首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Feline immunodeficiency virus (FIV) is a lentivirus associated with AIDS-like illnesses in cats and has been used as a model for the study of human immunodeficiency virus (HIV). A feature of HIV and FIV infection is the continually increasing divergence among viral isolates between different individuals, as well as within the same individuals.

Methodology/Principal Findings

The goal of this study was to determine the phylogenetic patterns of viral isolates obtained within the United States (U.S.) by focusing on the variable, V3-V4, region of the FIV envelope gene.

Conclusions/Significance

Data indicate that FIV, from within the U.S., localize to four viral clades, A, B, C, and F. Also shown is the geographic isolation of strains where clade A and clade B are found predominately on the west coast; however, clade B is also found throughout the U.S. and represents the predominant clade. This study presents a complete and conclusive analysis of FIV isolates from within the U.S. and may be used as the essential basis for the development of an effective multi-clade vaccine.  相似文献   

2.
Shimojima M 《Uirusu》2007,57(1):75-82
Feline immunodeficiency virus (FIV) induces a disease similar to acquired immunodeficiency syndrome (AIDS) in cats, yet in contrast to human immunodeficiency virus (HIV), CD4 is not the viral receptor. We identified a primary receptor for FIV as CD134 (OX40), a T cell activation antigen and costimulatory molecule. CD134 expression promotes viral binding and renders cells permissive for viral entry, productive infection, and syncytium formation. Infection is CXCR4-dependent, analogous to infection with X4 strains of HIV. Thus, despite the evolutionary divergence of the feline and human lentiviruses, both viruses use receptors that target the virus to a subset of cells that are pivotal to the acquired immune response. Further, we applied the new method for FIV receptor to Ebola virus entry factors with some modifications, and identified receptor-type tyrosine kinases, Axl and Dtk (members of Tyro3 family). Distribution of the molecules matches well with the Ebola virus tropism.  相似文献   

3.
4.
5.
In lentiviruses, including human immunodeficiency virus and feline immunodeficiency virus (FIV), the principal immunodominant domain (PID) of the transmembrane glycoprotein elicits a strong humoral response in infected hosts. The PID is marked by the presence of two cysteines that delimit a sequence, composed of five to seven amino acids in different lentiviruses, which is highly conserved among isolates of the same lentiviral species. While the conservation of the sequence suggests the presence of functional constraints, the conservation of the immunodominance among divergent lentiviruses raises the hypothesis of a selective advantage for the infecting virus conferred by the host humoral response against this domain. We and others have previously shown that an appropriate structure of the PID is required for the production of a functional envelope. In the present work, we analyzed virological functions and immune reactivity of the envelope after random mutagenesis of the PID of FIV. We obtained nine mutant envelopes which were correctly processed and retained fusogenic ability. Mutation of the two C-terminal residues of the PID sequence between the cysteines in a molecular clone of FIV abolished infectivity. In contrast, three molecular clones containing extensive mutations in the four N-terminal amino acids were infectious. However, the mutations affected PID reactivity with sera from infected cats. Our results suggest that functional constraints, although existent, are not sufficient to account for PID sequence conservation. Such conservation may also result from positive selection by anti-PID antibodies which enhance infection.  相似文献   

6.

Background

The influence of tobacco smoking on the immune system of HIV infected individuals is largely unknown. We investigated the impact of tobacco smoking on immune activation, microbial translocation, immune exhaustion and T-cell function in HIV infected individuals.

Method

HIV infected smokers and non-smokers (n = 25 each) with documented viral suppression on combination antiretroviral therapy and HIV uninfected smokers and non-smokers (n = 15 each) were enrolled. Markers of immune activation (CD38 and HLA-DR) and immune exhaustion (PD1, Tim3 and CTLA4) were analyzed in peripheral blood mononuclear cells (PBMCs) by flow cytometry. Plasma markers of microbial translocation (soluble-CD14 - sCD14 and lipopolysaccharide - LPS) were measured. Antigen specific functions of CD4+ and CD8+ T-cells were measured, by flow cytometry, in PBMCs after 6 hours stimulation with Cytomegalovirus, Epstein-Barr virus and Influenza Virus (CEF) peptide pool.

Results

Compared to non-smokers, smokers of HIV infected and uninfected groups showed significantly higher CD4+ and CD8+ T-cell activation with increased frequencies of CD38+HLA-DR+ cells with a higher magnitude in HIV infected smokers. Expressions of immune exhaustion markers (PD1, Tim3 and CTLA4) either alone or in combinations were significantly higher in smokers, especially on CD4+ T-cells. Compared to HIV uninfected non-smokers, microbial translocation (sCD14 and LPS) was higher in smokers of both groups and directly correlated with CD4+ and CD8+ T-cell activation. Antigen specific T-cell function showed significantly lower cytokine response of CD4+ and CD8+ T-cells to CEF peptide-pool stimulation in smokers of both HIV infected and uninfected groups.

