首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
3.
BST-2/tetherin is an interferon-inducible protein that restricts the release of enveloped viruses from the surface of infected cells by physically linking viral and cellular membranes. It is present at both the cell surface and in a perinuclear region, and viral anti-tetherin factors including HIV-1 Vpu and HIV-2 Env have been shown to decrease the cell surface population. To map the domains of human tetherin necessary for both virus restriction and sensitivity to viral anti-tetherin factors, we constructed a series of tetherin derivatives and assayed their activity. We found that the cytoplasmic tail (CT) and transmembrane (TM) domains of tetherin alone produced its characteristic cellular distribution, while the ectodomain of the protein, which includes a glycosylphosphatidylinositol (GPI) anchor, was sufficient to restrict virus release when presented by the CT/TM regions of a different type II membrane protein. To counteract tetherin restriction and remove it from the cell surface, HIV-1 Vpu required the specific sequence present in the TM domain of human tetherin. In contrast, the HIV-2 Env required only the ectodomain of the protein and was sensitive to a point mutation in this region. Strikingly, the anti-tetherin factor, Ebola virus GP, was able to overcome restriction conferred by both tetherin and a series of functional tetherin derivatives, including a wholly artificial tetherin molecule. Moreover, GP overcame restriction without significantly removing tetherin from the cell surface. These findings suggest that Ebola virus GP uses a novel mechanism to circumvent tetherin restriction.Pathogenic viruses often have evolved mechanisms to neutralize host defenses that act at the cellular level to interfere with the virus life cycle. Such cellular restriction factors have been most extensively characterized for HIV-1 (38) and include the interferon-inducible membrane protein BST-2/HM1.24/CD317/tetherin (28, 40). If unchecked, tetherin blocks the release of newly formed HIV-1 particles from cells by physically tethering them at the cell surface (7, 28, 32, 40). In addition, tetherin has been shown to act against a broad range of enveloped viral particles, including retroviruses, filoviruses, arenaviruses, and herpesviruses (17, 18, 23, 35). In turn, certain viruses that are targeted by tetherin appear to have evolved counteracting activities, and anti-tetherin factors so far identified include HIV-1 Vpu; HIV-2 Env; simian immunodeficiency virus (SIV) Nef, Vpu, and Env proteins; Ebola virus GP; and Kaposi''s sarcoma-associated herpesvirus (KSHV) K5 (11, 16, 18, 20, 23, 28, 36, 40, 44, 45).Tetherin is a homodimeric type II integral membrane protein containing an N-terminal cytoplasmic tail (CT), a single-pass transmembrane domain (TM), an ectodomain-containing predicted coiled-coil regions, two glycoslyation sites, three conserved cysteines, and a C-terminal glycosylphosphatidylinositol (GPI) anchor (2, 19, 31). This unusual topology, with two independent membrane anchors, has led to the suggestion that the retention of virions at the cell surface arises from tetherin''s ability to be inserted simultaneously in both host and viral membranes (28, 32, 41) or, alternatively, that dimers or higher-order complexes of tetherin conferred by the ectodomain mediate this effect (39). Interestingly, an artificial tetherin containing the same structural features as the native protein but constructed from unrelated sequences was able to restrict both HIV-1 and Ebola virus particles (32). This suggests that the viral lipid envelope is the target of tetherin and provides an explanation for tetherin''s broad activity against diverse enveloped viruses.A fraction of tetherin is present at the plasma membrane of cells (9, 14), and it has been proposed that viral anti-tetherin factors function by removing this cell surface fraction (40). This now has been shown to occur in the presence of HIV-1 Vpu (5, 7, 15, 26, 34, 40, 44), HIV-2 Env (5, 20), SIV Env (11), SIV Nef (15), and KSHV K5 (3, 23). In addition, certain anti-tetherin factors also may promote the degradation of tetherin, as has been observed for both HIV-1 Vpu (3, 5, 7, 10, 22, 26, 27) and KSHV K5 (3, 23), although Vpu also appears able to block tetherin restriction in the absence of degradation (8), and no effects on tetherin steady-state levels have been observed in the presence of either the HIV-2 or SIVtan Env (11, 20). Simply keeping tetherin away from the cell