首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dictyostelium discoideum offers unique advantages for studying fundamental cellular processes, host–pathogen interactions as well as the molecular causes of human diseases. The organism can be easily grown in large amounts and is amenable to diverse biochemical, cell biological and genetic approaches. Throughout their life cycle Dictyostelium cells are motile, and thus are perfectly suited to study random and directed cell motility with the underlying changes in signal transduction and the actin cytoskeleton. Dictyostelium is also increasingly used for the investigation of human disease genes and the crosstalk between host and pathogen. As a professional phagocyte it can be infected with several human bacterial pathogens and used to study the infection process. The availability of a large number of knock-out mutants renders Dictyostelium particularly useful for the elucidation and investigation of host cell factors. A powerful armory of molecular genetic techniques that have been continuously expanded over the years and a well curated genome sequence, which is accessible via the online database dictyBase, considerably strengthened Dictyostelium's experimental attractiveness and its value as model organism.  相似文献   

2.
Advances in microfabrication techniques have enabled the production of inexpensive and reproducible microfluidic systems for conducting biological and biochemical experiments at the micro- and nanoscales 1,2. In addition, microfluidics have also been specifically used to quantitatively analyze hematologic and microvascular processes, because of their ability to easily control the dynamic fluidic environment and biological conditions3-6. As such, researchers have more recently used microfluidic systems to study blood cell deformability, blood cell aggregation, microvascular blood flow, and blood cell-endothelial cell interactions6-13.However, these microfluidic systems either did not include cultured endothelial cells or were larger than the sizescale relevant to microvascular pathologic processes. A microfluidic platform with cultured endothelial cells that accurately recapitulates the cellular, physical, and hemodynamic environment of the microcirculation is needed to further our understanding of the underlying biophysical pathophysiology of hematologic diseases that involve the microvasculature.Here, we report a method to create an "endothelialized" in vitro model of the microvasculature, using a simple, single mask microfabrication process in conjunction with standard endothelial cell culture techniques, to study pathologic biophysical microvascular interactions that occur in hematologic disease. This "microvasculature-on-a-chip" provides the researcher with a robust assay that tightly controls biological as well as biophysical conditions and is operated using a standard syringe pump and brightfield/fluorescence microscopy. Parameters such as microcirculatory hemodynamic conditions, endothelial cell type, blood cell type(s) and concentration(s), drug/inhibitory concentration etc., can all be easily controlled. As such, our microsystem provides a method to quantitatively investigate disease processes in which microvascular flow is impaired due to alterations in cell adhesion, aggregation, and deformability, a capability unavailable with existing assays.  相似文献   

3.
Eukaryotic cell motility involves complex interactions of signalling molecules, cytoskeleton, cell membrane, and mechanics interacting in space and time. Collectively, these components are used by the cell to interpret and respond to external stimuli, leading to polarization, protrusion, adhesion formation, and myosin-facilitated retraction. When these processes are choreographed correctly, shape change and motility results. A wealth of experimental data have identified numerous molecular constituents involved in these processes, but the complexity of their interactions and spatial organization make this a challenging problem to understand. This has motivated theoretical and computational approaches with simplified caricatures of cell structure and behaviour, each aiming to gain better understanding of certain kinds of cells and/or repertoire of behaviour. Reaction–diffusion (RD) equations as well as equations of viscoelastic flows have been used to describe the motility machinery. In this review, we describe some of the recent computational models for cell motility, concentrating on simulations of cell shape changes (mainly in two but also three dimensions). The problem is challenging not only due to the difficulty of abstracting and simplifying biological complexity but also because computing RD or fluid flow equations in deforming regions, known as a “free-boundary” problem, is an extremely challenging problem in applied mathematics. Here we describe the distinct approaches, comparing their strengths and weaknesses, and the kinds of biological questions that they have been able to address.  相似文献   

