首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl D-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.Key words: salicylate, inferior colliculus, auditory cortex, activity-dependent cytoskeletal protein, early growth response gene-1  相似文献   

2.
强度是声音的基本参数之一,听神经元的强度调谐在听觉信息处理方面具有重要意义.以往研究发现γ-氨基丁酸(γ-aminobutyric acid, GABA)能抑制性输入在强度调谐的形成过程中起重要作用,但对抑制性输入与局部神经回路之间的关系并不清楚.本实验通过在体细胞外电生理记录和神经药理学方法,分析了小鼠初级听皮质神经元的强度调谐特性,结果显示:单调型神经元在声刺激强度自中等强度增高时潜伏期缩短(P < 0.05)且发放持续时间延长(P < 0.05),非单调型神经元在声刺激强度自最佳强度增高时潜伏期不变且发放持续时间缩短(P < 0.01).注射GABA能阻断剂荷包牡丹碱(bicuculline, Bic)后,39.3%的神经元强度调谐类型不变,42.9%的神经元非单调性减弱,17.9%的神经元非单调性增强.表明GABA能抑制并非是形成非单调性的唯一因素,兴奋性输入本身的非单调性和高阈值非GABA能抑制的激活也可能在其中发挥作用.推测由兴奋性和抑制性输入所构成的局部神经功能回路及其整合决定了听皮质神经元的强度调谐特性.  相似文献   

3.
This paper presents a series of 12 cases of chronic tinnitus patients who participated in 4 weeks of auditory discrimination training either close to or far removed from the tinnitus frequency. The training was based on the assumption that tinnitus is related to a shift of the representation of the tinnitus frequency in auditory cortex outside of the normal tonotopic map and that training close to but not removed from the tinnitus frequency should result in a reduction in the severity of the tinnitus. Tinnitus severity was measured 4 times per day during the entire treatment and other tinnitus-related variables were assessed 1 week before and 1 month posttreatment. The comparison of the training close to as compared to remote from the tinnitus frequency did not yield a statistically significant difference. However, a post hoc analysis revealed that patients who engaged in regular training as compared to those who practiced irregularly were significantly more successful in reducing tinnitus severity independent of the trained frequencies. Treatment success was best predicted by days of training and general activity levels. The data suggest that auditory discrimination training shows a dose response effect irrespective of training location and that treatment success is also related to psychological variables. For more substantial changes in multiple variables an extended training period with additional consideration of emotional variables would be necessary. In addition, controls for nonspecific training effects need to be implemented.  相似文献   

4.
5.
We present a rate model of the spontaneous activity in the auditory cortex, based on synaptic depression. A Stochastic integro-differential system of equations is derived and the analysis reveals two main regimes. The first regime corresponds to a normal activity. The second regime corresponds to epileptic spiking. A detailed analysis of each regime is presented and we prove in particular that synaptic depression stabilizes the global cortical dynamics. The transition between the two regimes is induced by a change in synaptic connectivity: when the overall connectivity is strong enough, an epileptic activity is spontaneously generated. Numerical simulations confirm the predictions of the theoretical analysis. In particular, our results explain the transition from normal to epileptic regime which can be induced in rats auditory cortex, following a specific pairing protocol. A change in the cortical maps reorganizes the synaptic connectivity and this transition between regimes is accounted for by our model. We have used data from recording experiments to fit synaptic weight distributions. Simulations with the fitted distributions are qualitatively similar to the real EEG recorded in vivo during the experiments. We conclude that changes in the synaptic weight function in our model, which affects excitatory synapses organization and reproduces the changes in cortical map connectivity can be understood as the main mechanism to explain the transitions of the EEG from the normal to the epileptic regime in the auditory cortex. D.H is incumbent to the Hass Russell Career Chair Development.  相似文献   

6.
7.

Background

Peripheral auditory deafferentation and central compensation have been regarded as the main culprits of tinnitus generation. However, patient-to-patient discrepancy in the range of the percentage of daytime in which tinnitus is perceived (tinnitus awareness percentage, 0 – 100%), is not fully explicable only by peripheral deafferentation, considering that the deafferentation is a stable persisting phenomenon but tinnitus is intermittently perceived in most patients. Consequently, the involvement of a dysfunctional noise cancellation mechanism has recently been suggested with regard to the individual differences in reported tinnitus awareness. By correlating the tinnitus awareness percentage with resting-state source-localized electroencephalography findings, we may be able to retrieve the cortical area that is negatively correlated with tinnitus awareness percentage, and then the area may be regarded as the core of the noise cancelling system that is defective in patients with tinnitus.