Conclusions

Our results suggest that smoking and HIV infection independently influence T-cell immune activation and function and together they present the worst immune profile. Since smoking is widespread among HIV infected individuals, studies are warranted to further evaluate the cumulative effect of smoking on impairment of the immune system and accelerated disease progression.  相似文献   

7.
A high percentage of free-ranging pumas (Felis concolor) are infected with feline lentiviruses (puma lentivirus, feline immunodeficiency virus Pco [FIV-Pco], referred to here as PLV) without evidence of disease. PLV establishes productive infection in domestic cats following parenteral exposure but, in contrast to domestic cat FIV, it does not cause T-cell dysregulation. Here we report that cats exposed to PLV oro-nasally became infected yet rapidly cleared peripheral blood mononuclear cell (PBMC) proviral load in the absence of a correlative specific immune response. Two groups of four specific-pathogen-free cats were exposed to PLV via the mucosal (oro-nasal) or parenteral (i.v.) route. All animals were PBMC culture positive and PCR positive within 3 weeks postinfection and seroconverted without exhibiting clinical disease; however, three or four oro-nasally infected animals cleared circulating proviral DNA within 3 months. Antibody titers reached higher levels in animals that remained persistently infected. PLV antigen-induced proliferation was slightly greater in mucosally inoculated animals, but no differences were noted in cytotoxic T-lymphocyte responses or cytokine profiles between groups. The distribution of virus was predominantly gastrointestinal as opposed to lymphoid in all animals in which virus was detected at necropsy. Possible mechanisms for viral clearance include differences in viral fitness required for crossing mucosal surfaces, a threshold dose requirement for persistence, or an undetected sterilizing host immune response. This is the first report of control of a productive feline or primate lentivirus infection in postnatally exposed, seropositive animals. Mechanisms underlying this observation will provide clues to containment of immunodeficiency disease and could prompt reexamination of vaccine-induced immunity against human immunodeficiency virus and other lentiviruses.  相似文献   

8.
Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4+CD25hiFoxP3+ immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.  相似文献   

9.
Preexistent feline leukemia virus (FeLV) infection greatly potentiated the severity of the transient primary and chronic secondary stages of feline immunodeficiency virus (FIV) infection. Of 10 FeLV-FIV carrier cats, 5 died of experimentally induced FIV infection, compared with 2 deaths in 10 cats infected only with FeLV and 1 death in 7 cats infected only with FIV. FIV-infected cats with preexistent FeLV infections developed severe depression, anorexia, fever, diarrhea, dehydration, weight loss, and leukopenia 4 to 6 weeks after infection and were moribund within 2 weeks of the onset of signs, whereas cats infected only with FIV developed much milder self-limiting gross and hematologic abnormalities. Pathologic findings in dually infected cats that died were similar to those observed previously in cats dying from uncomplicated primary FIV infection but were much more widespread and severe. Coinfection of asymptomatic FeLV carrier cats with FIV did not increase the levels of FeLV p27 antigen present in their blood over that seen in cats infected with FeLV alone. The amount of proviral FIV DNA was much higher, however, in dually infected cats than in cats infected only with FIV; there was a greater expression of FIV DNA in lymphoid tissues, where the genome was normally detected, and in nonlymphoid tissues, where FIV DNA was not usually found. Dually infedted cats that recovered from the primary stage of FIV infection remained more leukopenic than cats infected with FIV or FeLV alone, and their CD4+/CD8+ T-lymphocyte ratios were inverted. One of these cats developed what was considered to be an opportunistic infection. It was concluded, therefore, that a preexistent FeLV infection in some way enhanced the expression and spread of FIV in the body and increased the severity of both the resulting transient primary and chronic secondary stages of FIV infection. This study also demonstrated the usefulness of the FIV model in studying the role of incidental infectious diseases as cofactors for immunodeficiency-causing lentiviruses.  相似文献   

