首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing energy and housing demands are impacting wildlife populations throughout western North America. Greater sage-grouse (Centrocercus urophasianus), a species known for its sensitivity to landscape-scale disturbance, inhabits the same low elevation sage-steppe in which much of this development is occurring. Wyoming has committed to maintain sage-grouse populations through conservation easements and policy changes that conserves high bird abundance “core” habitat and encourages development in less sensitive landscapes. In this study, we built new predictive models of oil and gas, wind, and residential development and applied build-out scenarios to simulate future development and measure the efficacy of conservation actions for maintaining sage-grouse populations. Our approach predicts sage-grouse population losses averted through conservation action and quantifies return on investment for different conservation strategies. We estimate that without conservation, sage-grouse populations in Wyoming will decrease under our long-term scenario by 14–29% (95% CI: 4–46%). However, a conservation strategy that includes the “core area” policy and $250 million in targeted easements could reduce these losses to 9–15% (95% CI: 3–32%), cutting anticipated losses by roughly half statewide and nearly two-thirds within sage-grouse core breeding areas. Core area policy is the single most important component, and targeted easements are complementary to the overall strategy. There is considerable uncertainty around the magnitude of our estimates; however, the relative benefit of different conservation scenarios remains comparable because potential biases and assumptions are consistently applied regardless of the strategy. There is early evidence based on a 40% reduction in leased hectares inside core areas that Wyoming policy is reducing potential for future fragmentation inside core areas. Our framework using build-out scenarios to anticipate species declines provides estimates that could be used by decision makers to determine if expected population losses warrant ESA listing.  相似文献   

2.

Objective

Iran as a developing country is in the transition phase, which might have a big impact on the Burden of Disease and Injury (BOD). This study aims to estimate Burden of Disease and Injury (BOD) in Iran up to 2025 due to four broad cause groups using Disability-Adjusted Life Year (DALY).

Methods

The impacts of demographic and epidemiological changes on BOD (DemBOD and EpiBOD) were assessed separately. We estimated DemBOD in nine scenarios, using different projections for life expectancy and total fertility rate. EpiBOD was modeled in two scenarios as a proportion of DemBOD, based on the extracted parameters from an international study.

Findings

The BOD is projected to increase from 14.3 million in 2003 to 19.4 million in 2025 (95% uncertainty interval: 16.8, 21.9), which shows an overall increase of 35.3%. Non-communicable diseases (12.7 million DALY, 66.0%), injuries (4.6 million DALY, 24.0%), and communicable diseases, except HIV/AIDS (1.8 million DALY, 9%) will be the leading causes of losing healthy life. Under the most likely scenario, the maximum increase in disease burden due to DemBOD is projected to be observed in HIV/AIDS and Non-communicable diseases (63.9 and 62.4%, respectively) and due to EpiBOD in HIV/AIDS (319.5%).

Conclusion

It seems that in the following decades, BOD will have a sharp increase in Iran, mainly due to DemBOD. It seems that communicable diseases (except HIV/AIDS) will have less contribution, and especially non-communicable diseases will play a more significant role.  相似文献   

3.
Finer M  Jenkins CN  Pimm SL  Keane B  Ross C 《PloS one》2008,3(8):e2932

Background

The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world''s last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region.

Methodology/Principal Findings

We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or “blocks” that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover ∼688,000 km2 of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly.

Conclusions/Significance

Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples'' territories.  相似文献   

4.

Background

Biodiversity offsets provide a mechanism to compensate for unavoidable damages from new energy development as the U.S. increases its domestic production. Proponents argue that offsets provide a partial solution for funding conservation while opponents contend the practice is flawed because offsets are negotiated without the science necessary to backup resulting decisions. Missing in negotiations is a biologically-based currency for estimating sufficiency of offsets and a framework for applying proceeds to maximize conservation benefits.

Methodology/Principal Findings

Here we quantify a common currency for offsets for greater sage-grouse (Centrocercus urophasianus) by estimating number of impacted birds at 4 levels of development commonly permitted. Impacts were indiscernible at 1–12 wells per 32.2 km2. Above this threshold lek losses were 2–5 times greater inside than outside of development and bird abundance at remaining leks declined by −32 to −77%. Findings reiterated the importance of time-lags as evidenced by greater impacts 4 years after initial development. Clustering well locations enabled a few small leks to remain active inside of developments.