surface, or targeting it for degradation, may not be the only mechanism used by anti-tetherin factors, since it also has been reported that Vpu does not affect the levels of surface tetherin or its total cellular levels in certain T-cell lines (27).The interactions between tetherin and viral anti-tetherin factors show evidence of species specificity, suggesting ongoing evolution between viruses and their hosts. HIV-1 Vpu is active against human and chimpanzee tetherin but not other primate tetherins (10, 25, 34, 36, 44, 45), while SIV Nef proteins are active against primate but not human tetherins (16, 36, 44, 45). This suggests that, unlike tetherin restriction, the action of the anti-tetherin factors may involve specific sequence interactions. Indeed, the TM domain has been recognized as a target for HIV-1 Vpu (10, 15, 16, 25, 34), while a single point mutation introduced into the extracellular domain of human tetherin can block its antagonism by the SIVtan Env (11).In the present study, we investigated the roles of the different domains of tetherin in both promoting virus restriction and conferring susceptibility to the anti-tetherin factors encoded by HIV-1, HIV-2, and Ebola virus. We confirmed that tetherin restriction can be conferred by proteins that retain the two distinct membrane anchors, while signals for the cellular localization of the protein reside in the CT/TM domains of the protein. We found that the Vpu protein targets the TM domain of tetherin, while the HIV-2 Env targets the ectodomain of the protein. In contrast, the Ebola virus GP appears to use a non-sequence-specific mechanism to counteract tetherin restriction, since even an artificial tetherin could be successfully overcome by GP expression. Interestingly, Ebola virus GP counteracted tetherin restriction without removing the protein from the cell surface, suggesting that it is possible to overcome this restriction by mechanisms other than blocking tetherin''s cell surface expression.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
Open reading frame 45 (ORF45) of Kaposi''s sarcoma-associated herpesvirus 8 (KSHV) is an immediate-early phosphorylated tegument protein and has been shown to play important roles at both early and late stages of viral infection. Homologues of ORF45 exist only in gammaherpesviruses, and their homology is limited. These homologues differ in their protein lengths and subcellular localizations. We and others have reported that KSHV ORF45 is localized predominantly in the cytoplasm, whereas its homologue in murine herpesvirus 68 is localized exclusively in the nucleus. We observed that ORF45s of rhesus rhadinovirus and herpesvirus saimiri are found exclusively in the nucleus. As a first step toward understanding the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we identified the signals that control its subcellular localization. We found that KSHV ORF45 accumulated rapidly in the nucleus in the presence of leptomycin B, an inhibitor of CRM1 (exportin 1)-dependent nuclear export, suggesting that it could shuttle between the nucleus and cytoplasm. Mutational analysis revealed that KSHV ORF45 contains a CRM1-dependent, leucine-rich-like nuclear export signal and an adjacent nuclear localization signal. Replacement of the key residues with alanines in these motifs of ORF45 disrupts its shuttling between the cytoplasm and nucleus. The resulting ORF45 mutants have restricted subcellular localizations, being found exclusively either in the cytoplasm or in the nucleus. Recombinant viruses were reconstituted by introduction of these mutations into KSHV bacterial artificial chromosome BAC36. The resultant viruses have distinct phenotypes. A mutant virus in which ORF45 is restricted to the cytoplasm behaves as an ORF45-null mutant and produces 5- to 10-fold fewer progeny viruses than the wild type. In contrast, mutants in which the ORF45 protein is mostly restricted to the nucleus produce numbers of progeny viruses similar to those produced by the wild type. These data suggest that the subcellular localization signals of ORF45 have important functional roles in KSHV lytic replication.Kaposi''s sarcoma-associated herpesvirus (KSHV) is a DNA tumor virus and the causative agent of several human cancers, including Kaposi''s sarcoma (KS), primary effusion lymphoma, and multicentric Castleman''s disease (3, 6). Like all herpesviruses, KSHV has two alternative life cycles, a latent and a lytic cycle. During latency, only a few viral genes are expressed, and no progeny viruses are