首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

In natural populations, individuals are infected more often by several pathogens than by just one. In such a context, pathogens can interact. This interaction could modify the probability of infection by subsequent pathogens. Identifying when pathogen associations correspond to biological interactions is a challenge in cross-sectional studies where the sequence of infection cannot be demonstrated.

Methodology/Principal Findings

Here we modelled the probability of an individual being infected by one and then another pathogen, using a probabilistic model and maximum likelihood statistics. Our model was developed to apply to cross-sectional data, vector-borne and persistent pathogens, and to take into account confounding factors. Our modelling approach was more powerful than the commonly used Chi-square test of independence. Our model was applied to detect potential interaction between Borrelia afzelii and Bartonella spp. that infected a bank vole population at 11% and 57% respectively. No interaction was identified.

Conclusions/Significance

The modelling approach we proposed is powerful and can identify the direction of potential interaction. Such an approach can be adapted to other types of pathogens, such as non-persistents. The model can be used to identify when co-occurrence patterns correspond to pathogen interactions, which will contribute to understanding how organism communities are assembled and structured. In the long term, the model’s capacity to better identify pathogen interactions will improve understanding of infectious risk.  相似文献   

2.
Wasp-waist interactions in the North Sea ecosystem   总被引:1,自引:0,他引:1  

Background

In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes.

Methodology/Principal Findings

We investigated the numeric interactions among 10 species of seabirds, two species of pelagic fish and four groups of zooplankton in the North Sea using decadal-scale databases. Linear models were used to relate the time series of zooplankton and seabirds to the time series of pelagic fish. Seabirds were positively related to herring (Clupea harengus), suggesting a bottom-up interaction. Two groups of zooplankton; Calanus helgolandicus and krill were negatively related to sprat (Sprattus sprattus) and herring respectively, suggesting top-down interactions. In addition, we found positive relationships among the zooplankton groups. Para/pseudocalanus was positively related to C. helgolandicus and C. finmarchicus was positively related to krill.

Conclusion/Significance

Our results indicate that herring was important in regulating the abundance of seabirds through a bottom-up interaction and that herring and sprat were important in regulating zooplankton through top-down interactions. We suggest that the positive relationships among zooplankton groups were due to selective foraging and switching in the two clupeid fishes. Our results suggest that “wasp-waist” interactions might be more important in the North Sea than previously anticipated. Fluctuations in the populations of pelagic fish due to harvesting and depletion of their predators might accordingly have profound consequences for ecosystem dynamics through trophic cascades.  相似文献   

3.

Background

Despite the high prevalence and major public health ramifications, obstructive sleep apnea syndrome (OSAS) remains underdiagnosed. In many developed countries, because community pharmacists (CP) are easily accessible, they have been developing additional clinical services that integrate the services of and collaborate with other healthcare providers (general practitioners (GPs), nurses, etc.). Alternative strategies for primary care screening programs for OSAS involving the CP are discussed.

Objective

To estimate the quality of life, costs, and cost-effectiveness of three screening strategies among patients who are at risk of having moderate to severe OSAS in primary care.

Design

Markov decision model.

Data Sources

Published data.

Target Population

Hypothetical cohort of 50-year-old male patients with symptoms highly evocative of OSAS.

Time Horizon

The 5 years after initial evaluation for OSAS.

Perspective

Societal.

Interventions

Screening strategy with CP (CP-GP collaboration), screening strategy without CP (GP alone) and no screening.

Outcomes measures

Quality of life, survival and costs for each screening strategy.

Results of base-case analysis

Under almost all modeled conditions, the involvement of CPs in OSAS screening was cost effective. The maximal incremental cost for “screening strategy with CP” was about 455€ per QALY gained.