4.
Use of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for protein and DNA localization has provided sensitive, new approaches for studying the organization of the bacterial cell, leading to new insights into diverse cellular processes. GFP has many characteristics that make it useful for localization studies in bacteria, primarily its ability to fluoresce when fused to target polypeptides without the addition of exogenously added substrates. As an alternative to immunofluorescence microscopy, the expression of gfp gene fusions has been used to probe the function of cellular components fundamental for DNA replication, translation, protein export, and signal transduction, that heretofore have been difficult to study in living cells. Moreover, protein and DNA localization can now be monitored in real time, revealing that several proteins important for cell division, development and sporulation are dynamically localized throughout the cell cycle. The use of additional GFP variants that permit the labeling of multiple components within the same cell, and the use of GFP for genetic screens, should continue to make this a valuable tool for addressing complex questions about the bacterial cell.  相似文献   

5.
The Boyden chamber assay provides a convenient method of assessing cell migration and measuring cell motility coefficients at the population level. Previous models of this assay completely ignore cell sedimentation in the suspension, assuming that all cells have already settled on the filter surface before commencing migration within the filter. However, ignoring cell sedimentation could lead to poor data interpretation because the time required for cells to settle through the suspension is close to the incubation period of only a few hours. This study models the Boyden chamber assay by incorporating the cell settling process to account for the cells remaining in the upper well when other cells migrate in the filter. The simulations in this study elucidate the experiments in the literature that test the haptotactic and chemotactic responses of rabbit chondrocytes to type II collagen. This study determines the cell population random motility, as well as the haptotaxis and chemotaxis coefficients, by fitting the experimental data. Results show that the chemotactic motility coefficient is 100 times greater than the haptotactic coefficient, and the equilibrium collagen-receptor dissociation constant is about 10-fold the haptotactic counterpart. Diffusion causes the soluble collagen gradients in the chemotactic case to decline over time, while the coated collagen gradients in the haptotactic assay are likely to remain fixed. As a result, the chemotactic case exhibits a lower number of migrated cells than the haptotactic assay. This study also demonstrates the influences of the dimensionless parameters that control cell behavior in the Boyden assay, providing a reference for future experiment designs.  相似文献   

6.
Flow device analyses and micromanipulation were used to assess the adhesive and cohesive integrity of the immobilised bacterial populations (biomass) of Pseudomonas fluorescens, which were harvested at different growth times and applied to a substrate made of stainless steel subsequently accommodated in a specially designed flow chamber. After the biomass was exposed to a fluidic environment for a period of time, the biomass samples were removed from the flow chamber and the apparent adhesion and cohesion of the remaining biomass was measured using a micromanipulation technique. The surface area of the substrate covered by the biomass exposed to the fluid flow was monitored by a digital camera and then quantified by image analysis. The results indicate a strong correlation between micromanipulation measurements and flow chamber experiments. The micromanipulation data show that the apparent adhesive strength of the biomass increased with the growth time. Moreover, the apparent adhesive strength was found to be stronger than the bacterial cohesive strength. The data was used to interpret the removal behaviour of the biomass from the flow chamber. Using these techniques, specific mechanisms of biomass detachment from a surface and optimised cleaning strategies can be postulated.  相似文献   