Conclusions/Significance

Documented impacts relative to development intensity can be used to forecast biological trade-offs of newly proposed or ongoing developments, and when drilling is approved, anticipated bird declines form the biological currency for negotiating offsets.Monetary costs for offsets will be determined by true conservation cost to mitigate risks such as sagebrush tillage to other populations of equal or greater number. If this information is blended with landscape level conservation planning, the mitigation hierarchy can be improved by steering planned developments away from conservation priorities, ensuring compensatory mitigation projects deliver a higher return for conservation that equate to an equal number of birds in the highest priority areas, provide on-site mitigation recommendations, and provide a biologically based cost for mitigating unavoidable impacts.  相似文献   

5.
Climate change affects winter chill for temperate fruit and nut trees   总被引:2,自引:0,他引:2  

Background

Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields.

Methodology/Principal Findings

We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG.

Conclusions/Significance

The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.  相似文献   

6.

Background

Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level.

Methodology/Principal Findings

We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m2), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover.

Conclusions/Significance

Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments.  相似文献   

7.

Background

Compartmentalization and nestedness are common patterns in ecological networks. The aim of this study was to elucidate some of the processes shaping these patterns in a well resolved network of host/pathogen interactions.

Methology/Principal Findings

Based on a long-term (1972–2005) survey of forest health at the regional scale (all French forests; 15 million ha), we uncovered an almost fully connected network of 51 tree taxa and 157 parasitic fungal species. Our analyses revealed that the compartmentalization of the network maps out the ancient evolutionary history of seed plants, but not the ancient evolutionary history of fungal species. The very early divergence of the major fungal phyla may account for this asymmetric influence of past evolutionary history. Unlike compartmentalization, nestedness did not reflect any consistent phylogenetic signal. Instead, it seemed to reflect the ecological features of the current species, such as the relative abundance of tree species and the life-history strategies of fungal pathogens. We discussed how the evolution of host range in fungal species may account for the observed nested patterns.

Conclusion/Significance

Overall, our analyses emphasized how the current complexity of ecological networks results from the diversification of the species and their interactions over evolutionary times. They confirmed that the current architecture of ecological networks is not only dependant on recent ecological processes.  相似文献   

8.

Background and Aims

Oil pollution of wetlands is a world-wide problem but, to date, research has concentrated on its influences on salt marsh rather than freshwater plant communities. The effects of water-borne light oils (liquid paraffin and diesel) were investigated on the fresh/brackish wetland species Phragmites australis in terms of routes of oil infiltration, internal gas transport, radial O2 loss (ROL), underwater gas films and bud growth.

Methods

Pressure flow resistances of pith cavities of nodes and aerenchyma of leaf sheaths, with or without previous exposure to oil, were recorded from flow rates under applied pressure. Convective flows were measured from living excised culms with oiled and non-oiled nodes and leaf sheaths. The effect of oil around culm basal nodes on ROL from rhizome and root apices was measured polarographically. Surface gas films on submerged shoots with and without oil treatment were recorded photographically. Growth and emergence of buds through water with and without an oil film were measured.

Key Results

Internodes are virtually impermeable, but nodes of senesced and living culms are permeable to oils which can block pith cavity diaphragms, preventing flows at applied pressures of 1 kPa, natural convective transport to the rhizome, and greatly decreasing ROL to phyllospheres and rhizospheres. Oil infiltrating or covering living leaf sheaths prevents humidity-induced convection. Oil displaces surface gas films from laminae and leaf sheaths. Buds emerge only a few centimetres through oil and die.

Conclusions

Oil infiltrates the gas space system via nodal and leaf sheath stomata, reducing O2 diffusion and convective flows into the rhizome system and decreasing oxygenation of phyllospheres and rhizospheres; underwater gas exchange via gas films will be impeded. Plants can be weakened by oil-induced failure of emerging buds. Plants will be most at risk during the growing season.Key words: Phragmites australis, oil pollution, convective flow, pressure flow resistance, phyllosphere oxygenation, rhizosphere oxygenation, underwater gas films, bud emergence, stomata, pith cavity diaphragms, leaf sheath aerenchyma, rhizome aeration  相似文献   

9.

Background

As the global human population grows and its consumption patterns change, additional land will be needed for living space and agricultural production. A critical question facing global society is how to meet growing human demands for living space, food, fuel, and other materials while sustaining ecosystem services and biodiversity [1].

Methodology/Principal Findings

We spatially allocate two scenarios of 2000 to 2015 global areal change in urban land and cropland at the grid cell-level and measure the impact of this change on the provision of ecosystem services and biodiversity. The models and techniques used to spatially allocate land-use/land-cover (LULC) change and evaluate its impact on ecosystems are relatively simple and transparent [2]. The difference in the magnitude and pattern of cropland expansion across the two scenarios engenders different tradeoffs among crop production, provision of species habitat, and other important ecosystem services such as biomass carbon storage. For example, in one scenario, 5.2 grams of carbon stored in biomass is released for every additional calorie of crop produced across the globe; under the other scenario this tradeoff rate is 13.7. By comparing scenarios and their impacts we can begin to identify the global pattern of cropland and irrigation development that is significant enough to meet future food needs but has less of an impact on ecosystem service and habitat provision.

