首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同地理种源长白落叶松生理生态特性的研究   总被引:5,自引:0,他引:5  
王丽华  姜春玲 《植物研究》1999,19(2):164-171
在人工气候室中测定了10个种源长白落叶松二年生硬枝扦插苗的光合、水分生理生态参数。结果表明,不同种源的长白落叶松生理生态参数变异较大,但有一定规律可循。各种源的总光合速率>最大净光合速率>净光合速率>半饱和光强时的净光合速率>光呼吸速率>呼吸速率,只偶有例外。各参数中呼吸速率在各种源间变异最小,光呼吸速率变异较大,总光合速率变异最大。各参数在种源间的变化趋势均与净光合速率一致,即净光合速率大的种源其它参数也大,净光合速率小的种源其它参数也小。相对光呼吸在各种源间变异较大,其释放的CO2相当于光合固定CO2的总量的1/3。光补偿点、饱和点和半饱和点在各种源间的变异较大。水分利用率在各种源间的较大变异主要是由净光合速率引起,与蒸腾速率关系不大。净光合速率占总光合速率的百分比、呼吸功效、CO2补偿点、蒸腾速率和水势在各种源间变异不大  相似文献   

2.
Panicle photosynthesis is crucial for grain yield in cereal crops; however, the limiting factors for panicle photosynthesis are poorly understood, greatly impeding improvement in this trait. In the present study, pot experiments were conducted to investigate the limiting factors for panicle photosynthesis at the anthesis stage in seven rice genotypes and to examine the temporal variations in photosynthesis during the grain filling stage in the Liangyou 287 genotype. At the anthesis stage, leaf and panicle photosynthesis was positively correlated with stomatal conductance and maximum carboxylation rate, which were in turn associated with hydraulic conductance and nitrogen content, respectively. Panicle hydraulic conductance was positively correlated with the area of bundle sheaths in the panicle neck. During grain filling, leaf and panicle photosynthesis remained constant at the early stage but dramatically decreased from 8 to 9 days after anthesis. The trends of variations in panicle photosynthesis were consistent with those in stomatal conductance but not with those in maximum carboxylation rate. At first, the maximum carboxylation rate and respiration rate in the panicle increased, through elevated panicle nitrogen content, but then drastically decreased, as a result of dehydration. The present study systematically investigated the limiting factors for panicle photosynthesis, which are vital for improving photosynthesis and crop yield.  相似文献   

3.
Varietal Differences in Rubidium Uptake Efficiency of Barley Roots   总被引:2,自引:0,他引:2  
The rate of light saturated photosynthesis of Nitzschia palea was reduced by crude oil, naphthalene and benzene. A decrease in the rate of photosynthesis at weak irradiance was also found with crude oil and naphthalene and high concentrations of benzene. On a mg/1 basis naphthalene decreased photosynthesis to a greater extent than did crude oil and crude oil to a greater extent than did benzene. A linear proportionality was found between the decrease in light saturated photosynthesis and the concentrations of aromatic hydrocarbons. The effects on photosynthesis were generally reversible, but a concentration of 700 mg benzene/1 stopped photosynthesis completely and irreversibly.  相似文献   

4.
The rate of canopy photosynthesis, single leaf photosynthesis,leaf resistance to gaseous exchange, and leaf water potentialof simulated swards of perennial ryegrass (Lolium perenne cv.S24) in a controlled environment, were determined during a periodof increasing water stress and recovery from that stress. Canopyphotosynthesis did not decline immediately water was withheldbut continued at an undiminished rate for several days; thereafterit fell rapidly, particularly at first. As water stress increasedsuccessive relationships between canopy photosynthesis and irradiancebecame more curved, indicating that the effect of water stressincreased with increasing irradiance. After the swards werere-watered canopy photosynthesis rose, most rapidly during thefirst 24 h. In general, the pattern of change of leaf waterpotential was similar to that of canopy photosynthesis, althougha more detailed examination of this relationship showed it tobe hysteresial; in particular, the fall in leaf water potentialpreceded that of canopy photosynthesis. Single leaf photosynthesisappeared to be the main agent through which water stress influencedcanopy photosynthesis although in the more severely stressedswards (leaf water potentials of about—15 bars) some leaftissue died and so limited the recovery of canopy photosynthesis.The leaf resistance to gaseous diffusion increased with increasingwater stress, as did the CO2 compensation point, thereby influencingsingle-leaf photosynthesis and through it canopy photosynthesis.  相似文献   