7.
We have developed a bilayer microfluidic system with integrated transepithelial electrical resistance (TEER) measurement electrodes to evaluate kidney epithelial cells under physiologically relevant fluid flow conditions. The bioreactor consists of apical and basolateral fluidic chambers connected via a transparent microporous membrane. The top chamber contains microfluidic channels to perfuse the apical surface of the cells. The bottom chamber acts as a reservoir for transport across the cell layer and provides support for the membrane. TEER electrodes were integrated into the device to monitor cell growth and evaluate cell–cell tight junction integrity. Immunofluorescence staining was performed within the microchannels for ZO‐1 tight junction protein and acetylated α‐tubulin (primary cilia) using human renal epithelial cells (HREC) and MDCK cells. HREC were stained for cytoskeletal F‐actin and exhibited disassembly of cytosolic F‐actin stress fibers when exposed to shear stress. TEER was monitored over time under normal culture conditions and after disruption of the tight junctions using low Ca2+ medium. The transport rate of a fluorescently labeled tracer molecule (FITC‐inulin) was measured before and after Ca2+ switch and a decrease in TEER corresponded with a large increase in paracellular inulin transport. This bioreactor design provides an instrumented platform with physiologically meaningful flow conditions to study various epithelial cell transport processes. Biotechnol. Bioeng. 2010;107:707–716. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
 The rate of expansion of bacterial colonies of S. liquefaciens is investigated in terms of a mathematical model that combines biological as well as hydrodynamic processes. The relative importance of cell differentiation and production of an extracellular wetting agent to bacterial swarming is explored using a continuum representation. The model incorporates aspects of thin film flow with variable suspension viscosity, wetting, and cell differentiation. Experimental evidence suggests that the bacterial colony is highly sensitive to its environment and that a variety of mechanisms are exploited in order to proliferate on a variety of surfaces. It is found that a combination of effects are required to reproduce the variation of bacterial colony motility over a large range of nutrient availability and medium hardness. Received: 29 April 1999  相似文献   

9.
A key factor in gene or drug therapy is the development of carriers that can efficiently reach targeted cells from a distal administration. In many gene/drug delivery studies, results obtained in 2D cultures fail to translate to similar results in vivo. In this work, we developed a perfusable 3D chamber for studying nanoparticle penetration and transport in cell-gel soft tissue cultures. The compartmented chamber is made of a polydimethylsiloxane (PDMS) top layer with the chamber features, created using micromachined lithography, bonded to a bottom glass coverslip. A solution of cells embedded in a hydrogel is loaded in the chamber between PDMS posts that serve as anchors to the cell-matrix at the gel-media interface. The chamber offers the following unique features: (i) rapid fabrication and simplicity in assembly, (ii) direct in situ cell imaging in a plane normal to the direction of flow or action, (iii) an easily configurable and controllable environment conducive cell culture under static or interstitial flow conditions, and (iv) facile recovery of live cells from chambers for post-experimental analysis. To assess the chamber, we delivered fluorescently labeled nanoparticles of three distinct sizes to cells-embedded Matrigels in the 3D chamber under flow and static conditions. Penetration of nanoparticles were enhanced under interstitial flow while live cell imaging and flow cytometry of recovered cells revealed particle size restrictions to efficient delivery. Although designed for delivery studies, the chamber is versatile and can be easily modified. Thus it may have broad applications for biological, tissue engineering, and therapeutic studies.  相似文献   

10.
Qazi H  Shi ZD  Tarbell JM 《PloS one》2011,6(5):e20348

Background

Glioma cells are exposed to elevated interstitial fluid flow during the onset of angiogenesis, at the tumor periphery while invading normal parenchyma, within white matter tracts, and during vascular normalization therapy. Glioma cell lines that have been exposed to fluid flow forces in vivo have much lower invasive potentials than in vitro cell motility assays without flow would indicate.

Methodology/Principal Findings

A 3D Modified Boyden chamber (Darcy flow through collagen/cell suspension) model was designed to mimic the fluid dynamic microenvironment to study the effects of fluid shear stress on the migratory activity of glioma cells. Novel methods for gel compaction and isolation of chemotactic migration from flow stimulation were utilized for three glioma cell lines: U87, CNS-1, and U251. All physiologic levels of fluid shear stress suppressed the migratory activity of U87 and CNS-1 cell lines. U251 motility remained unaltered within the 3D interstitial flow model. Matrix Metalloproteinase (MMP) inhibition experiments and assays demonstrated that the glioma cells depended on MMP activity to invade, and suppression in motility correlated with downregulation of MMP-1 and MMP-2 levels. This was confirmed by RT-PCR and with the aid of MMP-1 and MMP-2 shRNA constructs.