produced. Under appropriate conditions, latent viral genomes are activated, initiate lytic replication, and express a full panel of viral genes, in a process that leads to viral assembly, release of progeny virus particles, and de novo infection of naïve cells (3, 6). KSHV establishes latent infection in the majority of infected cells in cases of KS, primary effusion lymphoma, and multicentric Castleman''s disease, but lytic replications occur in a small fraction. The recurrent and periodic lytic cycles of KSHV are believed to play critical roles in viral pathogenesis (6, 7).Open reading frame 45 (ORF45) is a KSHV-encoded gene product that plays a critical role in the viral lytic cycle. It is an immediate-early protein and is also present in viral particles as tegument protein (26, 27, 30). Disruption of ORF45 has no significant effect on overall viral lytic gene expression or DNA replication in BAC36-reconstituted 293T cells induced with both tetradecanoyl phorbol acetate (TPA) and sodium butyrate together, but the ORF45-null mutant produces 5- to 10-fold fewer progeny viruses than the wild type and the mutant virus has dramatically reduced infectivity, suggesting that ORF45 plays important roles at both early and late stages of viral infection (29). In addition to its roles as a tegument component, which are possibly involved in viral ingress and egress processes, KSHV ORF45 interacts with cellular proteins and modulates the cellular environment. At least two such functions have been described. First, KSHV ORF45 inhibits activation of interferon regulatory factor 7 (IRF-7) and therefore antagonizes the host innate antiviral response (28). Second, KSHV ORF45 interacts with p90 ribosomal kinase 1 and 2 (RSK1/RSK2) and modulates the extracellular signal-regulated kinase/RSK signaling pathway, which is known to play essential roles in KSHV reactivation and lytic replication (12). All of these data suggest that KSHV ORF45 is a multifunctional protein.ORF45 is unique to the gammaherpesviruses; it has no homologue in the alpha- or betaherpesviruses. ORF45 homologues have been identified as virion protein components in other gammaherpesviruses, such as Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), and murine herpesvirus 68 (MHV-68), suggesting that certain tegument functions of ORF45 are conserved (2, 11, 18). ORF45 homologues differ in protein length. KSHV ORF45 is the longest, at 407 amino acids (aa); RRV, EBV, MHV-68, and herpesvirus saimiri (HVS) have proteins of 353, 217, 206, and 257 aa, respectively. The limited homologies lie mostly at the amino- and carboxyl-terminal ends. The middle portion of KSHV ORF45 diverges from those of its homologues. The homologues differ in subcellular localization. We and others have reported previously that KSHV ORF45 is found predominantly in the cytoplasm (1, 21, 28, 30), whereas ORF45 of MHV-68 is found exclusively in the nucleus (9). Recently, we found KSHV ORF45 also present in the nuclei of BCBL-1 cells in what resembled viral replication compartments, suggesting that ORF45 could shuttle into the nucleus (12).Nucleocytoplasmic trafficking of proteins across the nuclear membrane occurs through nuclear pore complexes. Small molecules of up to approximately 9 nm in diameter, corresponding to a globular protein of approximately 40 to 60 kDa, can in principle enter or leave the nucleus by diffusion through nuclear pores (15, 17, 24). Large molecules are transported with the aid of a related family of transport factors, importins and exportins, which recognize nuclear localization sequence (NLS)-containing or nuclear export sequence (NES)-containing proteins (15, 17, 23). CRM1 (exportin 1) has been identified as a common export receptor that recognizes human immunodeficiency virus Rev-like leucine-rich NES sequences and is responsible for the export of such NES-containing proteins (4, 5, 19, 22). CRM1-dependent nuclear export is specifically inhibited by a pharmacological compound, leptomycin B (LMB), that interacts with CRM1 and thus blocks such NES-mediated protein export (4).To understand the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we attempted to locate the signals that control its subcellular localization. In the research reported here, we identified a leucine-rich NES and an adjacent basic NLS in KSHV ORF45. We demonstrated that the regulated intracellular trafficking of ORF45, especially its translocation into the nucleus, is important for KSHV lytic replication.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号