5.
The rates of canopy and individual leaf photosynthesis, ratesof growth of shoots and roots, and the extinction coefficientfor light of eight temperate forage grasses were determinedin the field during early autumn. Canopy gross photosynthesiswas calculated as net photosynthesis plus dark respiration adjustedfor temperature using a Q10 = 2. The relationships between canopygross photosynthesis and light intensity were hyperbolic, andthe initial slopes of these curves indicated that light wasbeing utilized efficiently at low light intensities. The initialslope depended on the distribution of light in the canopy andthe quantum efficiency of the individual leaves. The maximumrate of canopy gross photosynthesis reflected the maximum rateof individual leaf photosynthesis. Although the maximum rateof canopy gross photosynthesis was correlated with crop growthrate, there was no significant relationship between daily grossphotosynthesis and crop growth rate. Indeed, daily gross photosynthesisvaried by only 22 per cent, whereas the daily growth of shootsand roots varied by 120 per cent. This poor correlation is influencedby a negative correlation (P < 0.01) between the maximumrate of canopy gross photosynthesis and the initial slope ofthe curve relating canopy gross photosynthesis and light intensity.Difficulties in the interpretation of measurements of dark respirationappeared to confound attempts to relate daily net photosynthesisto crop growth rate, individual leaf photosynthesis, and theextinction coefficient for light.  相似文献   

6.
James A. Bunce 《Oecologia》1982,54(2):233-235
Summary It was hypothesized that since sub-stomatal carbon dioxide concentrations are often saturating to photosynthesis at ambient external concentrations in C4 plants at high light, photosynthesis might be insensitive to partial stomatal closure caused by large leaf-air water vapor pressure difference. The response of stomatal conductance and photosynthesis at high irradiance to vapor pressure difference was determined under uniform conditions in C4 plants grown under controlled conditions, and outdoors. In several cases, photosynthesis was less sensitive to stomatal closure than it would have been if photosynthesis had a linear response to sub-stomatal carbon dioxide concentration. No change in photosynthesis at up to 25 mbar vapor pressure difference was demonstrated in the C4 species Portulaca oleracea and Amaranthus hypochondriacus, despite reductions in stomatal conductance of 32 and 17%, respectively. Sensitivity of photosynthesis to leaf-air vapor pressure difference was found to depend on the species and on the growth conditions.  相似文献   

7.
利用同位素示踪技术可以掌握物质在化学反应中运行和变化情况。试论述同位素示踪技术在研究光合作用中的多种应用:提示光合作用中几种元素的转变方向;判断光合作用的反应场所和反应条件;推断光合作用的反应过程;检验产物的运输方向;研究光合作用与呼吸作用的关系。  相似文献   