Methods and Findings

Using resting-state cortical oscillation, we investigated 80 tinnitus patients by correlating the tinnitus awareness percentage with their source-localized cortical oscillatory activity and functional connectivity. The activity of bilateral rostral anterior cingulate cortices (ACCs), left dorsal- and pregenual ACCs for the delta band, bilateral rostral/pregenual/subgenual ACCs for the theta band, and left rostral/pregenual ACC for the beta 1 band displayed significantly negative correlations with tinnitus awareness percentage. Also, the connectivity between the left primary auditory cortex (A1) and the rostral ACC, as well as between the left A1 and the subgenual ACC for the beta 1 band, were negatively correlated with tinnitus awareness percentage.

Conclusions

These results may designate the role of the rostral ACC as the core of the descending noise cancellation system, and thus dysfunction of the rostral ACC may result in perception of tinnitus. The present study also opens a possibility of tinnitus modulation by neuromodulatory approaches targeting the rostral ACC.  相似文献   

8.
Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years) and compared the results with young subjects (<lt;30 years). The elderly group with expressed presbycusis (EP) differed from the elderly group with mild presbycusis (MP) in hearing thresholds measured by pure tone audiometry, presence and amplitudes of transient otoacoustic emissions (TEOAE) and distortion-product oto-acoustic emissions (DPOAE), as well as in speech-understanding under noisy conditions. Acoustically evoked activity (pink noise centered around 350 Hz, 700 Hz, 1.5 kHz, 3 kHz, 8 kHz), recorded by BOLD fMRI from an area centered on Heschl’s gyrus, was used to determine age-related changes at the level of the auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC) leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing.  相似文献   

9.
Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35–55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion.  相似文献   

10.
11.
Chronic tinnitus is a brain network disorder with involvement of auditory and non-auditory areas. Repetitive transcranial magnetic stimulation (rTMS) over the temporal cortex has been investigated for the treatment of tinnitus. Several small studies suggest that motor cortex excitability is altered in people with tinnitus. We retrospectively analysed data from 231 patients with chronic tinnitus and 120 healthy controls by pooling data from different studies. Variables of interest were resting motor threshold (RMT), short-interval intra-cortical inhibition (SICI), intra-cortical facilitation (ICF), and cortical silent period (CSP). 118 patients were tested twice - before and after ten rTMS treatment sessions over the left temporal cortex. In tinnitus patients SICI and ICF were increased and CSP was shortened as compared to healthy controls. There was no group difference in RMT. Treatment related amelioration of tinnitus symptoms were correlated with normalisations in SICI. These findings confirm earlier studies of abnormal motor cortex excitability in tinnitus patients. Moreover our longitudinal data suggest that altered SICI may reflect a state parameter, whereas CSP and ICF may rather mirror a trait-like predisposing factor of tinnitus. These findings are new and innovative as they enlarge the knowledge about basic physiologic and neuroplastic processes in tinnitus.  相似文献   

12.
13.
14.
15.
《Chronobiology international》2013,30(10):1289-1299
The central circadian clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the circadian clockwork of the SCN constitutes a self-sustained autoregulatory feedback mechanism reflected by the rhythmic expression of clock genes. However, recent studies have shown the presence of extrahypothalamic oscillators in other areas of the brain including the cerebellum. In the present study, the authors unravel the cerebellar molecular clock by analyzing clock gene expression in the cerebellum of the rat by use of radiochemical in situ hybridization and quantitative real-time polymerase chain reaction. The authors here show that all core clock genes, i.e., Per1, Per2, Per3, Cry1, Cry2, Clock, Arntl, and Nr1d1, as well as the clock-controlled gene Dbp, are expressed in the granular and Purkinje cell layers of the cerebellar cortex. Among these genes, Per1, Per2, Per3, Cry1, Arntl, Nr1d1, and Dbp were found to exhibit circadian rhythms in a sequential temporal manner similar to that of the SCN, but with several hours of delay. The results of lesion studies indicate that the molecular oscillatory profiles of Per1, Per2, and Cry1 in the cerebellum are controlled, though possibly indirectly, by the central clock of the SCN. These data support the presence of a circadian oscillator in the cortex of the rat cerebellum. (Author correspondence: )  相似文献   