10.
Virus-infected monocytes rarely are detected in the bloodstreams of animals or people infected with immunodeficiency-inducing lentiviruses, yet tissue macrophages are thought to be a major reservoir of virus-infected cells in vivo. We have identified feline immunodeficiency virus (FIV) clinical isolates that are pathogenic in cats and readily transmitted vertically. We report here that five of these FIV isolates are highly monocytotropic in vivo. However, while FIV-infected monocytes were numerous in the blood of experimentally infected cats, viral antigen was not detectable in freshly isolated cells. Only after a short-term (at least 12-h) in vitro monocyte culture were FIV antigens detectable (by immunocytochemical analysis or enzyme-linked immunosorbent assay). In vitro experiments suggested that monocyte adherence provided an important trigger for virus antigen expression. In the blood of cats infected with a prototype monocytotropic isolate (FIV subtype B strain 2542), infected monocytes appeared within 2 weeks, correlating with high blood mononuclear-cell-associated viral titers and CD4 cell depletion. By contrast, infected monocytes could not be detected in the blood of cats infected with a less pathogenic FIV strain (FIV subtype A strain Petaluma). We concluded that some strains of FIV are monocytotropic in vivo. Moreover, this property may relate to virus virulence, vertical transmission, and infection of tissue macrophages.  相似文献   

11.

Background

Hepatitis E is a major public health problem in the developing countries. Pathogenesis of hepatitis E virus (HEV) infection is poorly understood.

Methods

This case-control study included 124 Hepatitis E patients (46 acute and 78 recovered), 9 with prior exposure to HEV and 71 anti-HEV negative healthy controls. HEV induced CTL response by Elispot, cytokines/chemokines quantitation by Milliplex assay and peripheral CD4+ & CD8+ T cell frequencies by flow cytometry were assessed.

Results

Among the patient categories, HEV specific IFN-γ responses as recorded by Elispot were comparable. Comparisons of cytokines/chemokines revealed significantly high levels of IL-1α and sIL-2Rα during acute phase. Circulating peripheral CD4/CD8+ T-cell subsets in acute and recovered individuals were comparable compared to controls, while among patient categories CD8+T cell subset was significantly higher in recovered individuals.

Conclusions

Our findings suggest that IL-1α and sIL-2Rα play a role in the pathogenesis of acute Hepatitis E infection. Lack of robust HEV ORF2-specific CTL response in the peripheral blood of HEV infected patients during the acute and recovered phases of the disease may be associated with involvement of innate immune cells/localization of the immune events at the site of infection.  相似文献   

12.

Background

Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster.

Principal Findings

We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females.

Conclusions

These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host''s response to the sigma virus.  相似文献   

13.

Background

Acquisition of more than one strain of human immunodeficiency virus type 1 (HIV-1) has been reported to occur both during and after primary infection, but the risks and repercussions of dual and superinfection are incompletely understood. In this study, we evaluated a longitudinal cohort of chronically HIV-infected men who were sexual partners to determine if individuals acquired their partners'' viral strains.

Methodology

Our cohort of HIV-positive men consisted of 8 couples that identified themselves as long-term sexual partners. Viral sequences were isolated from each subject and analyzed using phylogenetic methods. In addition, strain-specific PCR allowed us to search for partners'' viruses present at low levels. Finally, we used computational algorithms to evaluate for recombination between partners'' viral strains.

Principal Findings/Conclusions

All couples had at least one factor associated with increased risk for acquisition of new HIV strains during the study, including detectable plasma viral load, sexually transmitted infections, and unprotected sex. One subject was dually HIV-1 infected, but neither strain corresponded to that of his partner. Three couples'' sequences formed monophyletic clusters at the entry visit, with phylogenetic analysis suggesting that one member of the couple had acquired an HIV strain from his identified partner or that both had acquired it from the same source outside their partnership. The 5 remaining couples initially displayed no evidence of dual infection, using phylogenetic analysis and strain-specific PCR. However, in 1 of these couples, further analysis revealed recombinant viral strains with segments of viral genomes in one subject that may have derived from the enrolled partner. Thus, chronically HIV-1 infected individuals may become superinfected with additional HIV strains from their seroconcordant sexual partners. In some cases, HIV-1 superinfection may become apparent when recombinant viral strains are detected.  相似文献   

14.

Background

The clinical significance and cellular sources of residual human immunodeficiency virus type 1 (HIV-1) production despite suppressive combination antiretroviral therapy (cART) remain unclear and the effect of low-level viremia on T-cell homeostasis is still debated.