Conclusions/Significance

Urban area and croplands will expand in the future to meet human needs for living space, livelihoods, and food. In order to jointly provide desired levels of urban land, food production, and ecosystem service and species habitat provision the global society will have to become much more strategic in its allocation of intensively managed land uses. Here we illustrate a method for quickly and transparently evaluating the performance of potential global futures.  相似文献   

10.

Background

Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants.

Methodology/Principal Findings

We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation.

Conclusions/Significance

We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.  相似文献   

11.
A Meta-Analysis of the Impacts of Genetically Modified Crops   总被引:1,自引:0,他引:1  

Background

Despite the rapid adoption of genetically modified (GM) crops by farmers in many countries, controversies about this technology continue. Uncertainty about GM crop impacts is one reason for widespread public suspicion.

Objective

We carry out a meta-analysis of the agronomic and economic impacts of GM crops to consolidate the evidence.

Data Sources

Original studies for inclusion were identified through keyword searches in ISI Web of Knowledge, Google Scholar, EconLit, and AgEcon Search.

Study Eligibility Criteria

Studies were included when they build on primary data from farm surveys or field trials anywhere in the world, and when they report impacts of GM soybean, maize, or cotton on crop yields, pesticide use, and/or farmer profits. In total, 147 original studies were included.

Synthesis Methods

Analysis of mean impacts and meta-regressions to examine factors that influence outcomes.

Results

On average, GM technology adoption has reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%. Yield gains and pesticide reductions are larger for insect-resistant crops than for herbicide-tolerant crops. Yield and profit gains are higher in developing countries than in developed countries.

Limitations

Several of the original studies did not report sample sizes and measures of variance.

Conclusion

The meta-analysis reveals robust evidence of GM crop benefits for farmers in developed and developing countries. Such evidence may help to gradually increase public trust in this technology.  相似文献   

12.
Luo Z  Tang S  Li C  Fang H  Hu H  Yang J  Ding J  Jiang Z 《PloS one》2012,7(4):e35514

Background

Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis.

Methodology/Principal Findings

A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100×100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR.

Conclusions/Significance

The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis.  相似文献   

13.

Background

Categories of imperilment like the global IUCN Red List have been transformed to probabilities of extinction and used to rank species by the amount of imperiled evolutionary history they represent (e.g. by the Edge of Existence programme). We investigate the stability of such lists when ranks are converted to probabilities of extinction under different scenarios.

Methodology and Principal Findings

Using a simple example and computer simulation, we show that preserving the categories when converting such list designations to probabilities of extinction does not guarantee the stability of the resulting lists.

Significance

Care must be taken when choosing a suitable transformation, especially if conservation dollars are allocated to species in a ranked fashion. We advocate routine sensitivity analyses.  相似文献   

14.

Background and Aims

Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected.

Methods

Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods.

Key Results

Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied.

Conclusions

Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have evolved in order to attract these bees.  相似文献   

15.

Background

Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming.

Materials and Methods

Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI).

Principal Results

The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields.

Conclusions

In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system.  相似文献   

16.

Background

Dengue causes 50 million infections per year, posing a large disease and economic burden in tropical and subtropical regions. Only a proportion of dengue cases require hospitalization, and predictive tools to triage dengue patients at greater risk of complications may optimize usage of limited healthcare resources. For severe dengue (SD), proposed by the World Health Organization (WHO) 2009 dengue guidelines, predictive tools are lacking.

Methods

We undertook a retrospective study of adult dengue patients in Tan Tock Seng Hospital, Singapore, from 2006 to 2008. Demographic, clinical and laboratory variables at presentation from dengue polymerase chain reaction-positive and serology-positive patients were used to predict the development of SD after hospitalization using generalized linear models (GLMs).

Principal findings

Predictive tools compatible with well-resourced and resource-limited settings – not requiring laboratory measurements – performed acceptably with optimism-corrected specificities of 29% and 27% respectively for 90% sensitivity. Higher risk of severe dengue (SD) was associated with female gender, lower than normal hematocrit level, abdominal distension, vomiting and fever on admission. Lower risk of SD was associated with more years of age (in a cohort with an interquartile range of 27–47 years of age), leucopenia and fever duration on admission. Among the warning signs proposed by WHO 2009, we found support for abdominal pain or tenderness and vomiting as predictors of combined forms of SD.