16.
Serially presented tones are sometimes segregated into two perceptually distinct streams. An ongoing debate is whether this basic streaming phenomenon reflects automatic processes or requires attention focused to the stimuli. Here, we examined the influence of focused attention on streaming-related activity in human auditory cortex using magnetoencephalography (MEG). Listeners were presented with a dichotic paradigm in which left-ear stimuli consisted of canonical streaming stimuli (ABA_ or ABAA) and right-ear stimuli consisted of a classical oddball paradigm. In phase one, listeners were instructed to attend the right-ear oddball sequence and detect rare deviants. In phase two, they were instructed to attend the left ear streaming stimulus and report whether they heard one or two streams. The frequency difference (ΔF) of the sequences was set such that the smallest and largest ΔF conditions generally induced one- and two-stream percepts, respectively. Two intermediate ΔF conditions were chosen to elicit bistable percepts (i.e., either one or two streams). Attention enhanced the peak-to-peak amplitude of the P1-N1 complex, but only for ambiguous ΔF conditions, consistent with the notion that automatic mechanisms for streaming tightly interact with attention and that the latter is of particular importance for ambiguous sound sequences.  相似文献   

17.

Background

Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions.

Methods and Findings

Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions.

Conclusions

To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus.  相似文献   

18.
Vocal communication is an important aspect of guinea pig behaviour and a large contributor to their acoustic environment. We postulated that some cortical areas have distinctive roles in processing conspecific calls. In order to test this hypothesis we presented exemplars from all ten of their main adult vocalizations to urethane anesthetised animals while recording from each of the eight areas of the auditory cortex. We demonstrate that the primary area (AI) and three adjacent auditory belt areas contain many units that give isomorphic responses to vocalizations. These are the ventrorostral belt (VRB), the transitional belt area (T) that is ventral to AI and the small area (area S) that is rostral to AI. Area VRB has a denser representation of cells that are better at discriminating among calls by using either a rate code or a temporal code than any other area. Furthermore, 10% of VRB cells responded to communication calls but did not respond to stimuli such as clicks, broadband noise or pure tones. Area S has a sparse distribution of call responsive cells that showed excellent temporal locking, 31% of which selectively responded to a single call. AI responded well to all vocalizations and was much more responsive to vocalizations than the adjacent dorsocaudal core area. Areas VRB, AI and S contained units with the highest levels of mutual information about call stimuli. Area T also responded well to some calls but seems to be specialized for low sound levels. The two dorsal belt areas are comparatively unresponsive to vocalizations and contain little information about the calls. AI projects to areas S, VRB and T, so there may be both rostral and ventral pathways for processing vocalizations in the guinea pig.  相似文献   

19.
20.
Deficits in auditory processing are among the best documented endophenotypes in schizophrenia, possibly due to loss of excitatory synaptic connections. Dendritic spines, the principal post-synaptic target of excitatory projections, are reduced in schizophrenia. p21-activated kinase 1 (PAK1) regulates both the actin cytoskeleton and dendritic spine density, and is a downstream effector of both kalirin and CDC42, both of which have altered expression in schizophrenia. This study sought to determine if there is decreased auditory cortex PAK1 protein expression in schizophrenia through the use of quantitative western blots of 25 schizophrenia subjects and matched controls. There was no significant change in PAK1 level detected in the schizophrenia subjects in our cohort. PAK1 protein levels within subject pairs correlated positively with prior measures of total kalirin protein in the same pairs. PAK1 level also correlated with levels of a marker of dendritic spines, spinophilin. These latter two findings suggest that the lack of change in PAK1 level in schizophrenia is not due to limited sensitivity of our assay to detect meaningful differences in PAK1 protein expression. Future studies are needed to evaluate whether alterations in PAK1 phosphorylation states, or alterations in protein expression of other members of the PAK family, are present in schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号