverse-genetics approach. The N, P, and L genes were exchanged individually between an avirulent NDV strain, LaSota, and an intermediate virulent NDV strain, Beaudette C (BC), and the N and P genes were also exchanged together. The recovered chimeric viruses were evaluated for their pathogenicity in the natural host, chickens. Our results showed that the pathogenicities of N and P chimeric viruses were similar to those of their respective parental viruses, indicating that the N and P genes probably play minor roles in virulence. However, replacement of the L gene of BC with that of LaSota significantly increased the pathogenicity of the L-chimeric virus, suggesting that the L gene probably contributes to the virulence of NDV. The L-chimeric BC virus was found to replicate at a 100-fold-higher level than its parental virus in chicken brain, suggesting that the increase in pathogenicity may be due to the increased replication level of the chimeric virus. Our findings offer new insights into the pathogenesis of NDV infection.  相似文献   

17.
用双脱氧未端经终止法对侵染性烟草共现毒普通株中国分离物(TMV-virlgar,Chinese lsoblate,TMV-Cv)和番茄株弱毒轩TMV-N14(Attenuated TMV vaccine strain)基因组cDNAs的核苷酸全序列进行了测定,并分析和比较了其基因组的结构和特征。结果表明:普通株基因组(Genbank接收号:AF165190)为6395个核苷酸:4个功能性开放阅读框  相似文献   

18.
19.
The unique short region and part of the repeat region of virulent pseudorabies virus strain NIA-3 was replaced by the corresponding region of the avirulent NIA-4 strain by transfection with subgenomic DNA fragments. The resulting hybrid virus showed a reduced virulence in both mice and pigs. Therefore, important markers for virulence are located in the unique short or repeat region or both of pseudorabies virus. We provide evidence that the terminally located repeat is not required for the generation of progeny with intact pseudorabies virus genomes. Apparently, the terminal repeat is regenerated from the internal repeat.  相似文献   

20.
Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae, is a major public health threat in Egypt and sub-Saharan Africa. The viral and host cellular factors that contribute to RVFV virulence and pathogenicity are still poorly understood. All pathogenic RVFV strains direct the synthesis of a nonstructural phosphoprotein (NSs) that is encoded by the smallest (S) segment of the tripartite genome and has an undefined accessory function. In this report, we show that MP12 and clone 13, two attenuated RVFV strains with mutations in the NSs gene, were highly virulent in IFNAR(-/-) mice lacking the alpha/beta interferon (IFN-alpha/beta) receptor but remained attenuated in IFN-gamma receptor-deficient mice. Both attenuated strains proved to be excellent inducers of early IFN-alpha/beta production. In contrast, the virulent strain ZH548 failed to induce detectable amounts of IFN-alpha/beta and replicated extensively in both IFN-competent and IFN-deficient mice. Clone 13 has a defective NSs gene with a large in-frame deletion. This defect in the NSs gene results in expression of a truncated protein which is rapidly degraded. To investigate whether the presence of the wild-type NSs gene correlated with inhibition of IFN-alpha/beta production, we infected susceptible IFNAR(-/-) mice with S gene reassortant viruses. When the S segment of ZH548 was replaced by that of clone 13, the resulting reassortants became strong IFN inducers. When the defective S segment of clone 13 was exchanged with the wild-type S segment of ZH548, the reassortant virus lost the capacity to stimulate IFN-alpha/beta production. These results demonstrate that the ability of RVFV to inhibit IFN-alpha/beta production correlates with viral virulence and suggest that the accessory protein NSs is an IFN antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号