Results of sensitivity analysis

Our results were robust but primarily sensitive to the treatment costs by continuous positive airway pressure, and the costs of untreated OSAS. The probabilistic sensitivity analysis showed that the “screening strategy with CP” was dominant in 80% of cases. It was more effective and less costly in 47% of cases, and within the cost-effective range (maximum incremental cost effectiveness ratio at €6186.67/QALY) in 33% of cases.

Conclusions

CP involvement in OSAS screening is a cost-effective strategy. This proposal is consistent with the trend in Europe and the United States to extend the practices and responsibilities of the pharmacist in primary care.  相似文献   

4.

Background

Networks of single interaction types, such as plant-pollinator mutualisms, are biodiversity’s “building blocks”. Yet, the structure of mutualistic and antagonistic networks differs, leaving no unified modeling framework across biodiversity’s component pieces.

Methods/Principal Findings

We use a one-dimensional “niche model” to predict antagonistic and mutualistic species interactions, finding that accuracy decreases with the size of the network. We show that properties of the modeled network structure closely approximate empirical properties even where individual interactions are poorly predicted. Further, some aspects of the structure of the niche space were consistently different between network classes.

Conclusions/Significance

These novel results reveal fundamental differences between the ability to predict ecologically important features of the overall structure of a network and the ability to predict pair-wise species interactions.  相似文献   

5.

Background

In spite of the scale-free degree distribution that characterizes most protein interaction networks (PINs), it is common to define an ad hoc degree scale that defines “hub” proteins having special topological and functional significance. This raises the concern that some conclusions on the functional significance of proteins based on network properties may not be robust.

Methodology

In this paper we present three objective methods to define hub proteins in PINs: one is a purely topological method and two others are based on gene expression and function. By applying these methods to four distinct PINs, we examine the extent of agreement among these methods and implications of these results on network construction.

Conclusions

We find that the methods agree well for networks that contain a balance between error-free and unbiased interactions, indicating that the hub concept is meaningful for such networks.  相似文献   

6.
7.

Background

Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches.

Findings

By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model.

Conclusions

Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level.  相似文献   

8.
9.
10.

Background

‘Learning disabilities’ (LD) refer to a wide group of neurological disorders caused by deficits in the central nervous system which influence the individual''s ability to maintain-, process or convey information to others in an efficient way. A worldwide discussion about the definitions of LD continues while a conceptual framework for studying the diverse life outcomes of adults with LD is still missing.

Objective

The aim was to review the literature on the activity and participation of adults with LD based on the International Classification of Functioning, Disability and Health (ICF) concepts.

Methods

“PsychInfo”, “Eric” and “PubMed” were searched for relevant literature according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). After a three-stage process, 62 articles relevant for domains of activity and participation of adults with LD were included in the review.

Results

Thirty-two articles focused on the domain of major life areas of education, work and employment and twelve articles focused on the domain of learning and applying knowledge. Limitations in activity and participation of the population with LD in these domains are recognized and discussed. Eighteen additional articles demonstrated that adults with LD confront difficulties in various life domains (e.g., communication, interpersonal interactions, mobility, and domestic life), however literature concerning these domains is scarce.

Conclusions

The ICF can be useful for further exploration of activity and participation characteristics of adults with LD in various life domains. Such exploration is required in order to gain a wider perspective of their functional characteristics and daily needs.  相似文献   

11.

Background

Insertion sequences (ISs) are approximately 1 kbp long “jumping” genes found in prokaryotes. ISs encode the protein Transposase, which facilitates the excision and reinsertion of ISs in genomes, making these sequences a type of class I (“cut-and-paste”) Mobile Genetic Elements. ISs are proposed to be involved in the reductive evolution of symbiotic prokaryotes. Our previous sequencing of the genome of the cyanobacterium ‘Nostoc azollae’ 0708, living in a tight perpetual symbiotic association with a plant (the water fern Azolla), revealed the presence of an eroding genome, with a high number of insertion sequences (ISs) together with an unprecedented large proportion of pseudogenes. To investigate the role of ISs in the reductive evolution of ‘Nostoc azollae’ 0708, and potentially in the formation of pseudogenes, a bioinformatic investigation of the IS identities and positions in 47 cyanobacterial genomes was conducted. To widen the scope, the IS contents were analysed qualitatively and quantitatively in 20 other genomes representing both free-living and symbiotic bacteria.