8.
Export and photosynthesis in leaves of Salvia splendens were measured concurrently during steady-state 14CO2 labeling conditions. Under ambient CO2 and O2 conditions, photosynthesis and export rates were similar at 15 and 25[deg]C, but both declined as leaf temperature was raised from 25 to 40[deg]C. Suppressing photorespiration between 15 and 40[deg]C by manipulating CO2 and O2 levels resulted in higher rates of leaf photosynthesis, total sugar synthesis, and export. There was a linear relationship between the rate of photosynthesis and the rate of export between 15 and 35[deg]C. At these temperatures, 60 to 80% of the carbon fixed was readily exported with sucrose, raffinose, and stachyose, which together constituted over 90% of phloem mobile assimilates. Above 35[deg]C, however, export during photosynthesis was inhibited both in photorespiratory conditions, which inhibited photosynthesis, and in nonphotorespiratory conditions, which did not inhibit photosynthesis. Sucrose and raffinose but not stachyose accumulated in the leaf at 40[deg]C. When leaves were preincubated at 40[deg]C and then cooled to 35[deg]C, export recovered more slowly than photosynthesis. These data are consistent with the view that impairment of export processes, rather than photosynthetic processes associated with light trapping, carbon reduction, and sucrose synthesis, accounted for the marked reduction in export between 35 and 40[deg]C. Taken together, the data indicated that temperature changes between 15 and 40[deg]C had two effects on photosynthesis and concurrent export. At all temperatures, suppressing photorespiration increased both photosynthesis and export, but above 35[deg]C, export processes were more directly inhibited independent of changes in photorespiration and photosynthesis.  相似文献   

9.
10.
The Effect of Temperature on the Photosynthesis of Ryegrass Canopies   总被引:1,自引:0,他引:1  
In bright light, the rate of gross photosynthesis of ryegrasscanopies increased with increasing temperature between 10 and25 °C, in keeping with an increase in the photosynthesisof their constituent leaves. The increase in canopy gross photosynthesisoccurred irrespective of the leaf area index, which would affectthe proportion of the leaves in bright light. Because the responseof gross photosynthesis to temperature was similar to that ofrespiration, net photosynthesis also increased with temperature,irrespective of the relative magnitude of the two processes. However, these increases in photosynthesis were observed whilethe saturation deficit of water vapour was kept small (lessthan 3 g m–3). The photosynthesis of both leaves and canopieswas reduced when measured at a greater saturation deficit; indicatingthat the increasing saturation deficit, which frequently accompaniesincreasing temperature in the field, may obscure the effectof temperature on photosynthesis. Lack of control of saturationdeficit as measurement temperature is increased may explainwhy some workers have failed to detect a positive effect oftemperature on photosynthesis. Perennial ryegrass, Loliwn perenne L., photosynthesis, temperature response, respiration, irradiance  相似文献   

11.
Delayed fluorescence (DF) is an excellent marker for evaluating plant photosynthesis. Compared with common methods for measuring the photosynthesis rate based on consumption of CO2, DF technique can quantify the plant photosynthesis capacity more accurately and faster under its physiological status with less interference from the environment. We previously reported a method for measuring photosynthesis using DF of chloroplast [Wang, C.L., Xing, D., Chen, Q., 2004. Biosens. Bioelectron. 20, 454–459]. In the study, a novel fast and portable photosynthesis capacity biosensor system was developed, which was composed of light-emitting diode lattice as excitation light source, Channel Photomultiplier DC-Module to achieve DF, single-chip microcomputer as control center, hermetic dark sample chamber, battery power supply and CO2, humidity and temperature controller. Compared with our previous work, the system was portable and can directly measure plant photosynthesis capacity in vivo in less than 10 s. A database in the software to carry out data acquisition and processing was developed to translate maximal DF intensity to net photosynthesis rate (Pn). In addition, local-control and remote-control mode can be chosen in the system. To demonstrate the utility of the system, it was applied to evaluate maximum Pn of four different plant species samples (Queen Rape Myrtle (var. rubra), soybean (Lu Hei No. 1), maize (Jin Dan No. 39) and rice (Jing Dao No. 21)) in field. The results were compared with that using commercial photosynthesis system LI-6400 and the uncertainty was less than ±5%. The new principle of photosynthesis measurement is a challenge and breakthrough to conventional method of gas exchange and may be a potential technique of next generation photosynthesis measurement.  相似文献   