Conclusions/Significance

Fluid shear stress in the tumor microenvironment may explain reduced glioma invasion through modulation of cell motility and MMP levels. The flow-induced migration trends were consistent with reported invasive potentials of implanted gliomas. The models developed for this study imply that flow-modulated motility involves mechanotransduction of fluid shear stress affecting MMP activation and expression. These models should be useful for the continued study of interstitial flow effects on processes that affect tumor progression.  相似文献   

11.
A marine bacterium, Saprospira sp. SS98-5, which was isolated from Kagoshima Bay, Japan, was able to kill and lyse the cells of the diatom Chaetoceros ceratosporum. The multicellular filamentous cells of this bacterium captured the diatom cells, formed cell aggregates, and lysed them in an enriched sea water (ESS) liquid medium. Strain SS98-5 also formed plaques on double layer agar plates incorporating diatom cells. The diatom cell walls were partially degraded at the contact sites with the bacteria, the bacteria invaded from there into the diatom cells, and then the diatom cells were completely lysed. The strain possessed gliding motility and grew as spreading colonies on ESS agar plates containing lower concentrations of polypeptone (below 0.1%) while forming nonspreading colonies on ESS agar plates containing 0.5% polypeptone. Electron micrographs of ultrathin sections demonstrated that microtubule-like structures were observable only in gliding motile cells. Both the gliding motility and the microtubule-like structures were diminished by the addition of podophyllotoxin, an inhibitor of microtubule assembly, suggesting that the microtubule-like structures observed in these bacterial cells are related to their gliding motility.  相似文献   

12.
The initial deposition of bacteria in most aquatic systems is affected by the presence of a conditioning film adsorbed at the liquid-solid interface. Due to the inherent complexity of such films, their impact on bacterial deposition remains poorly defined. The aim of this study was to gain a better understanding of the effect of a conditioning film on the deposition of motile and nonmotile Pseudomonas aeruginosa cells in a radial stagnation point flow system. A well-defined alginate film was used as a model conditioning film because of its polysaccharide and polyelectrolyte nature. Deposition experiments under favorable (nonrepulsive) conditions demonstrated the importance of swimming motility for cell transport towards the substrate. The impact of the flagella of motile cells on deposition is dependent on the presence of the conditioning film. We showed that on a clean substrate surface, electrostatic repulsion governs bacterial deposition and the presence of flagella increases cell deposition. However, our results suggest that steric interactions between flagella and extended polyelectrolytes of the conditioning film hinder cell deposition. At a high ionic strength (100 mM), active swimming motility and changes in alginate film structure suppressed the steric barrier and allowed conditions favorable for deposition. We demonstrated that bacterial deposition is highly influenced by cell motility and the structure of the conditioning film, which are both dependent on ionic strength.  相似文献   

13.
The initial deposition of bacteria in most aquatic systems is affected by the presence of a conditioning film adsorbed at the liquid-solid interface. Due to the inherent complexity of such films, their impact on bacterial deposition remains poorly defined. The aim of this study was to gain a better understanding of the effect of a conditioning film on the deposition of motile and nonmotile Pseudomonas aeruginosa cells in a radial stagnation point flow system. A well-defined alginate film was used as a model conditioning film because of its polysaccharide and polyelectrolyte nature. Deposition experiments under favorable (nonrepulsive) conditions demonstrated the importance of swimming motility for cell transport towards the substrate. The impact of the flagella of motile cells on deposition is dependent on the presence of the conditioning film. We showed that on a clean substrate surface, electrostatic repulsion governs bacterial deposition and the presence of flagella increases cell deposition. However, our results suggest that steric interactions between flagella and extended polyelectrolytes of the conditioning film hinder cell deposition. At a high ionic strength (100 mM), active swimming motility and changes in alginate film structure suppressed the steric barrier and allowed conditions favorable for deposition. We demonstrated that bacterial deposition is highly influenced by cell motility and the structure of the conditioning film, which are both dependent on ionic strength.  相似文献   