Methodology/Principal Findings

We characterized the recently produced residual viruses in the plasma and short-lived blood monocytes of 23 patients with various immunological responses to sustained suppressive cART. We quantified the residual HIV-1 in the plasma below 50 copies/ml, and in the CD14high CD16 and CD16+ monocyte subsets sorted by flow cytometry, and predicted coreceptor usage by genotyping V3 env sequences.We detected residual viremia in the plasma of 8 of 10 patients with poor CD4+ T-cell reconstitution in response to cART and in only 5 of 13 patients with good CD4+ T-cell reconstitution. CXCR4-using viruses were frequent among the recently produced viruses in the plasma and in the main CD14high CD16 monocyte subset. Finally, the residual viremia was correlated with persistent CD4+ and CD8+ T-cell activation in patients with poor immune reconstitution.

Conclusions

Low-level viremia could result from the release of archived viruses from cellular reservoirs and/or from ongoing virus replication in some patients. The compartmentalization of the viruses between the plasma and the blood monocytes suggests at least two origins of residual virus production during effective cART. CXCR4-using viruses might be produced preferentially in patients on cART. Our results also suggest that low-level HIV-1 production in some patients may contribute to persistent immune dysfunction despite cART.  相似文献   

15.
Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and "OrfA" proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread.  相似文献   

16.
New viral infections in humans usually result from viruses that have been transmitted from other species as zoonoses. For example, it is accepted widely that human immunodeficiency virus (HIV) is the result of the propagation and adaptation of a simian immunodeficiency virus (SIV) from nonhuman primates to man [1]. Previously, we reported productive infection of primary human cells in vitro by feline immunodeficiency virus (FIV) [2], a lentivirus that causes an immunodeficiency syndrome in cats similar to HIV in humans [3]. The present study extends these findings by demonstrating that cynomolgus macaques (Macaca fasicularis) infected with FIV exhibited clinical signs, including depletion of CD4+ cells and weight loss, that are consistent with FIV infection. The development of an antibody response to FIV gag-encoded proteins and detection of virus-specific sequences in sera, blood-derived cells, and necropsied tissue accompanied these changes. Moreover, the reactivation of FIV replication from latently infected cells was observed after stimulation in vitro with phorbol esters and in vivo with tetanus toxoid. The proposed use of lentiviruses in human gene therapy [4, 5] and of nonhuman cells and organs in xenotransplantation [6] has raised concerns about zoonoses as potential sources of new human pathogens. Therefore, the study of FIV infection of primate cells may provide insight into the principles underlying retroviral xenoinfections.  相似文献   

17.

Background

An important question in dengue pathogenesis is the identity of immune cells involved in the control of dengue virus infection at the site of the mosquito bite. There is evidence that infection of immature myeloid dendritic cells plays a crucial role in dengue pathogenesis and that the interaction of the viral envelope E glycoprotein with CD209/DC-SIGN is a key element for their productive infection. Dermal macrophages express CD209, yet little is known about their role in dengue virus infection.

Methods and Findings

Here, we showed that dermal macrophages bound recombinant envelope E glycoprotein fused to green fluorescent protein. Because dermal macrophages stain for IL-10 in situ, we generated dermal-type macrophages from monocytes in the presence of IL-10 to study their infection by dengue virus. The macrophages were able to internalize the virus, but progeny virus production was undetectable in the infected cells. In addition, no IFN-α was produced in response to the virus. The inability of dengue virus to grow in the macrophages was attributable to accumulation of internalized virus particles into poorly-acidified phagosomes.

Conclusions

Aborting infection by viral sequestration in early phagosomes would present a novel means to curb infection of enveloped virus and may constitute a prime defense system to prevent dengue virus spread shortly after the bite of the infected mosquito.  相似文献   

18.
Feline immunodeficiency virus (FIV) infection induces an increase in two subpopulations (CD8alpha(+)beta(low) and CD8alpha(+)beta(-)) within CD8(+) peripheral blood lymphocytes (PBLs) of cats. It is known that depletion of CD8(+) cells often results in augmentation of FIV proliferation in PBL culture, similarly to the case of human immunodeficiency virus. In this study, we attempted to define PBL subpopulations mediating antiviral activity in five cats intravaginally infected with a molecularly cloned FIV isolate. Several subpopulations (CD8alpha(+)beta(+), CD8alpha(+)beta(-), and CD4(+) cells) were shown to participate in inhibition of the FIV replication, at least in part, in a major histocompatibility complex-unrestricted manner. Moreover, the subpopulations showing anti-FIV activity were different among the individual cats.  相似文献   

19.

Background

The risk of postnatal HIV transmission is associated with the magnitude of the milk virus load. While HIV-specific cellular immune responses control systemic virus load and are detectable in milk, the contribution of these responses to the control of virus load in milk is unknown.