Results

Insertion Sequences were not randomly distributed in the bacterial genomes and were found to transpose short distances from their original location (“local hopping”) and pseudogenes were enriched in the vicinity of IS elements. In general, symbiotic organisms showed higher densities of IS elements and pseudogenes than non-symbiotic bacteria. A total of 1108 distinct repeated sequences over 500 bp were identified in the 67 genomes investigated. In the genome of ‘Nostoc azollae’ 0708, IS elements were apparent at 970 locations (14.3%), with 428 being full-length. Morphologically complex cyanobacteria with large genomes showed higher frequencies of IS elements, irrespective of life style.

Conclusions

The apparent co-location of IS elements and pseudogenes found in prokaryotic genomes implies earlier IS transpositions into genes. As transpositions tend to be local rather than genome wide this likely explains the proximity between IS elements and pseudogenes. These findings suggest that ISs facilitate the reductive evolution in for instance in the symbiotic cyanobacterium ‘Nostoc azollae’ 0708 and in other obligate prokaryotic symbionts.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1386-7) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma.

Methods

Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds.

Results

Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo.

Conclusions

This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.  相似文献   

13.
14.

Background

A number of studies have previously demonstrated that “goodness of fit” is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain.

Results

Here, we propose a novel robustness analysis that aims to determine the “common robustness” of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network.

Conclusions

Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model.  相似文献   

15.

Background

Esophageal squamous cell carcinoma (ESCC) develops as a result of complex epigenetic, genetic and environmental interactions. Epigenetic changes like, promoter hypermethylation of multiple tumour suppressor genes are frequent events in cancer, and certain habit-related carcinogens are thought to be capable of inducing aberrant methylation. However, the effects of environmental carcinogens depend upon the level of metabolism by carcinogen metabolizing enzymes. As such key interactions between habits related factors and carcinogen metabolizing gene polymorphisms towards modulating promoter methylation of genes are likely. However, this remains largely unexplored in ESCC. Here, we studied the interaction of various habits related factors and polymorphism of GSTM1/GSTT1 genes towards inducing promoter hypermethylation of multiple tumour suppressor genes.

Methodology/Principal Findings

The study included 112 ESCC cases and 130 age and gender matched controls. Conditional logistic regression was used to calculate odds ratios (OR) and multifactor dimensionality reduction (MDR) was used to explore high order interactions. Tobacco chewing and smoking were the major individual risk factors of ESCC after adjusting for all potential confounding factors. With regards to methylation status, significantly higher methylation frequencies were observed in tobacco chewers than non chewers for all the four genes under study (p<0.01). In logistic regression analysis, betel quid chewing, alcohol consumption and null GSTT1 genotypes imparted maximum risk for ESCC without promoter hypermethylation. Whereas, tobacco chewing, smoking and GSTT1 null variants were the most important risk factors for ESCC with promoter hypermethylation. MDR analysis revealed two predictor models for ESCC with promoter hypermethylation (Tobacco chewing/Smoking/Betel quid chewing/GSTT1 null) and ESCC without promoter hypermethylation (Betel quid chewing/Alcohol/GSTT1) with TBA of 0.69 and 0.75 respectively and CVC of 10/10 in both models.

Conclusion

Our study identified a possible interaction between tobacco consumption and carcinogen metabolizing gene polymorphisms towards modulating promoter methylation of tumour suppressor genes in ESCC.  相似文献   

16.

Purpose

This study was intended to identify the disease causing genes in a large Chinese family with autosomal dominant retinitis pigmentosa and macular degeneration.

