共查询到20条相似文献,搜索用时 0 毫秒
1.
《Current biology : CB》2020,30(7):1167-1176.e2
2.
Shinya Kusakari Fumihito Saitow Yukio Ago Koji Shibasaki Miho Sato-Hashimoto Yasunori Matsuzaki Takenori Kotani Yoji Murata Hirokazu Hirai Toshio Matsuda Hidenori Suzuki Takashi Matozaki Hiroshi Ohnishi 《Molecular and cellular biology》2015,35(9):1557-1572
Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. 相似文献
3.
The neurons in the superior cervical ganglion are active in plasticity and re-modelling in order to adapt to requirements. However, so far, only a few studies dealing with synaptic vesicle related proteins during adaptive processes have been published. In the present paper, changes in content and expression of the synaptic vesicle related proteins in the neurons after decentralization (cutting the cervical sympathetic trunk) or axotomy (cutting the internal and external carotid nerves) were studied. Immunofluorescence studies were carried out using antibodies and antisera against integral membrane proteins, vesicle associated proteins, NPY, and the enzymes TH and PNMT. For colocalization studies, the sections were simultaneously double labelled. Confocal laser scanning microscopy was used for colocalization studies as well as for semi-quantification analysis, using the computer software. Westen blot analysis, in situ 3'-end DNA labelling, and in situ hybridization were also employed. After decentralization of the ganglia several of the synaptic vesicle proteins (synaptotagmin I, synaptophysin, SNAP-25, CLC and GAP-43) were increased in the iris nerve terminal network, but with different time patterns, while TH-immunoreactivity had clearly decreased. In the ganglia, these proteins had decreased at 1 day after decentralization, probably due to degeneration of the pre-ganglionic nerve fibres and terminals. At later intervals, these proteins, except SNAP-25, had increased in the nerve fibre bundles and re-appeared in nerve fibres outlining the principal neurons. 相似文献
4.
5.
6.
The family of calcium-dependent neutral proteases, calpains, was discovered more than 30 years ago, but their functional roles
in the nervous system under physiological or pathological conditions still remain unclear. Although calpain was proposed to
participate in synaptic plasticity and in learning and memory in the early 1980s, the precise mechanism regarding its activation,
its target(s) and the functional consequences of its activation have remained controversial. A major issue has been the identification
of roles of the two major calpain isoforms present in the brain, calpain-1 and calpain-2, and the calcium requirement for
their activation, which exceeds levels that could be reached intracellularly under conditions leading to changes in synaptic
efficacy. In this review, we discussed the features of calpains that make them ideally suited to link certain patterns of
presynaptic activity to the structural modifications of dendritic spines that could underlie synaptic plasticity and learning
and memory. We then summarize recent findings that provide critical answers to the various questions raised by the initial
hypothesis, and that further support the idea that, in brain, calpain-2 plays critical roles in developmental and adult synaptic
plasticity. 相似文献
7.
Disrupting the balance between excitatory and inhibitory neurotransmission in the developing brain has been causally linked with intellectual disability (ID) and autism spectrum disorders (ASD). Excitatory synapse strength is regulated in the central nervous system by controlling the number of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). De novo genetic mutations of the synaptic GTPase-activating protein (SynGAP) are associated with ID and ASD. SynGAP is enriched at excitatory synapses and genetic suppression of SynGAP increases excitatory synaptic strength. However, exactly how SynGAP acts to maintain synaptic AMPAR content is unclear. We show here that SynGAP limits excitatory synaptic strength, in part, by suppressing protein synthesis in cortical neurons. The data presented here from in vitro, rat and mouse cortical networks, demonstrate that regulation of translation by SynGAP involves ERK, mTOR, and the small GTP-binding protein Rheb. Furthermore, these data show that GluN2B-containing NMDARs and the cognitive kinase CaMKII act upstream of SynGAP and that this signaling cascade is required for proper translation-dependent homeostatic synaptic plasticity of excitatory synapses in developing cortical networks. 相似文献
8.
Background
Hippocampal CA1 pyramidal neurons receive two excitatory glutamatergic synaptic inputs: their most distal dendritic regions in the stratum lacunosum-moleculare (SLM) are innervated by the perforant path (PP), originating from layer III of the entorhinal cortex, while their more proximal regions of the apical dendrites in the stratum radiatum (SR) are innervated by the Schaffer-collaterals (SC), originating from hippocampal CA3 neurons. Endocannabinoids (eCBs) are naturally occurring mediators capable of modulating both GABAergic and glutamatergic synaptic transmission and plasticity via the CB1 receptor. Previous work on eCB modulation of excitatory synapses in the CA1 region largely focuses on the SC pathway. However, little information is available on whether and how eCBs modulate glutamatergic synaptic transmission and plasticity at PP synapses.Methodology/Principal Findings
By employing somatic and dendritic patch-clamp recordings, Ca2+ uncaging, and immunostaining, we demonstrate that there are significant differences in low-frequency stimulation (LFS)- or DHPG-, an agonist of group I metabotropic glutamate receptors (mGluRs), induced long-term depression (LTD) of excitatory synaptic transmission between SC and PP synapses in the same pyramidal neurons. These differences are eliminated by pharmacological inhibition with selective CB1 receptor antagonists or genetic deletion of the CB1 receptor, indicating that these differences likely result from differential modulation via a CB1 receptor-dependent mechanism. We also revealed that depolarization-induced suppression of excitation (DSE), a form of short-term synaptic plasticity, and photolysis of caged Ca2+-induced suppression of Excitatory postsynaptic currents (EPSCs) were less at the PP than that at the SC. In addition, application of WIN55212 (WIN) induced a more pronounced inhibition of EPSCs at the SC when compared to that at the PP.Conclusions/Significance
Our results suggest that CB1 dependent LTD and DSE are differentially expressed at the PP versus SC synapses in the same neurons, which may have an impact on synaptic scaling, integration and plasticity of hippocampal CA1 pyramidal neurons. 相似文献9.