14.
Nanoliter scale microbioreactor array for quantitative cell biology   总被引:14,自引:0,他引:14  
A nanoliter scale microbioreactor array was designed for multiplexed quantitative cell biology. An addressable 8 x 8 array of three nanoliter chambers was demonstrated for observing the serum response of HeLa human cancer cells in 64 parallel cultures. The individual culture unit was designed with a "C" shaped ring that effectively decoupled the central cell growth regions from the outer fluid transport channels. The chamber layout mimics physiological tissue conditions by implementing an outer channel for convective "blood" flow that feeds cells through diffusion into the low shear "interstitial" space. The 2 microm opening at the base of the "C" ring established a differential fluidic resistance up to 3 orders of magnitude greater than the fluid transport channel within a single mold microfluidic device. Three-dimensional (3D) finite element simulation were used to predict fluid transport properties based on chamber dimensions and verified experimentally. The microbioreactor array provided a continuous flow culture environment with a Peclet number (0.02) and shear stress (0.01 Pa) that approximated in vivo tissue conditions without limiting mass transport (10 s nutrient turnover). This microfluidic design overcomes the major problems encountered in multiplexing nanoliter culture environments by enabling uniform cell loading, eliminating shear, and pressure stresses on cultured cells, providing stable control of fluidic addressing, and permitting continuous on-chip optical monitoring.  相似文献   

15.
Motility is a common property of animal cells. Cell motility is required for embryogenesis [1], tissue morphogenesis [2] and the immune response [3] but is also involved in disease processes, such as metastasis of cancer cells [4]. Analysis of cell migration in native tissue in vivo has yet to be fully explored, but motility can be relatively easily studied in vitro in isolated cells. Recent evidence suggests that cells plated in vitro on thin lines of adhesive proteins printed onto culture dishes can recapitulate many features of in vivo migration on collagen fibers [5,6]. However, even with controlled in vitro measurements, the characteristics of motility are diverse and are dependent on the cell type, origin and external cues. One objective of the first World Cell Race was to perform a large-scale comparison of motility across many different adherent cell types under standardized conditions. To achieve a diverse selection, we enlisted the help of many international laboratories, who submitted cells for analysis. The large-scale analysis, made feasible by this competition-oriented collaboration, demonstrated that higher cell speed correlates with the persistence of movement in the same direction irrespective of cell origin.  相似文献   

16.
The combination of a conventional optical microscope with a specially designed glass flow cell was used to visualize in situ biofilms formed on opaque thin biomaterials through a simple non-invasive way (optical microscopy of thin biofilms, OMTB). Comparisons of OMTB with scanning electron microscopy (SEM) images were made. Thin metallic dental biomaterials were used as substrata. They were immersed in a synthetic saliva and in a modified Mitis–Salivarius medium inoculated with a consortium of oral microorganisms. To study the effect of bacterial motility, Pseudomonas fluorescens cultures were also used. The processes which give rise to the formation of the biofilm were monitored through OMTB. Biofilm microstructures like pores, water channels, streamers and chains of Streptococci, attached to the surface or floating in the viscous interfacial environment, could be distinguished. Thickness and roughness of the biofilms formed on thin substrata could also be evaluated. Distortions introduced by pretreatments carried out to prepare biological materials for SEM observations could be detected by comparing OMTB and SEM images. SEM images (obtained at high magnification but ex situ, not in real time and with pretreatment of the samples) and OMTB images (obtained in situ, without pretreatments, in real time but at low magnification) in combination provided complementary information to study biofilm processes on thin substrata.  相似文献   