Methods

A genome scan analysis was conducted in this family for disease gene preliminary mapping. Snapshot analysis of selected SNPs for two-point LOD score analysis for candidate gene filter. Candidate gene PRPF31 whole exons'' sequencing was executed to identify mutations.

Results

A novel nonsense mutation caused by an insertion was found in PRPF31 gene. All the 19 RP patients in 1085 family are carrying this heterozygous nonsense mutation. The nonsense mutation is in PRPF31 gene exon9 at chr19:54629961-54629961, inserting nucleotide “A” that generates the coding protein frame shift from p.307 and early termination at p.322 in the snoRNA binding domain (NOP domain).

Conclusion

This report is the first to associate PRPF31 gene''s nonsense mutation and adRP and JMD. Our findings revealed that PRPF31 can lead to different clinical phenotypes in the same family, resulting either in adRP or syndrome of adRP and JMD. We believe our identification of the novel “A” insertion mutation in exon9 at chr19:54629961-54629961 in PRPF31 can provide further genetic evidence for clinical test for adRP and JMD.  相似文献   

17.

Background

Physcomitrella patens, a haploid dominant plant, is fast becoming a useful molecular genetics and bioinformatics tool due to its key phylogenetic position as a bryophyte in the post-genomic era. Genome sequences from select reference species were compared bioinformatically to Physcomitrella patens using reciprocal blasts with the InParanoid software package. A reference protein interaction database assembled using MySQL by compiling BioGrid, BIND, DIP, and Intact databases was queried for moss orthologs existing for both interacting partners. This method has been used to successfully predict interactions for a number of angiosperm plants.

Results

The first predicted protein-protein interactome for a bryophyte based on the interolog method contains 67,740 unique interactions from 5,695 different Physcomitrella patens proteins. Most conserved interactions among proteins were those associated with metabolic processes. Over-represented Gene Ontology categories are reported here.

Conclusion

Addition of moss, a plant representative 200 million years diverged from angiosperms to interactomic research greatly expands the possibility of conducting comparative analyses giving tremendous insight into network evolution of land plants. This work helps demonstrate the utility of “guilt-by-association” models for predicting protein interactions, providing provisional roadmaps that can be explored using experimental approaches. Included with this dataset is a method for characterizing subnetworks and investigating specific processes, such as the Calvin-Benson-Bassham cycle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0524-1) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.

Background

Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control.

Principal Findings

In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum). The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro.

Conclusions

To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.  相似文献   

20.

Background

Effectiveness of ART regimens strongly depends upon complex interactions between the selective pressure of drugs and the evolution of mutations that allow or restrict drug resistance.

Methods

Four clinical isolates from NRTI-exposed, NNRTI-naive subjects were passaged in increasing concentrations of NVP in combination with 1 µM 3 TC and 2 µM ADV to assess selective pressures of multi-drug treatment. A novel parameter inference procedure, based on a stochastic viral growth model, was used to estimate phenotypic resistance and fitness from in vitro combination passage experiments.

Results

Newly developed mathematical methods estimated key phenotypic parameters of mutations arising through selective pressure exerted by 3 TC and NVP. Concentrations of 1 µM 3 TC maintained the M184V mutation, which was associated with intrinsic fitness deficits. Increasing NVP concentrations selected major NNRTI resistance mutations. The evolutionary pathway of NVP resistance was highly dependent on the viral genetic background, epistasis as well as stochasticity. Parameter estimation indicated that the previously unrecognized mutation L228Q was associated with NVP resistance in some isolates.

Conclusion

Serial passage of viruses in the presence of multiple drugs may resemble the selection of mutations observed among treated individuals and populations in vivo and indicate evolutionary preferences and restrictions. Phenotypic resistance estimated here “in silico” from in vitro passage experiments agreed well with previous knowledge, suggesting that the unique combination of “wet-” and “dry-lab” experimentation may improve our understanding of HIV-1 resistance evolution in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号