Conclusions

The application of these predictive tools in the clinical setting may reduce unnecessary admissions by 19% allowing the allocation of scarce public health resources to patients according to the severity of outcomes.  相似文献   

17.
Climate warming could shift the timing of seed germination in alpine plants   总被引:1,自引:0,他引:1  

Background and Aims

Despite the considerable number of studies on the impacts of climate change on alpine plants, there have been few attempts to investigate its effect on regeneration. Recruitment from seeds is a key event in the life-history of plants, affecting their spread and evolution and seasonal changes in climate will inevitably affect recruitment success. Here, an investigation was made of how climate change will affect the timing and the level of germination in eight alpine species of the glacier foreland.

Methods

Using a novel approach which considered the altitudinal variation of temperature as a surrogate for future climate scenarios, seeds were exposed to 12 different cycles of simulated seasonal temperatures in the laboratory, derived from measurements at the soil surface at the study site.

Key Results

Under present climatic conditions, germination occurred in spring, in all but one species, after seeds had experienced autumn and winter seasons. However, autumn warming resulted in a significant increase in germination in all but two species. In contrast, seed germination was less sensitive to changes in spring and/or winter temperatures, which affected only three species.

Conclusions

Climate warming will lead to a shift from spring to autumn emergence but the extent of this change across species will be driven by seed dormancy status. Ungerminated seeds at the end of autumn will be exposed to shorter winter seasons and lower spring temperatures in a future, warmer climate, but these changes will only have a minor impact on germination. The extent to which climate change will be detrimental to regeneration from seed is less likely to be due to a significant negative effect on germination per se, but rather to seedling emergence in seasons that the species are not adapted to experience. Emergence in autumn could have major implications for species currently adapted to emerge in spring.  相似文献   

18.
19.

Background

The Alberta Project Promoting active Living and healthy Eating in Schools (APPLE Schools) is a comprehensive school health program that is proven feasible and effective in preventing obesity among school aged children. To support decision making on expanding this program, evidence on its long-term health and economic impacts is particularly critical. In the present study we estimate the life course impact of the APPLE Schools programs in terms of future body weights and avoided health care costs.

Method

We modeled growth rates of body mass index (BMI) using longitudinal data from the National Population Health Survey collected between 1996–2008. These growth rate characteristics were used to project BMI trajectories for students that attended APPLE Schools and for students who attended control schools (141 randomly selected schools) in the Canadian province of Alberta.

Results

Throughout the life course, the prevalence of overweight (including obesity) was 1.2% to 2.8% (1.7 on average) less among students attending APPLE Schools relative to their peers attending control schools. The life course prevalence of obesity was 0.4% to 1.4% (0.8% on average) less among APPLE Schools students. If the APPLE Schools program were to be scaled up, the potential cost savings would be $33 to 82 million per year for the province of Alberta, or $150 to 330 million per year for Canada.

Conclusions

These projected health and economic benefits seem to support broader implementation of school-based health promotion programs.  相似文献   

20.

Background and Objectives

It would be of considerable interest to clinicians if the burden of chronic pulmonary aspergillosis (CPA) and allergic bronchopulmonary aspergillosis (ABPA) in India were known. Herein, we estimate the burden of CPA following pulmonary tuberculosis (PTB), and ABPA (and severe asthma with fungal sensitization [SAFS]) complicating asthma.

Methods

We used the population estimates for India from the 2011 census data. The burden of asthma was estimated using three different methods (Global Initiative against Asthma [GINA] report statement, World Health Survey [WHS] estimates, Indian study on the epidemiology of asthma and chronic bronchitis [INSEARCH]). Global and India-specific figures were used for calculating the prevalence of ABPA and SAFS. The World Health Organization estimates were used for calculating PTB rates while the frequency of CPA was assessed from a previously published scoping review. Sensitivity analysis was performed to determine the burden in various scenarios.

Results

The total Indian population in 2011 was 1.2 billion. The asthma prevalence in adults was estimated at about 27.6 (range, 17–30) million. The burden of ABPA ranged from 0.12–6.09 million with different assumptions (best estimate, 1.38 [range, 0.86–1.52] million). The prevalence of SAFS was approximated at about 0.52–1.21 million (best estimate, 0.96 [range, 0.6–1.06] million). The incident TB cases were about 2.1 million while the annual incidence of CPA varied 27,000-0.17 million cases, with different estimates. If the mortality of CPA is estimated as 15% annually, the 5-year prevalence of CPA was placed at 290,147 cases with 5-year prevalence rate being 24 per 100,000.

Conclusion

There is a significant burden of ABPA, SAFS and CPA in India. Prospective community-based studies are required to accurately determine the prevalence of these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号