12.
Difference between effects of sulfur dioxide (SO2) and ozone (O3) on groundnut plants (Arachis hypogaea L.) was studied by use of an exposure system of enzymatically-isolated mesophyll cells. SO2 inhibited photosynthesis of intact groundnut leaves but induced no visible injury on leaves. SO2 also inhibited photosynthesis of isolated mesophyll cells but did not kill the cells, suggesting that SO2 inhibits photosynthesis by attacking rather specifically the photosynthetic apparatus in chloroplasts. O3 inhibited photosynthesis of intact leaves and at the same time induced visible injury corresponding to the extent of photosynthesis inhibition. O3 also inhibited photosynthesis of isolated mesophyll cells and killed the cells to the extent corresponding to photosynthesis inhibition, suggesting that O3 inhibits photosynthesis not directly by attacking the photosynthetic apparatus but indirectly by killing cells. Since the response of intact leaves to each pollutant resembled that of isolated mesophyll cells, the difference between responses of intact leaves to both pollutants may considerably reflect that of mesophyll cells.  相似文献   

13.
I. Hawes 《Hydrobiologia》1993,252(3):203-209
Annual and perennial cyanobacterial mats from streams on Signy Island, Antarctica, show similar areal concentrations of chlorophyll-a and areal rates of photosynthesis. Maximum rates of photosynthesis were temperature dependant over the range 0–14 C, with a Q10 of approximately 2.5. Rates of photosynthesis per unit chlorophyll-a were comparable to other Antarctic mat communities but low compared to phytoplankton from upstream lakes. Areal rates of photosynthesis were however much higher than for phytoplankton. Low chlorophyll-specific rates of photosynthesis are interpreted as the effect of self shading within the mats. It is hypothesised that these mats rapidly attenuate incoming radiation and that photosynthesis in most of the mat is effectively light-limited. This situation is likely to occur in all thick periphyton films.  相似文献   

14.
山西太岳山辽东栎的光合特性   总被引:25,自引:0,他引:25  
对自然生长的辽东栎林木用 LI-640 0测定其光合作用 ,实验包括以下内容 :在完全接近自然生长的条件下测定辽东栎叶片光合作用的日变化规律 ;控制光合有效辐射强度 ,测定叶片在不同 CO2 浓度下光合作用的变化规律 ;控制温度比对应时间段的温度高 2~ 4℃ ,并控制 CO2 浓度在 3 75~ 70 0 ml· m- 3间变化 ,测定辽东栎光合作用的变化情况。结果如下 :1自然状态下辽东栎光合作用的日变化有两个光合速率峰 ,峰高接近 ,上午的光合速率峰持续时间较下午的长。叶片气孔导度与光合速率间有很强的正相关 ,且对胞内 CO2 浓度和蒸腾速率有较大影响。气孔导度与叶片水压亏缺呈相反的变化趋势 ,而水压亏缺受光合有效辐射、气温的影响较大。 2在控制片温度、光合有效辐射不变的情况下 ,辽东栎的叶片水压亏缺变化幅度很小 ,气孔导度变化主要受 CO2 浓度的调节 ,表现出在目前 CO2 浓度至加倍 CO2 浓度下 ,随浓度增加而增大的趋势 ,与之对应光合速率增大 ,同时光补偿点也有所提高。当 CO2 浓度超过 80 0 ml· m- 3继续上升时 ,气孔导度、光合速率均下降 ,光补偿点继续升高。3对辽东栎叶片进行升温和高 CO2 浓度处理 ,在试验进行时的温度 (2 8~ 3 7℃ )下 ,发现在 3 75~ 70 0 ml· m- 3的 CO2 浓度范围内 ,升温均导致光  相似文献   

15.
The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga.  相似文献   

16.
Daytime rates of net photosynthesis of upper canopy leaflets of soybeans were compared on 17 days for leaflets exposed to air at the ambient humidity and at a higher humidity. Leaflets at the higher humidity had higher rates of net photosynthesis on 16 of the 17 days. The daily total of net photosynthesis of leaflets at the higher humidity was on average 1.32 times that for leaflets at ambient humidity. A strong limitation of net photosynthesis by ambient humidity was found throughout the growing season.  相似文献   