10.
一次性电击引起大鼠脑内突触结构可塑性变化的定量观察 总被引:1,自引:0,他引:1
运用电镜,对一次性电击引起大鼠脑内Gray Ⅰ型突触界面某些结构的变化进行了定量观察。在海马CA3区,突触后膜致密物质显著增厚(P〈0.05),突触间隙宽度极显著增宽(P〈0.01);在大脑皮层感觉运动区,突触界面曲率显著变大(P〈0.05)。突触界面弯曲类型无显著性差异。结果提示:一次性电击可以引起大鼠脑内突触界面结构发生可塑性变化。 相似文献
11.
Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. 相似文献
12.
13.
Xiaoning Han Michael Chen Fushun Wang Martha Windrem Su Wang Steven Shanz Qiwu Xu Nancy Ann Oberheim Lane Bekar Sarah Betstadt Alcino J. Silva Takahiro Takano Steven A. Goldman Maiken Nedergaard 《Cell Stem Cell》2013,12(3):342-353
Download : Download video (32MB) 相似文献
14.
Hiroaki Okuda Kouko Tatsumi Shoko Morita Yukinao Shibukawa Hiroaki Korekane Noriko Horii-Hayashi Yoshinao Wada Naoyuki Taniguchi Akio Wanaka 《The Journal of biological chemistry》2014,289(5):2620-2631
In our previous study, the CS-56 antibody, which recognizes a chondroitin sulfate moiety, labeled a subset of adult brain astrocytes, yielding a patchy extracellular matrix pattern. To explore the molecular nature of CS-56-labeled glycoproteins, we purified glycoproteins of the adult mouse cerebral cortex using a combination of anion-exchange, charge-transfer, and size-exclusion chromatographies. One of the purified proteins was identified as tenascin-R (TNR) by mass spectrometric analysis. When we compared TNR mRNA expression patterns with the distribution patterns of CS-56-positive cells, TNR mRNA was detected in CS-56-positive astrocytes. To examine the functions of TNR in astrocytes, we first confirmed that cultured astrocytes also expressed TNR protein. TNR knockdown by siRNA expression significantly reduced glutamate uptake in cultured astrocytes. Furthermore, expression of mRNA and protein of excitatory amino acid transporter 1 (GLAST), which is a major component of astrocytic glutamate transporters, was reduced by TNR knockdown. Our results suggest that TNR is expressed in a subset of astrocytes and contributes to glutamate homeostasis by regulating astrocytic GLAST expression. 相似文献
15.
Ana Depetris-Chauvin ágata Fernández-Gamba E. Axel Gorostiza Anastasia Herrero Eduardo M. Casta?o M. Fernanda Ceriani 《PLoS genetics》2014,10(10)
In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior. 相似文献
16.
17.
Periventricular white matter injury in premature infants is linked to chronic neurological dysfunction. Periventricular white
matter injury is caused by many mechanisms including hypoxia-ischemia (HI). Animal models of HI in the neonatal rodent brain
can replicate some important features of periventricular white matter injury. Most rodent studies have focused upon early
cellular and tissue events following unilateral neonatal HI that is elicited by unilateral carotid artery ligation and followed
by timed exposure to moderate hypoxia. Milder hypoxic-ischemic insults elicit preferential white matter injury. Little information
is available about long-term cellular effects of unilateral HI. One month after unilateral neonatal hypoxia ischemia, we show
that all the components for structural reorganization of the brain are present in moderately injured rats. These components
in the injured side include extensive influx of neurites, axonal and dendritic growth cones, abundant immature synapses, and
myelination of many small axons. Surprisingly, this neural recovery is often found in and adjacent to cysts that have the
ultrastructural features of bone extracellular matrix. In contrast, brains with severe hypoxia ischemia one month after injury
still undergo massive neuronal degeneration. While massive destruction of neurons and glia are striking events shortly after
brain HI, neural cells re-express their intrinsic properties and attempt an anatomical recovery long after injury.
Special issue dedicated to Anthony Campagnoni. 相似文献
18.
Elisa Vilardo Christian Barbato MariaTeresa Ciotti Carlo Cogoni Francesca Ruberti 《The Journal of biological chemistry》2010,285(24):18344-18351
The amyloid precursor protein (APP) and its proteolytic product amyloid beta (Aβ) are associated with both familial and sporadic forms of Alzheimer disease (AD). Aberrant expression and function of microRNAs has been observed in AD. Here, we show that in rat hippocampal neurons cultured in vitro, the down-regulation of Argonaute-2, a key component of the RNA-induced silencing complex, produced an increase in APP levels. Using site-directed mutagenesis, a microRNA responsive element (RE) for miR-101 was identified in the 3′-untranslated region (UTR) of APP. The inhibition of endogenous miR-101 increased APP levels, whereas lentiviral-mediated miR-101 overexpression significantly reduced APP and Aβ load in hippocampal neurons. In addition, miR-101 contributed to the regulation of APP in response to the proinflammatory cytokine interleukin-1β (IL-lβ). Thus, miR-101 is a negative regulator of APP expression and affects the accumulation of Aβ, suggesting a possible role for miR-101 in neuropathological conditions. 相似文献
19.
Background
Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses.Methodology/Principal Findings
Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning.Conclusions
These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo. 相似文献20.
Theresa Pohlkamp Murat Durakoglugil Courtney Lane-Donovan Xunde Xian Eric B. Johnson Robert E. Hammer Joachim Herz 《PloS one》2015,10(2)
Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer’s Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development. 相似文献