17.
G2 arrest, binucleation, and single-parameter DNA flow cytometric analysis   总被引:1,自引:0,他引:1  
One important facet of flow cytometry involves the effects of pharmacological agents on cell cycle progression. Comparative G2 fraction perturbations were examined: effects of sodium butyrate on articular chondrocytes, effects of an antineoplastic agent (SOAZ) and an antirheumatic drug (D-penicillamine) on HeLa cells. Even though DNA flow cytometric analysis detects preferentially an induction of G2 arrest, the mode of action of these agents on the cell cycle is different. Sodium butyrate and D-penicillamine lead to an increase of binucleate cells due to cytokinesis perturbation. Because of similar fluorescence intensity, distinguishing G2 from binucleate GO/1 cells is not easily possible using DNA content measurement and reflects a failure of flow cytometry in the detection of binucleate cells. Rapid cell cycle analysis of single cells should contribute greatly to the study of pharmacological interactions, but DNA flow cytometric measurements obtained from cultured cells exposed to certain agents must be cautiously interpreted because those may interact on cytokinesis and induce artefacts in histogram interpretation.  相似文献   

18.
The effects of both fluid leakage and wall slip conditions are studied analytically and numerically on the fluctuation rate in the flow inside non-isothermal disturbed thin films supported by soft seals within a fluidic cell. Flow disturbances due to internal pressure pulsations and external squeezing are considered in this work. The main controlling parameters are found to be the dimensionless leakage parameter, softness of the seal, squeezing number, dimensionless slip parameter, the thermal squeezing parameter and the power law index. Accordingly, their influences on the fluctuation rate and heat transfer characteristics inside disturbed thin films are determined and discussed. It is found that an increase in the dimensionless leakage parameter, softness of the seal-upper plate assembly and the wall slip parameter result in more cooling and an increase in the fluctuation level in the flow. However, an increase in the squeezing number and the fluid power index decrease flow fluctuations. Finally, a suggested design to alleviate a number of problems in fluidic cells is presented.  相似文献   

19.
Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures that are initially spatially uniform. These patterns are the result of chemical gradients that are created from the directed movement and metabolic activity of billions of cells. A recent study on pattern formation in wild bacterial isolates has revealed unique collective behaviors of the bacteria Enterobacter cloacae. As in other bacterial species, Enterobacter cloacae form macroscopic aggregates. Once formed, these bacterial clusters can migrate several millimeters, sometimes resulting in the merging of two or more clusters. To better understand these phenomena, we examine the formation and dynamics of thousands of bacterial clusters that form within a 22 cm square culture dish filled with soft agar over two days. At the macroscale, the aggregates display spatial order at short length scales, and the migration of cell clusters is superdiffusive, with a merging acceleration that is correlated with aggregate size. At the microscale, aggregates are composed of immotile cells surrounded by low density regions of motile cells. The collective movement of the aggregates is the result of an asymmetric flux of bacteria at the boundary. An agent-based model is developed to examine how these phenomena are the result of both chemotactic movement and a change in motility at high cell density. These results identify and characterize a new mechanism for collective bacterial motility driven by a transient, density-dependent change in motility.  相似文献   

20.
Nonperturbative monitoring of intracellular organelle transport in unstained living cells was achieved with coherent anti-Stokes Raman scattering (CARS) microscopy. To avoid possible interference with the organelle transport introduced by laser radiation, we first examined different illumination conditions. Using a new photodamage criterion based on morphological changes of the cells, we determined the threshold values of both pulse energy and average power at relevant wavelengths. Under excitation conditions much milder than the threshold levels, we were able to monitor the motions of lipid droplet (LD) organelles in steroidogenic mouse adrenal cortical (Y-1) cells with CARS microscopy in real time without perturbations to the cells. Particle tracking analyses revealed subdiffusion as well as active transport of LDs along microtubules. Interestingly, LD active transport is only present in Y-1 cells that rounded up in culture, a morphological change associated with steroidogenesis, suggesting possible involvements of LD active transport in the latter. Simultaneous imaging of LDs and mitochondria with CARS and two-photon fluorescence microscopy clearly showed that interactions between the two organelles could be facilitated by high LD motility. These observations demonstrate CARS microscopy as a powerful noninvasive imaging tool for studying dynamic processes in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号