17.
裂叶沙参气孔行为与光合蒸腾特性通径分析   总被引:2,自引:2,他引:0  
通过相关系数和通径系数分析方法,对不同海拔高度裂叶沙参(Adenophora lobophylla)气孔行为与光合、蒸腾特性的关系进行了相关性分析。气孔行为对光合、蒸腾均缺乏显著的相关性,说明裂叶沙参光合、蒸腾作用的气孔控制不显著;裂叶沙参叶片气孔开度直接影响光合速率和胞间CO2浓度,气孔导度对裂叶沙参蒸腾速率影响较大。  相似文献   

18.
作物光合、蒸腾与水分高效利用的试验研究   总被引:54,自引:6,他引:48  
王会肖  刘昌明 《应用生态学报》2003,14(10):1632-1636
通过田间试验,对作物光合、蒸腾、气孔行为及其影响因素进行了研究。结果表明,光合与蒸腾的非线性关系可以用抛物线方程表述,其中光合速率最高时的蒸腾速率为临界值,超出该值即为奢侈蒸腾,干旱处理的临界值较低,通过合适的调控措施,抑制奢侈蒸腾并不影响光合生产,综合分析光合速率、蒸腾速率与气孔导度的关系,气孑L导度大于0.12mol·m-2·s-1,实施提高气孔阻力并抑制蒸腾的措施,既节约水分又促进光合作用,增加产量.光合速率基本上随光合有效辐射的增加而提高,并有光饱和点存在,水分条件影响叶片光合作用达到饱和的早晚,干旱处理的光饱和点远远低于湿润处理,强光需要水分充足相耦合,才能充分发挥光能利用率,蒸腾与辐射的线性关系十分显著。从光合有效辐射入手,在光合有效辐射大于1000μmol·m-2·s-1时实施措施,既可大大降低蒸腾,又可改善光合,节水增产效果不言而喻。  相似文献   

19.
Elements of a dynamic systems model of canopy photosynthesis   总被引:2,自引:0,他引:2  
Improving photosynthesis throughout the full canopy rather than photosynthesis of only the top leaves of the canopy is central to improving crop yields. Many canopy photosynthesis models have been developed from physiological and ecological perspectives, however most do not consider heterogeneities of microclimatic factors inside a canopy, canopy dynamics and associated energetics, or competition among different plants, and most models lack a direct linkage to molecular processes. Here we described the rationale, elements, and approaches necessary to build a dynamic systems model of canopy photosynthesis. A systems model should integrate metabolic processes including photosynthesis, respiration, nitrogen metabolism, resource re-mobilization and photosynthate partitioning with canopy level light, CO(2), water vapor distributions and heat exchange processes. In so doing a systems-based canopy photosynthesis model will enable studies of molecular ecology and dramatically improve our insight into engineering crops for improved canopy photosynthetic CO(2) uptake, resource use efficiencies and yields.  相似文献   

20.
Kisliuk IM  Bubolo LS 《Tsitologiia》2000,42(11):1026-1032
A 3 hours heating at 39 degrees C of 14-day old wheat plants increases the termotolerance of photosynthesis, and also the length and number of thylakoids in chloroplast in mature leaves. The acquired termotolerance disappears within 10 days. Simultaneously the intensity of photosynthesis and the length of thylakoids decrease. Reduction of photosynthesis ability and of thylakoid membranes occurs in the first leaves of non-hardened plants during 14-29 days after sowing. The intensity of photosynthesis in plants of both variants positively correlates with the length of grana membranes and with the total length of membranes of all thylakoids. Besides, a positive correlation was detected between the intensity of photosynthesis and the share of small (2-7 thylakoids) grana and the length of their membranes in non-hardened plants. The level of thermotolerance of photosynthesis in leaves in heat hardened plants correlates positively with the length of grana membranes and with the total length of all thylakoid membranes and the share of small grana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号