Methods

We assessed the magnitude of the immunodominant GagRY11 and subdominant EnvKY9-specific CD8+ T lymphocyte response in blood and milk of 10 A*3002+, HIV-infected Malawian women throughout the period of lactation and correlated this response to milk virus RNA load and markers of breast inflammation.

Results

The magnitude and kinetics of the HIV-specific CD8+ T lymphocyte responses were discordant in blood and milk of the right and left breast, indicating independent regulation of these responses in each breast. However, there was no correlation between the magnitude of the HIV-specific CD8+ T lymphocyte response and the milk virus RNA load. Further, there was no correlation between the magnitude of this response and markers of breast inflammation.

Conclusions

The magnitude of the HIV-specific CD8+ T lymphocyte response in milk does not appear to be solely determined by the milk virus RNA load and is likely only one of the factors contributing to maintenance of low virus load in milk.  相似文献   

20.
Feline immunodeficiency virus (FIV) provides a model system with which the significance of neutralizing antibody (NA) in immunosuppressive lentivirus infections may be studied. To date, no detailed analysis of the neutralization properties of primary FIV isolates has been reported. In this study, we have conducted the first comprehensive study of the sensitivity to autologous and heterologous neutralization in a lymphoid cell-based assay of 15 primary FIV isolates and, for comparison, of one tissue culture-adapted strain. Primary isolates in general proved highly NA resistant, although there was considerable individual variation. Variation was also observed in the capacity of immune sera to neutralize heterologous FIV isolates. The ability of sera to neutralize isolates or for isolates to be neutralized by sera did not correlate with epidemiological and genetic relatedness or with the quasispecies complexity of the isolates. From the study of specific-pathogen-free cats experimentally infected with viral isolates associated with NA of different breadths, it appears that the development of FIV vaccines cannot rely on the existence of viral strains inherently capable of inducing especially broad NA responses.Feline immunodeficiency virus (FIV) is a lentivirus that is regarded as the feline counterpart of human immunodeficiency virus (HIV) because it produces persistent infections of domestic cats which, after an incubation period of several years, progress to clinical manifestations of immunodeficiency and neurological damage that closely resemble those observed in HIV-infected humans. FIV is therefore a valuable model for investigating many aspects of AIDS pathobiology and control, including vaccination (4, 11, 39, 56).Based on DNA phylogenesis, FIV isolates worldwide have been classified into at least five distinct genetic subtypes, designated A to E, with uneven geographical distributions (2). While there is little hope of developing a monovalent vaccine capable of protecting across different FIV subtypes, a more reasonable goal is the development of one or several protective immunogens for each subtype and subsequent selection of the immunogens on the basis of the subtypes prevalent in the area where the vaccine is to be used (56). However, because genetic diversity is also high within a subtype, especially in the env region (2, 42), successful vaccines will have to induce immune responses effective against a wide range of antigenically diverse strains. Mapping the immunological relatedness of FIV strains belonging to the same genetic subtype therefore represents a prerequisite for identifying shared critical protective epitopes and an essential step for ongoing vaccine development efforts. Similar problems exist for HIV vaccine development (33).Although the humoral and cell-mediated immune responses that will eventually prove important for vaccine-induced protection against lentiviruses are unresolved (3, 7, 17), the ability to evoke a broadly reactive neutralizing-antibody (NA) response would seem to be an advantageous feature of candidate immunogens because it would at least contrast the dissemination of the initial viral inoculum from the site of entry (8, 9). In previous studies, we found that cats immunized with a fixed-cell vaccine were protected against FIV challenge in the apparent absence of NA (27, 28), but it is possible that a detectable NA response could be elicited with improved vaccines, adjuvants, and immunization regimens.FIV vaccines must be designed to protect against strains of FIV as they circulate in nature. For this reason, it is important to learn more about the immunobiological properties of fresh clinical isolates, including their ability to evoke and interact with NA and their neutralizing determinant(s). Here we report on the sensitivity of 15 FIV isolates subjected to minimal passage in culture to neutralization by autologous and heterologous immune sera. Primary FIV isolates proved only slightly prone to inhibition by immune sera. However, certain isolates were more neutralizable by heterologous sera than others and certain infected cat sera neutralized fairly large numbers of primary isolates. A relationship was also sought between neutralization properties of the isolates and immune sera and a number of factors that theoretically might influence the induction or the activity of cross-reactive NA, including epidemiological and genetic relatedness and quasispecies complexity of the isolates. Finally, to ascertain whether the cross-neutralizing potency of anti-FIV antibody was dependent on properties of the viruses that had induced their formation, we studied the NA response of specific-pathogen-free (SPF) cats inoculated with selected FIV isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号